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Abstract

Optical flow computation is a key component in many

computer vision systems designed for tasks such as action

detection or activity recognition. However, despite several

major advances over the last decade, handling large dis-

placement in optical flow remains an open problem.

Inspired by the large displacement optical flow of Brox

& Malik [6], our approach, termed DeepFlow, blends a

matching algorithm with a variational approach for opti-

cal flow. We propose a descriptor matching algorithm, tai-

lored to the optical flow problem, that allows to boost per-

formance on fast motions. The matching algorithm builds

upon a multi-stage architecture with 6 layers, interleaving

convolutions and max-pooling, a construction akin to deep

convolutional nets. Using dense sampling, it allows to effi-

ciently retrieve quasi-dense correspondences, and enjoys a

built-in smoothing effect on descriptors matches, a valuable

asset for integration into an energy minimization framework

for optical flow estimation.

DeepFlow efficiently handles large displacements occur-

ring in realistic videos, and shows competitive performance

on optical flow benchmarks. Furthermore, it sets a new

state-of-the-art on the MPI-Sintel dataset [8].

1. Introduction

An enormous amount of digital video content (home

movies, films, surveillance tapes, TV, video games) is be-

coming available, along with new challenges. These include

action and activity recognition from realistic videos [14, 30]

and video surveillance [11]. In particular, optical flow com-

putation is important in early stages of the video description

pipeline [19, 30]. It is essential that the optical flow algo-

rithm overcomes the many challenges that arise in realistic

videos, namely: robustness to outliers (motion discontinu-

ities, occlusions), robustness to illumination changes (with

gradient constancy), ability to deal with large displace-

ments. Efficient approaches were proposed to satisfy the

first two requirements [4, 21, 31]. However, the last require-

ment, that is the ability to handle large displacements in op-

tical flow, has received little attention so far [6, 33, 32, 23].

In their pioneering work [6], Brox and Malik show that a

careful addition of a descriptor matching term in the varia-

tional approach allows to better handle large displacements.

The main idea is to give “hints” to guide the classical vari-

ational optical flow estimation by using correspondences

from sparse descriptor matching. This approach combines

the advantage of region-based descriptor matching, i.e. the

ability to estimate arbitrarily large displacement, with the

strengths of variational optical flow methods.

Current descriptor matching approaches rely typically on

square, rigid descriptors (e.g. HOGs [26]), which implicitly

refers to the rigid motion hypothesis. While infinitesimal

displacements fit this model well, it no longer holds for fast

motions. We show that improving the descriptor matching

part towards a more dense and deformable matching can

lead to a significant performance gain for fast motions.

We make here a step towards bridging the gap between

descriptor matching methods and current large displace-

ment optical flow algorithms. We propose a new descrip-

tor matching algorithm, called deep matching, that enjoys

a built-in smoothing effect on the set of output correspon-

dences. The outline of our approach is shown on Figure 1.

We make three contributions:

• Dense correspondences matching: we introduce a

descriptor matching algorithm, using dense sampling, that

allows to retrieve dense correspondences from single fea-

ture correspondences with deformable patches.

• Self-smoothed matching: the matching algorithm

works with a restricted set of feasible non-rigid warpings,

which gracefully produces almost smooth dense correspon-

dences while allowing computationally efficient compari-

son of non-rigid descriptors.

• Large displacement optical flow: our variational op-

tical flow, DeepFlow, shows robustness to large displace-

ments, performing equally well to Brox and Malik’s ap-

proach on Middlebury dataset [2], and significantly outper-

forming it on the MPI-Sintel dataset [8].

This paper is organized as follows. After a review of pre-

vious works (Section 2), we start by presenting the match-

ing algorithm in Section 3. Then, Section 4 describes our

1



Multi-size response pyramid

4x4 patches response maps 
for each patch

aggregation

(virtual) 8x8 patches

level 2’s 
response maps

aggregation

(virtual) 16x16 patches

level 3’s 
response maps

…

Aggregation details

Optical flow

ref image

target image

convolutions

sparse

convolutions

max-pooling sub-sampling

non-linear

filtering

local maxima
detection

quasi-dense 

correspondences 

extraction

Figure 1. Outline of DeepFlow.

variational optical flow approach termed DeepFlow. Fi-

nally, we present experimental results in Section 5.

2. Related work

Large displacement in optical flow estimation. Varia-

tional methods are the state-of-the-art family of methods for

optical flow estimation. Since the pioneering work of Horn

and Schunck [1], research has focused on alleviating the

drawbacks of this method. A series of improvements were

proposed over the years [4, 31, 7, 21, 2, 25, 29]. Brox et

al. [5] combine most of them into a variational approach.

Energy minimization is performed by solving the Euler-

Lagrange equations, then reducing the problem to solving

a sequence of large and structured linear systems.

To handle large displacements, a descriptor match-

ing component is incorporated in the variational approach

in [6]. One major drawback of this method is that local

descriptors are reliable only at salient locations and are lo-

cally rigid. Adding a matching component challenges the

energy formulation as it could deteriorate performance at

small displacement locations. Indeed, matching can give

false matches, ambiguous matches, and has low precision (a

pixel). In a different context, namely scene correspondence,

descriptors or small patches were used in SIFT-flow [17]

and PatchMatch [3] algorithms. Xu et al. [33] integrate

matching of SIFT [26] and PatchMatch [3] to refine the

flow initialization at each level. Excellent results were ob-

tained, yet at the cost of expensive fusion steps. Leordeanu

et al. [16] propose to extend sparse matching, with locally

affine constraint, to dense matching before using a total

variation algorithm to refine the flow estimation. We present

here a computationally efficient, yet competitive approach

for large displacement optical flow using a deep convolu-

tional matching procedure.

Descriptor matching. Image matching consists of two

steps: extraction of local descriptors and matching them.

Initial image descriptors were extracted at sparse, scale-

invariant or affine-invariant image locations [26, 20]. For

the purpose of optical flow estimation, recent work showed

that dense descriptor sampling improves performance [27,

6, 17]. In all cases, descriptors are extracted in rigid (gen-

erally square) local frames. Matching descriptors is then

generally reduced to a nearest-neighbor problem [26, 3,

6]. Methods such as reciprocal nearest-neighbors allow to

prune lots of false matches, but as a side effect also elim-

inate correct matches in weakly to moderately textured re-

gions. We show here that (i) extraction of descriptors in

non-rigid frames and (ii) dense matching in all image re-

gions, yields a competitive approach, with a significant per-

formance boost on MPI-Sintel [8] and KITTI [10] datasets.

Non-rigid matching. Our proposed matching algorithm,

called deep matching, is strongly inspired by non-rigid 2D

warping and deep convolutional networks [15, 28, 12]. It

also bears similarity with non-rigid matching approaches

developed in different contexts. In [9], Ecker and Ullman

proposed a similar pipeline to ours (albeit more complex)

to measure the similarity of small images. However, their

method lacks a way of merging correspondences belong-

ing to objects with contradictory motions (e.g., on differ-

ent focal planes). In a different context, Wills et al. [32]

estimated optical flow by robustly fitting smooth paramet-

ric models (homography and splines) to local descriptor

matches. In contrast, our approach is non-parametric and

model-free. More recently, Kim et al. [13] proposed a hi-

erarchical matching to obtain dense correspondences, but

their method works in a coarse-to-fine (top-down) fashion,

whereas deep matching works bottom-up. In addition, their

method requires inexact inference using loopy belief prop-

agation.

3. Deep Matching

In this section, we present the matching algorithm,

termed deep matching, and discuss its main features. The

matching algorithm builds upon a multi-stage architecture



(a) (b) (b’)
Figure 2. Illustration of moving quadrant similarity (a quadrant is

a quarter of a SIFT patch, i.e. a group of 2×2 cells ). (a) Reference

image; (b) target image with optimal standard SIFT matching; (b’)

target image with optimal moving quadrant SIFT matching.

with about 6 layers (depending on the image size), inter-

leaving convolutions and max-pooling, a construction akin

to deep convolutional nets [15].

3.1. Insights on the approach

The SIFT descriptor [26] is a histogram of gradient ori-

entations with 4×4 spatial cells, yielding a 128-dimensional

real vector H ∈ R
128. Now, let us split the SIFT patch

into 4 so-called quadrants, as in Figure 2.(b’): we have

H = [H1 H2 H3 H4] with Hs ∈ R
32.

We want to match a source descriptor with a target de-

scriptor. Rather than keeping the fixed 4 × 4 grid for both

descriptors, we propose to optimize the positions of the 4
quadrants of the target descriptor H ′ so as to maximize

sim(H,Q(p)) =
∑4

s=1
maxps

HT
s Q(ps), where Q(p) ∈

R
32 is the descriptor of a single quadrant extracted at posi-

tion p. Assuming that each of the four quadrants can move

independently (within some extent), the similarity can be

estimated efficiently, yielding a coarse non-rigid matching.

When applied recursively, this strategy allows for fine non-

rigid matching with explicit pixel-wise correspondences.

3.2. Deep matching as 2D warping

For the sake of clarity, we describe the 1D warping case.

The extension to the 2D case is straightforward, see [28, 12]

for details on 2D warping. Consider two 1D sequences of

descriptors, called reference P = {Pi}L−1

i=0
and target P′ =

{P′
i}

L−1

i=0
. The optimal warping between them is defined

by the function w∗ : {0 . . . L − 1} → {0 . . . L − 1} that

maximizes the sum of similarities between their elements:

S(w∗) = max
w∈W

S(w) = max
w∈W

∑

i

sim (P(i),P′(w(i)))

(1)

where w(i) returns the position of element i in P
′. In

practice, we use the non-negative cosine similarity between

pixel gradients as the similarity in Equation (1). The set of

feasible warpings W is defined recursively so that (i) find-

ing the optimal warping w∗ is computationally efficient and

(ii) warping is tolerant to moderate deformations.

Efficient computation of response maps. Let us denote

a subsequence of P of size N 6 L and centered in δ as
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Figure 3. Left: patch hierarchy in a reference image; right: one

possible displacement of corresponding patches in a target image.

P[δ,N ] = {P(i)}δ+
N

2
−1

i=δ−N

2

. A sub-warping from P[δ,N ]

to P
′[T,N ] is denoted as wN,δ→T . The key idea of deep

matching is that we assume the displacements of the left-

hand half and the right-hand half, that is resp. P[δ −
N
4
, N

2
] and P[δ + N

4
, N

2
] of any subsequence P[δ,N ] to

be both independent and limited, with respect to the dis-

placement of P[δ,N ] and proportionally to N ; see Fig-

ure 3. For the sake of clarity, define the short-hand notations

Sleft(
N
2
, t) := S

(

w∗
N

2
,δ−N

4
→T−N

4
+t

)

and Sright(
N
2
, t) :=

S
(

w∗
N

2
,δ+N

4
→T+N

4
+t

)

resp., and S(N) = S(w∗
N,δ→T ).

Then, Equation (1) rewrites as a recursion in N :

S(N) = max
t∈[−N

8
,N
8 ]

Sleft

(

N

2
, t

)

+ max
t∈[−N

8
,N
8 ]

Sright

(

N

2
, t

)

.

(2)

Note that this formula implicitly defines the set of feasible

warpings W , without enforcing monotonicity nor continu-

ity, in contrast to [28, 12] – thus making the problem much

easier. Indeed, it allows for an efficient computation of both

S(w∗) and w∗ using dynamic programming. At N = 4, we

stop the recursion and, assuming rigid subsequences P[·, 4]
and P

′[·, 4], we directly compute the score of Equation (1)

using convolutions. We call the values in {S(w∗
N,δ→T )}T ,

for fixed δ,N and varying T , the response map of the refer-

ence subsequence on the target sequence. We observe that

response maps obtained at higher N vary slowly with T , so

we incorporate a sub-sampling step of factor 2 in the recur-

sion. This compensates for the larger max-pooling area in

Equation (2). See Algorithm 1 for a summary of the ap-

proach.

This procedure produces a pyramid of response maps,

see Figure 1. Some are shown in Figure 4 for N ∈
{4, 8, 16}. Local maxima in the response maps correspond

to good matches of corresponding local image patches.

To obtain dense correspondences between any matched

patches (i.e. at local maxima), it suffices to recover the

path of response values that generated this maximum using

Equation (2).

Max-pooling with rectification. In contrast to most al-

gorithms for optical flow [5, 31], our algorithm works in

a bottom-up fashion. The algorithm starts at a fine level,

and moves up to coarser levels (larger patches), which are

built as an aggregation of responses of smaller patches.
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Figure 4. Response maps of reference patches on the target image

at various levels of the pyramid. Middle-left: response map of

a 4x4 patch. Bottom-right: the response map of a 16x16 patch

is obtained from aggregating responses of children 8x8 patches

(bottom-left), themselves obtained from 4x4 patches. The map of

the 16x16 patch is clearly more discriminative than previous ones

despite the change in appearance of the region.

Algorithm 1 Computing the response maps of every patch

of the reference image to the target image (1D version).

Input: P, P′ are 1D sequences to match

Set N ← 4, L← |P|, L′ ← |P′|
For δ ∈ [2, L− 2] with step 4 do

For T ∈ [0, L′ − 1] do

Compute the initial response map (convolutions):
S
(

w∗

4,δ→T

)

=
∑

1

i=−2
sim(Pδ+i, P

′

T+i)

While N < L do

N ← 2N
max-pool the response maps (max in Eq. 2)

subsample the response maps by a factor 2

For δ ∈
[

N
2
, L− N

2

]

with step N do

compute the response map
{

S
(

w∗
N,δ→T

)}

T
(Eq. 2)

apply the non-linear filtering (Eq. 3)

Return the response maps
{

S
(

w∗
N,δ→T

)}

T
for all δ,N

In order to better propagate responses after each level, we

use a power transform after max-pooling and subsampling

steps [18, 15]:

S′
(

w∗
N,δ→T

)

= S
(

w∗
N,δ→T

)λ
. (3)

Merging dense correspondences. A single maxima in the

response maps is unlikely to explain by itself the full set of

pixel-wise correspondences between the two images. The

combination of several maxima, corresponding to different

patch positions and sizes, better explains the global flow.
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Figure 5. Matching result between two images with repetitive tex-

tures. Each color refers to correspondences obtained from a dif-

ferent maximum in the response maps.

Therefore, we merge the correspondences extracted from all

local maxima. We weight each correspondence according to

three factors: weight = sim(P4,P
′
4) · l · S(w∗) (similarity

of the concerned atomic 4×4 patches, the level of the max-

imum in the pyramid and the value of the maximum). We

use the pyramid level to favor correspondences originating

from larger patches: they must be more reliable, since they

are more discriminative (Figure 4). We found this simple

heuristic produces good results in practice.

Finally, we retain the best correspondence (in terms of

its weight) in every 4 × 4 non-overlapping block in both

images. The final set of correspondences is the intersection

of the retained correspondences in both images. An illus-

tration of the final correspondences extracted for a pair of

images is shown in Figure 5.

Proposition 1: Finding the optimal matching score among

all feasible non-rigid warpings in W for all square patches

of sizes in {4, 8, 16, . . .} from the first image at all locations

in the second image can be done with complexity O(LL′),
where L and L′ are the number of pixels of the two images.

The most expensive part of our algorithm lies in the com-

putation of the first level convolutions, see [22] for a proof.

3.3. Analysis of deep matching

Multi-size patches and repetitive textures. We consider

patches of different sizes (all 2n sizes of patches), in con-

trast to other optical flow methods relying on descriptor

matches. This is a key feature of our approach when deal-

ing with repetitive textures. As one moves up to coarser

levels, the matching problem gets easier. Larger patches get

more credit, and our method can correctly match repetitive

patterns. Figures 5-6 illustrate this property.

Quasi-dense correspondences. Our method retrieves

dense correspondences from every matched patch (i.e. local

maximum), even in weakly textured areas; this is in contrast

to single correspondences obtained when matching pairs of

descriptors (e.g. SIFT). Figure 6 illustrates this characteris-

tic. Quantitative assessment, by comparing the density of

matches obtained from several matching schemes, is given

in Section 5.

Non-rigid deformations. Our matching algorithm is able



Figure 6. Sample results from the MPI-Sintel dataset [8]. (For each 3 × 2 block) From top to bottom: mean of the two frames and

ground-truth flow; dense HOG matching and flow computed with Brox and Malik [6] executable; our matches and flow.
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Figure 7. Histogram of the per-pixel averaged smoothness (com-

puted from Eq. 6) of 10,000 warpings randomly sampled from the

set of feasible warpings W128 and the set of random warpings over

the same region. The identity warping has a smoothness of 0.

to deal with various sources of image deformations: object-

induced or camera-induced. The set of feasible warpings,

see Equation (2), theoretically allows to deal with a scal-

ing factor in the range [ 1
2
, 3

2
] and rotations roughly in the

range [−30o, 30o] (although at the 4 × 4 patch level, the

warping model is purely translational); see [22] for a proof.

Furthermore, the matching process enjoys a built-in “post-

smoothing”. Indeed, feasible warpings cannot be too “far”

from the identity warping. Figure 7 illustrates this, by com-

paring the smoothness of warpings sampled from W128 (i.e.

from and to a 128 × 128 pixels region) with random warp-

ings. Clearly, they are different by orders of magnitude.

Figure 6 also shows that output match fields are locally

smooth.

4. DeepFlow

We now present our variational optical flow, termed

DeepFlow, that blends the deep matching algorithm into

an energy minimization framework. We use a similar ap-

proach to Brox and Malik [6]. We make three additions:

(i) we incorporate the deep matching algorithm as match-

ing component, (ii) we add a normalization in the data

term to downweight the impact of locations with high spa-

tial image derivatives, (iii) we use a different weight at

each level to downweight the matching term at finer scales.

Let I1, I2 : Ω → R
c be two consecutive images defined

on Ω with c channels. The goal is to estimate the flow

w = (u, v)⊤ : Ω → R
2. We assume that the images are

already smoothed using a Gaussian filter of standard devia-

tion σ. The energy we optimize is a weighted sum of a data

term ED, a smoothness term ES and a matching term EM :

E(w) =

∫

Ω

ED + αES + βEMdx (4)

For the three terms, we use a robust penalizer Ψ(s2) =√
s2 + ǫ2 with ǫ = 0.001 which has shown excellent re-

sults [25].

Data term. Our data term is a separate penalization of the

color and gradient constancy assumptions with a normal-

ization factor as in [34]. We start from the optical flow



constraint assuming the brightness constancy: (∇⊤
3 I)w =

0 with ∇3 = (∂x, ∂y, ∂t)⊤ the spatio-temporal gradient.

A basic way to build a data term is to penalize it, i.e.

ED = Ψ(w⊤
J0w) with J0 the tensor defined by J0 =

(∇3I)(∇⊤
3 I). As highlighted by Zimmer et al. [34], such

a data term overweights locations with high spatial image

derivatives. We normalize it by the norm of the spatial

derivatives plus a small factor to avoid division by zero

and to reduce a bit the influence in tiny gradient loca-

tions [34]. Let J̄0 be the normalized tensor J̄0 = θ0J0

with θ0 = (‖∇2I‖2 + ζ2)−1. We set ζ = 0.1 in the fol-

lowing. To deal with color images, we consider the tensor

defined for a channel i denoted by upper indices J̄ i
0 and we

penalize the sum over channels: Ψ(
∑c

i=1
w

⊤
J̄

i
0w). We

consider images in the RGB colorspace.

We separately penalize the gradient constancy assump-

tion [7]. Let Ix and Iy be the derivatives of the im-

ages with respect to the x and y axis respectively. Let

J̄
i
xy be the tensor for the channel i including the nor-

malization J̄
i
xy = (∇3I

i
x)(∇⊤

3 I
i
x)/(‖∇2I

i
x‖2 + ζ2) +

(∇3I
i
y)(∇⊤

3 I
i
y)/(‖∇2I

i
y‖2 + ζ2). The data term is the sum

of two terms, balanced by two weights δ and γ:

ED = δΨ

(

c
∑

i=1

w
⊤
J̄

i
0w

)

+ γΨ

(

c
∑

i=1

w
⊤
J̄

i
xyw

)

(5)

Smoothness term. Our smoothness term is a robust penal-

ization of the gradient flow norm:

ES = Ψ
(

‖∇u‖2 + ‖∇v‖2
)

. (6)

Matching term. The matching term encourages the flow

estimation to be similar to a precomputed vector field w
′.

To this end, we penalize the difference between w and w
′,

using a robust penalizer Ψ. Since the matching is not totally

dense, we add a binary term c(x) which is equal to 1 if and

only if a match is available at x.

We also multiply each matching penalization by a weight

φ(x), which must be low in flat regions or when matches

look false. To this end, we call λ̃(x) the minimum eigen-

value of the autocorrelation matrix multiplied by 10. We

also compute ∆(x) =
∑c

i=1
|Ii1(x) − Ii2(x − w

′(x))| +
|∇Ii1(x) − ∇Ii2(x − w

′(x))|. We then compute the score

φ as a Gaussian kernel on ∆ weighted by λ̃ with a pa-

rameter σM , experimentally set to σM = 50. More pre-

cisely, we define φ(x) at each point x with a match w
′(x)

as: φ(x) =
√

λ̃(x)/(σM

√
2π) exp(−∆(x)/2σM ). The

matching term is EM = cφΨ(‖w −w
′‖2).

Minimization. This energy functional is non-convex and

non-linear. To solve it, we use the framework of Brox et

al. [5]. An incremental coarse-to-fine warping strategy is

used with a downsampling factor η = 0.95. The remain-

ing equations are still non-linear due to the robust penal-

izers. We apply 5 inner fixed point iterations where the

non-linear weights and the flow increments are iteratively

updated while fixing the other. To approximate the solution

of the linear system, we use 25 iterations of the Successive

Over Relaxation (SOR) method.

To downweight the matching term on fine scales, we use

a different weight βk at each level as proposed by Stoll et

al. [24]. We set βk = β(k/kmax)
b where b is a parameter

of the flow, k the current level of computation and kmax the

number of the coarsest level.

5. Experiments

In this section, we evaluate the deep matching and Deep-

Flow on three challenging datasets. We compare several

matching methods and show how our matching algorithm

significantly improves the flow performance. For an evalu-

ation of the parameters of matching and flow, we refer to an

extended version [22].

The Middlebury dataset [2] has been extensively used for

evaluating optical flow methods. It contains complex mo-

tions, but the displacements are small. Less than 3% of the

pixels have a displacement over 20 pixels, and none goes

over 25 pixels (training set).

The MPI-Sintel dataset [8] is a challenging flow evalua-

tion benchmark. It contains long sequences with large mo-

tions and specular reflections. In the training set, more than

17.5% of the pixels have a motion over 20 pixels, approxi-

mately 10% over 40 pixels. We use throughout all our ex-

periments the “final” version, containing rendering effects

such as motion blur, defocus blur and atmospheric effects,

see Figure 6. For our experiments, we split the original

training set into a “small” training set (20%) and a valida-

tion set (80%). “EPE all” measures the average endpoint

error over all pixels, s10-40 only over pixels with a speed

between 10 and 40 pixels (similarly for s0-10 and s40+).

The KITTI dataset [10] contains real-world sequences

taken from a driving platform. It includes non-lambertian

surfaces, different lighting conditions, a large variety of ma-

terials and large displacements. More than 16% of the pix-

els have motion over 20 pixels.

5.1. Comparison of matching algorithms

We compare our matches to those obtained from sev-

eral state-of-the-art algorithms: KLT tracks [1], sparse SIFT

matching [26] and dense HOG matching used in LDOF [6],

called HOG-NN in the following. Comparing different

matching algorithms is delicate, as they produce matches

possibly at different locations. We propose the following

setup for a fair comparison. We assign to each point of a

fixed grid with a spacing of 16 pixels the nearest neighbor

match. We compute the density as the percentage of points

with at least one match in a neighborhood of 15 pixels. We

compute also precision as the percentage of those matches

with an error below 10 pixels.



Matching method Precision Density

Deep matching 92.07% 80.35%

HOG-NN 92.49 % 40.06%

SIFT-NN 93.89 % 16.35%

KLT 91.25% 35.61%

Table 1. Evaluation of the matching on the MPI-Sintel validation

set. The density is the percentage of points from a fixed grid with

at least one match in the neighborhood. The precision represents

the ratio of correct matches.

Table 1 presents a comparison of the four methods on the

MPI-Sintel validation set. Our deep matching method sig-

nificantly outperforms the other methods in terms of den-

sity, for a similar precision. This is because KLT, SIFT and

HOG matches appear only in highly textured regions. On

the contrary, our method covers most of the image area and

covers large motions better, see Figure 6.

5.2. Impact of the matches on the flow

To precisely evaluate the importance of the matching part

in the flow estimation, we compare results obtained without

and with deep matching. We also experiment with KLT,

SIFT-NN and HOG-NN matches. For all cases, we care-

fully optimize the flow parameters independently on the

“small” training set of MPI-Sintel. We employ a gradient

descent strategy with multiple initializations followed by a

small grid search. For HOG-NN, the weights φ are set to

(d2 − d1)/d1 as in [6] that measures the uniqueness of the

match, where di is the distance to the ith nearest neighbor

descriptor.

Matching input EPE all s0-10 s10-40 s40+

Deep matching 4.422 0.712 5.092 29.229

HOG-NN 5.273 0.764 4.972 37.858

SIFT-NN 5.444 0.846 5.313 38.283

KLT 5.513 0.820 5.304 39.197

No match 5.538 0.786 5.229 39.862

Table 2. Comparison of the endpoint error on the validation set of

MPI-Sintel when changing the input matches.

Table 2 shows the average endpoint error, averaged over

all pixels and over regions with large displacements for the

MPI-Sintel validation set. KLT, SIFT-NN and HOG-NN

slightly improve the performance for fast motion, between

1 and 2 pixels. Deep matching outperforms them especially

for large displacements, for which the error is reduced by 10
pixels on average. This demonstrates that the estimation of

the flow greatly benefits from our dense matches. Figure 6

displays a comparison of our flow with LDOF [6]. Clearly,

the motion of many difficult regions is better captured with

the help of dense matching. This is especially important in

weakly textured regions, see top-right example of Figure 6.

5.3. Results on MPISintel

Table 3 compares our method to state-of-the-art algo-

rithms on the MPI-Sintel test set; parameters are optimized

Method EPE all s0-10 s10-40 s40+ Time

DeepFlow 7.212 1.284 4.107 44.118 19

S2D-Matching [16] 7.872 1.172 4.695 48.782 ~2000

MDP-Flow2 [33] 8.445 1.420 5.449 50.507 709

LDOF [6] 9.116 1.485 4.839 57.296 30

Classic+NL [25] 9.153 1.113 4.496 60.291 301

Table 3. Results on the “Final” version of the MPI-Sintel test set.

The reported time is for one processor core @3.6GHz in seconds.

on the “small” training set. Our method outperforms current

algorithms, especially for s40+. We refer to the webpage for

complete results including the “clean” version.

Timings. Our matching algorithm takes approximately 2

seconds per frame pair1 while the flow computation takes

around 17 seconds using one CPU core. The total time to

compute the flow is thus below 20 seconds. See Table 3

for a comparison with other approaches. All timings are

obtained by running the online available code on the same

processor core with the exception of [16], where we report

timings obtained from the authors.

5.4. Results on Middlebury

We optimize the parameters on the Middlebury training

set by minimizing the average angular error with the same

strategy as for MPI-Sintel. We find weights quasi-zero for

the matching term due to the absence of large displace-

ments. Table 4 compares our results on the test set to a

few state-of-the-art methods. Our mean rank based on the

endpoint error is 45.9 at the time of publication. Note that a

small difference in one sequence can lead to a huge differ-

ence in ranking. We can clearly observe that our matching

algorithm does not improve the motion estimation in the

context of small displacements.

Method AEE AAE

DeepFlow 0.42 4.22

MDP-Flow2 [33] 0.25 2.45

LDOF [6] 0.56 4.55

Classic+NL [25] 0.32 2.90

Table 4. Results on Middlebury. Average endpoint error (AEE)

and angular error (AAE) of a few methods over the test sequences.

5.5. Results on KITTI

Table 5 summarizes the main results on the KITTI

benchmark (see official website for complete results), when

optimizing the parameters on the KITTI training set. AEE

is the average endpoint error over all pixels while AEE-Noc

only considers non-occluded areas. Out-Noc3, respectively

Out3, is the percentage of pixels with an endpoint error over

3 pixels for non-occluded areas, resp. all pixels. DeepFlow

is competitive with the other methods. Note that the learned

1Note that we resize images to 256× 128 pixels in all our experiments

before computing the deep matching.



Method AEE AEE-Noc Out3 Out-Noc3

DeepFlow 5.8 1.5 17.93% 7.49%

Data-Flow [29] 5.5 1.9 14.85% 7.47%

LDOF [6] 12.4 5.5 31.31% 21.86%

Classic+NL [25] 7.2 2.8 20.66% 10.60%

Table 5. Results on KITTI test set. See text for details.

parameters on KITTI and MPI-Sintel are close. In partic-

ular, running the experiments with the same parameters as

MPI-Sintel decreases AEE-Noc by only 0.1 pixels. This

shows that our method does not suffer from overfitting.
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