Visual Information Processing

Menandro Roxas
Computer Vision Laboratory
October 31, 2018
Topic

- Spatio-Temporal Image Processing / Video Processing
 - 10/31 – What kind of information can we gather from an image sequence?
 - 11/07 – In what applications can we use this information?
Image vs. Image Sequence

• Low Level Information
 • Image
 • Color (RGB, Intensity)
 • Gradient

• Image Sequence
 • Pixel motion (optical flow)

• High Level Information (inferred)
 • Image
 • Object classification

• Image Sequence
 • Object motion
 • 3D structure
 • Camera pose
Image vs. Image Sequence

<table>
<thead>
<tr>
<th>Low level information</th>
<th>High level information</th>
</tr>
</thead>
<tbody>
<tr>
<td>color, gradient</td>
<td>object classification</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>pixel motion (optical flow)</td>
<td>3D structure</td>
</tr>
<tr>
<td></td>
<td>camera pose</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Spatio-Temporal Image Processing

• Observation of pixel change over time
 • Is it changing color?
 • Is it moving?

• What can we infer from these changes?
 • Distance of the object
 • Speed
 • Camera motion
Application (Overview)

• Video Inpainting
Application (Overview)

• 3D Reconstruction (BigSfM: Reconstructing the World from internet photos)
Optical Flow

Apparent motion of objects
Optical Flow
Optical Flow

- **Brightness Constancy**

\[I(x + u, y + v, t + 1) - I(x, y, t) = 0 \]

- **First-order approximation**

\[I(x + u, y + v, t + 1) \approx I(x, y, t) + \frac{dl}{dx} u + \frac{dl}{dy} v + \frac{dl}{dt} \]

\[I(x + u, y + v, t + 1) - I(x, y, t) = \frac{dl}{dx} u + \frac{dl}{dy} v + \frac{dl}{dt} = I_x u + I_y v + I_t \]
Optical Flow (1D)

\[I_x = \frac{\delta I}{\delta x} \bigg|_t \quad I_t = \frac{\delta I}{\delta t} \bigg|_{x=p} \quad \vec{u} \approx -\frac{I_t}{I_x} \]

Assumptions:
- brightness constancy
- small motion
Optical Flow

• How to solve \((u, v)\)?

\[I_x u + I_y v + I_t = 0 \]

• Discretize in image domain

\[I_x = I(x + 1, y) - I(x, y) \]
\[I_y = I(x, y + 1) - I(x, y) \]
\[I_t = I(x, y, t) - I(x, y, t + 1) \]

• One equation (scalar), two unknowns \((u, v)\):
Optical Flow

• How to solve \((u, v)\)?
 \[I_x u + I_y v + I_t = 0 \]

• Discretize in image domain
 \[I_x = I(x + 1, y) - I(x, y) \]
 \[I_y = I(x, y + 1) - I(x, y) \]
 \[I_t = I(x, y, t) - I(x, y, t + 1) \]

• One equation (scalar), two unknowns \((u, v)\)?
Optical Flow
(Simple solution)

• Over-constrained
 • Assume: neighboring pixels have equal motion

• More equations

\[
\begin{align*}
I_x u + I_y v &= I_t \\
\bar{I}_x u + \bar{I}_y v &= \bar{I}_t \\
\begin{bmatrix}
I_x & I_y \\
\bar{I}_x & \bar{I}_y
\end{bmatrix}
\begin{bmatrix}
u \\
v
\end{bmatrix}
&=
\begin{bmatrix}
-I_t \\
-\bar{I}_t
\end{bmatrix}
\end{align*}
\]

• Problem:
 • Works only for single object
Issues with Optical Flow

• Aperture problem
• Occlusions
• Textureless Region
• Large Motion
Issues with Optical Flow

<table>
<thead>
<tr>
<th>Aperture problem</th>
<th>Occlusion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Textureless region</th>
<th>Large motion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Apperture Problem: Solution

- Isotropic information
 - Corners
 - High textures
 - Not always present

- Regularization
 - Smoothness constraint
 - Neighboring pixels have similar motion (more or less)
Apperture Problem: Solution

• Use isotropic information
 • Corners
 • High textures
Aperture Problem: Solution

• Neighboring pixels have “similar” motion

\[
\begin{align*}
 u(x, y) & \quad u(x+1, y) \\
 u(x, y+1) & \quad \frac{du}{dx} \approx 0 \\
 & \quad u(x + 1, y) - u(x, y) \approx 0
\end{align*}
\]

• Smoothness Constraint

\[
\arg \min_{u,v} \left(\frac{du}{dx} \right)^2 + \left(\frac{du}{dy} \right)^2 + \left(\frac{dv}{dx} \right)^2 + \left(\frac{dv}{dy} \right)^2
\]
Occlusion

• Undefined motion in occluded area
 • But still constrained. How?
Occlusion: Solution

• Step 1: Detection of occluded area

Frame 1 Frame 2 Optical Flow

• Step 2: Deciding what “kind” of motion it is

or

GUESS based on the color!
Textureless Region

- Image gradients are zero

\[I_x = 0 \quad I_y = 0 \]
Textureless Region

Local neighborhood

Regularization

Textured information

Too far!!
Textureless Regions: Solution

- Coarse-to-fine approach + Regularization
 - Make the image small
 - Make neighboring pixels have similar motion
 - Increase resolution
Large Motion

Must be this!
Solved I_t

Actual corresponding points
Large Motion: Solution

- Coarse-to-fine approach
 - Bring the two corresponding points closer
Large Motion: Solution

- Sparse matching (global scale feature matching)
 - Search whole image for similar features
Methods for Solving Optical Flow

• Feature-matching method
 – Patch matching
 – Naturally sparse and discrete

• Variational method
 – Naturally dense (complete) and continuous
Feature Matching Methods

- Handles large displacement
- Mostly sparse

- SIFT, SURF, SIFT-Flow etc.
- DeepMatching

- A topic for a different day...
Variational Method

- Minimize the sum of convex energies
 - Data (Brightness constancy)
 - Regularizer (Smoothness constraint)
 - Large Displacement Handling
 - Epipolar Geometry

$$\arg \min_{u,v} F_{data}(u, v) + F_{reg}(u, v) + F_{ld}(u, v) \ldots$$
Variational Method

• Brightness Constancy
 • Lucas-Kanade
 \[I_x u + I_y v + I_t = 0 \]

• Regularization
 • Least-Squares (Horn-Schunk)
 \[\left(\frac{du}{dx} \right)^2 + \left(\frac{du}{dy} \right)^2 = 0 \]
 • Total Variation
 \[\sqrt{\left(\frac{du}{dx} \right)^2 + \left(\frac{du}{dy} \right)^2} = 0 \]
 • Non-Local (Median Filter + extension)
Regularization

• Total variation (TV) \[\sqrt{\left(\frac{du}{dx}\right)^2 + \left(\frac{du}{dy}\right)^2} \]

![Diagram of signal and denoising process](image)
Regularization

• Median filtering vs. Weighted Median filtering
Regularization

• Comparison of regularizers

(a) “Old” HS [58] (b) “New” HS (c) Classic++ (d) Classic+NL (e) Ground truth (f) First frame

Least-squares Total Variation w/ median filtering w/ weighted median filtering
Handling Large Displacement

- Global feature matching
- Constrain the pixel to the detected motion

\[u(x, y) - \bar{u}(x, y) = 0 \]
Special Case: Epipolar Geometry

- Constrain the motion along a trajectory
 - Only for moving camera and stationary objects
Special Case: Epipolar Geometry

Camera position 0

Camera position 1

SCENE

Fundamental Matrix, F

\[x_1^T F x_0 = 0 \]
\[(x_0 + u)^T F x_0 = 0 \]

\(x_1 \) and \(x_0 \) are corresponding points (i.e. \(x_1 = x_0 + u \))
Example of Minimization Function

\[
\arg \min_{u,v} \sqrt{(I_x u + I_y v + I_t)^2 + \varepsilon^2 + \lambda_{TV} \sqrt{(\frac{du}{dx})^2 + (\frac{du}{dy})^2} + \lambda_{TV} \sqrt{(\frac{dv}{dx})^2 + (\frac{dv}{dy})^2}} \\
+ \lambda_{median} \phi_{median}(u) + \lambda_{median} \phi_{median}(v) \\
+ \lambda_{matching} (u - u_{matching})^2 + \lambda_{matching} (v - v_{matching})^2 \\
+ ((x_0 + u)^T F x_0)^2
\]
Solution to Variational Method

• Euler-Lagrange
• Gradient descent
• Primal-Dual decomposition
 • Used for non-differentiable functions such as l1-norm
Evaluation Databases

vision.middlebury.edu
stereo • mview • MRF • flow • color

MPI Sintel Flow Dataset
A dataset for the evaluation of optical flow derived from the open source 3D animated short film, Sintel.
Evaluation Database: Middlebury

• 12 training sets
• 12 testing sets

• Advantages
 – Real + synthetic images
 – Random object motion

• Disadvantages
 – Very small motion (~20 pixels)
 – Few images
Evaluation Database: KITTI2012

• 193 traning
• 194 testing

• Advantages
 – Real world images

• Disadvantages
 – Partial ground truth
 – Outdoor only
 – Motions are due to camera movement (Static scene)
Evaluation Database : KITTI2015

• 200 training
• 200 testing

• Advantages
 – Real world images
 – Dynamic motion (moving objects)
 – More challenging

• Disadvantages
 – Challenging sets are very few (difficult to make conclusive remarks)
Evaluation Database: MPI Sintel

• 23 training
• 12 testing

• Advantages
 – Dynamic motion
 – Challenging large motion
 – Most difficult of the three database (Middlebury, Kitti and MPI)

• Disadvantages
 – Synthetic (CGI)
Best Performing Methods

• General Purpose
 • FlowFields
 • C. Bailer et al., “Flow Fields: Dense Correspondence Fields for Highly Accurate Large Displacement Optical Flow Estimation”, ICCV 2015
 • EpicFlow

• Epipolar Geometry
 • PRSM
 • C. Vogel et al., “3D Scene Flow Estimation with a Piecewise Rigid Scene Model”, IJCV 2015
 • SPS-FI

• Variational
 • Classic++, Classic++NL

• Variational ++
 • DeepFlow

• Learning-Based (CNN)
 • FlowNet2
FlowFields

For $k=2$
$n=4=2^2$
$n=2$
$n=1$

KD-Tree initialization
Propagation:
Resolution increase

a)

b)
c)
d)
e)
f)

Random Search

3x
after 4th propagation

Full resolution?

yes

Done

no

Increase Resolution

KD-Tree Initialization -> Propagation -> Random Search

Increase Resolution -> no -> Full resolution? -> no

Full resolution? -> yes -> Done

Increase Resolution -> yes -> Full resolution? -> yes

Full resolution? -> yes -> Done
Results

(a) ANNF [16] (b) Our Flow Field

(c) Our outlier filtered Flow Field (d) Ground truth
EpicFlow

\[F_{NW}(p) = \sum_{(p_m, p'_m) \in \mathcal{M}} \frac{k_D(p_m, p)p'_m}{\sum_{(p_m, p'_m) \in \mathcal{M}} k_D(p_m, p)} \]

Dense Interpolation

Figure 1. Image edges detected with SED [15] and ground-truth optical flow. Motion discontinuities appear most of the time at image edges.
Results
PRSM

- Piecewise rigid moving planes
SPS-Fi - Yamaguchi

- MRF model
 - Piecewise rigid moving planes (same as PRSM)

\[
\hat{d}(p, \theta_i) = A_ip_x + B_ip_y + C_i
\]

Disparity at pixel \(p \)

A, B, C are plane parameters

(px, py) is the center of a segment
Results
Classic++, Classic+NL

- Classic++, 5x5 median filter
- Classic+NL, Edge-adaptive median filter
 - Improved boundaries
DeepFlow

- Accurate, but DeepMatching is very slow
Results

Average frames

Deep Matching

DeepFlow

Groundtruth flow
FlowNet2

• CNN-based
• Cascaded network
Result

FlowNet 2.0 vs FlowFields

FlowNet 2.0 generates sharper boundaries, achieves comparable error scores, and runs ca. **200x faster**