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Abstract

We propose a novel approach for optical flow estima-
tion, targeted at large displacements with significant oc-
clusions. It consists of two steps: i) dense matching by
edge-preserving interpolation from a sparse set of matches;
ii) variational energy minimization initialized with the
dense matches. The sparse-to-dense interpolation relies
on an appropriate choice of the distance, namely an edge-
aware geodesic distance. This distance is tailored to han-
dle occlusions and motion boundaries – two common and
difficult issues for optical flow computation. We also pro-
pose an approximation scheme for the geodesic distance to
allow fast computation without loss of performance. Sub-
sequent to the dense interpolation step, standard one-level
variational energy minimization is carried out on the dense
matches to obtain the final flow estimation. The proposed
approach, called Edge-Preserving Interpolation of Corre-
spondences (EpicFlow) is fast and robust to large displace-
ments. It significantly outperforms the state of the art on
MPI-Sintel and performs on par on Kitti and Middlebury.

1. Introduction
Accurate estimation of optical flow from real-world

videos remains a challenging problem [10], despite the
abundant literature on the topic. The main remaining chal-
lenges are occlusions, motion discontinuities and large dis-
placements, all present in real-world videos.

Effective approaches were previously proposed for han-
dling the case of small displacements (i.e., less than a few
pixels) [19, 35, 24]. These approaches cast the optical
flow problem into an energy minimization framework, of-
ten solved using efficient coarse-to-fine algorithms [8, 28].
However, due to the complexity of the minimization, such
methods get stuck in local minima and may fail to esti-
mate large displacements, which often occur due to fast
motion. This problem has recently received significant at-
tention. State-of-the-art approaches [9, 38] use descriptor
∗LEAR team, Inria Grenoble Rhone-Alpes, Laboratoire Jean Kuntz-
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Figure 1. Image edges detected with SED [15] and ground-truth
optical flow. Motion discontinuities appear most of the time at
image edges.

matching between adjacent frames together with the inte-
gration of these matches in a variational approach. Indeed,
matching operators are robust to large displacements and
motion discontinuities [9, 34]. Energy minimization is car-
ried out in a coarse-to-fine scheme in order to obtain a full-
scale dense flow field guided by the matches. A major draw-
back of coarse-to-fine schemes is error-propagation, i.e.,
errors at coarser levels, where different motion layers can
overlap, can propagate across scales. Even if coarse-to-fine
techniques work well in most cases, we are not aware of a
theoretical guarantee or proof of convergence.

Instead, we propose to simply interpolate a sparse set of
matches in a dense manner to initiate the optical flow esti-
mation. We then use this estimate to initialize a one-level
energy minimization, and obtain the final optical flow es-
timation. This enables us to leverage recent advances in
matching algorithms, which can now output quasi-dense
correspondence fields [6, 34]. In the same spirit as [22],
we perform a sparse-to-dense interpolation by fitting a local
affine model at each pixel based on nearby matches. A ma-
jor issue arises for the preservation of motion boundaries.
We make the following observation: motion boundaries of-
ten tend to appear at image edges, see Figure 1. Con-
sequently, we propose to exchange the Euclidean distance
with a better, i.e., edge-aware, distance and show that this
offers a natural way to handle motion discontinuities. More-
over, we show how an approximation of the edge-aware dis-
tance allows to fit only one affine model per input match (in-
stead of one per pixel). This leads to an important speed-up
of the interpolation scheme without loss in performance.

The obtained interpolated field of correspondences is
sufficiently accurate to be used as initialization of a
one-level energy minimization. Our work suggests that
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Figure 2. Comparison of coarse-to-fine flow estimation and
EpicFlow. Errors at the coarsest level of estimation, due to a low
resolution, often get propagated to the finest level (right, top and
middle). In contrast, our interpolation scheme benefits from an
edge prior at the finest level (right, bottom).

there may be better initialization strategies than the well-
established coarse-to-fine scheme, see Figure 2. In particu-
lar, our approach, EpicFlow (edge-preserving interpolation
of correspondences) performs best on the challenging MPI-
Sintel dataset [10] and is competitive on Kitti [16] and Mid-
dlebury [4]. An overview of EpicFlow is given in Figure 3.
To summarize, we make three main contributions:
•We propose EpicFlow, a novel sparse-to-dense interpola-
tion scheme of matches based on an edge-aware distance.
We show that it is robust to motion boundaries, occlusions
and large displacements.
•We propose an approximation scheme for the edge-aware
distance, leading to a significant speed-up without loss of
accuracy.
• We show empirically that the proposed optical flow esti-
mation scheme is more accurate than estimations based on
coarse-to-fine minimization.

This paper is organized as follows. In Section 2, we
review related work on large displacement optical flow.
We then present the sparse-to-dense interpolation in Sec-
tion 3 and the energy minimization for optical flow com-
putation in Section 4. Finally, Section 5 presents experi-
mental results. Source code is available online at http:
//lear.inrialpes.fr/software.

2. Related Work
Most optical flow approaches are based on a variational

formulation and a related energy minimization problem [19,
4, 28]. The minimization is carried out using a coarse-to-
fine scheme [8]. While such schemes are attractive from
a computational point of view, the minimization often gets
stuck in local minima and leads to error accumulation across
scales, especially in the case of large displacements [2, 9].

To tackle this issue, the addition of descriptor/matching

was recently investigated in several papers. A penalization
of the difference between flow and HOG matches was added
to the energy by Brox and Malik [9]. Weinzaepfel et al. [34]
replaced the HOG matches by an approach based on simi-
larities of non-rigid patches: DeepMatching. Xu et al. [38]
merged the estimated flow with matching candidates at each
level of the coarse-to-fine scheme. Braux-Zin et al. [7] used
segment features in addition to keypoints. However, these
methods rely on a coarse-to-fine scheme, that suffers from
intrinsic flaws. Namely, details are lost at coarse scales, and
thin objects with substantially different motions cannot be
detected. Those errors correspond to local minima, hence
they cannot be recovered and are propagated across levels,
see Figure 2.

In contrast, our approach is conceptually closer to recent
work that rely mainly on descriptor matching [36, 23, 12,
22, 37, 27, 5]. Lu et al. [23] propose a variant of Patch-
Match [6], which uses SLIC superpixels [1] as basic blocks
in order to better respect image boundaries. The purpose
is to produce a nearest-neighbor-field (NNF) which is later
translated into a flow. However, SLIC superpixels are only
locally aware of image edges, whereas our edge-aware dis-
tance is able to capture regions at the image scale. Simi-
larly, Chen et al. [12] propose to compute an approximate
NNF, and then estimate the dominant motion patterns us-
ing RANSAC. They, then, use a multi-label graph-cut to
solve the assignment of each pixel to a motion pattern can-
didate. Their multi-label optimization can be interpreted as
a motion segmentation problem or as a layered model [29].
These problems are hard and a small error in the assignment
can lead to large errors in the resulting flow.

In the same spirit as our approach, Ren [26] proposes
to use edge-based affinities to group pixels and estimate
a piece-wise affine flow. Nevertheless, this work relies
on a discretization of the optical flow constraint, which
is valid only for small displacements. Closely related to
EpicFlow, Leordeanu et al. [22] also investigate sparse-
to-dense interpolation. Their initial matching is obtained
through the costly minimization of a global non-convex
matching energy. In contrast, we directly use state-of-the-
art matches [34, 18] as input. Furthermore, during their
sparse-to-dense interpolation, they compute an affine trans-
formation independently for each pixel based on its neigh-
borhood matches, which are found in a Euclidean ball and
weighted by an estimation of occluded areas that involves
learning a binary classifier. In contrast, we propose to use an
edge-preserving distance that naturally handles occlusions,
and can be very efficiently computed.

3. Sparse-to-dense interpolation
The proposed approach, EpicFlow, consists of three

steps, as illustrated in Figure 3. First, we compute a sparse
set of matches between the two images, using a state-of-the-
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Figure 3. Overview of EpicFlow. Given two images, we compute matches using DeepMatching [34] and the edges of the first image using
SED [15]. We combine these two cues to densely interpolate matches and obtain a dense correspondence field. This is used as initialization
of a one-level energy minimization framework.

art matching algorithm. Second, we perform a densification
of this set of matches, by computing a sparse-to-dense in-
terpolation from the sparse set of matches, which yields an
initial estimate of the optical flow. Third, we compute the
final optical flow estimation by performing one step of vari-
ational energy minimization using the dense interpolation
as initialization, see Section 4.

3.1. Sparse set of matches

The first step of our approach extracts a sparse set of
matches, see Figure 3. Any state-of-the-art matching al-
gorithm can be used to compute the initial set of sparse
matches. In our experiments, we compare the results
when using DeepMatching [34] or a subset of an estimated
nearest-neighbor field [18]. We defer to Section 5.1 for a
description of these matching algorithms. In both cases,
we obtain ∼ 5000 matches for an image of resolution
1024 × 436, i.e., an average of around one match per 90
pixels. We also evaluate the impact of matching quality and
density on the performance of EpicFlow by generating arti-
ficial matches from the ground-truth in Section 5.3. In the
following, we denote byM = {(pm,p

′
m)} the sparse set of

input matches, where each match (pm,p
′
m) defines a corre-

spondence between a pixel pm in the first image and and a
pixel p′

m in the second image.

3.2. Interpolation method

We estimate a dense correspondence field F : I → I ′

between a source image I and a target image I ′ by inter-
polating a sparse set of inputs matchesM = {(pm,p

′
m)}.

The interpolation requires a distance D : I × I → R+ be-
tween pixels, see Section 3.3. We consider here two options
for the interpolation.
• Nadaraya-Watson (NW) estimation [31]. The cor-
respondence field FNW (p) is interpolated using the
Nadaraya-Watson estimator at a pixel p ∈ I and is ex-
pressed by a sum of matches weighted by their proximity

to p:

FNW (p) =

∑
(pm,p′

m)∈M
kD(pm,p)p

′
m∑

(pm,p′
m)∈M

kD(pm,p)
, (1)

where kD(pm,p) = exp (−aD(pm,p)) is a Gaussian ker-
nel for a distance D with a parameter a.
• Locally-weighted affine (LA) estimation [17]. The sec-
ond estimator is based on fitting a local affine transforma-
tion. The correspondence field FLA(p) is interpolated us-
ing a locally-weighted affine estimator at a pixel p ∈ I as
FLA(p) = App + t>p , where Ap and tp are the parame-
ters of an affine transformation estimated for pixel p. These
parameters are computed as the least-square solution of an
overdetermined system obtained by writing two equations
for each match (pm,p

′
m) ∈M weighted as previously:

kD(pm,p)
(
Appm + t>p − p′

m

)
= 0 . (2)

Local interpolation. Note that the influence of remote
matches is either negligible, or could harm the interpola-
tion, for example when objects move differently. Therefore,
we restrict the set of matches used in the interpolation at a
pixel p to its K nearest neighbors according to the distance
D, which we denote as NK(p). In other words, we replace
the summation overM in the NW operator by a summation
over NK(p), and likewise for building the overdetermined
system to fit the affine transformation for FLA.

3.3. Edge-preserving distance

Using the Euclidean distance for the interpolation pre-
sented above is possible. However, in this case the interpo-
lation is simply based on the position of the input matches
and does not respect motion boundaries. Suppose for a mo-
ment that the motion boundaries are known. We can, then,
use a geodesic distance DG based on these motion bound-
aries. Formally, the geodesic distance between two pixels
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Figure 4. (a-b) two consecutive frames; (c) contour response C from SED [15] (the darker, the higher); (d) match positions {pm} from
DeepMatching [34]; (e-f) geodesic distance from a pixel p (marked in blue) to all others DG(p, .) (the brighter, the closer). (g-h) 100
nearest matches, i.e., N100(p) (red) using geodesic distance DG from the pixel p in blue.

p and q is defined as the shortest distance with respect to a
cost map C:

DG(p, q) = inf
Γ∈Pp,q

∫
Γ

C(ps)dps , (3)

where Pp,q denotes the set of all possible paths between p
and q, and C(ps) the cost of crossing pixel ps (the viscos-
ity in physics). In our settings, C corresponds to the motion
boundaries. Hence, a pixel belonging to a motion layer is
close to all other pixels from the same layer according to
DG, but far from everything beyond the boundaries. Since
each pixel is interpolated based on its neighbors, the inter-
polation will respect the motion boundaries.

In practice, we use an alternative to true motion bound-
aries, making the plausible assumption that image edges are
a superset of motion boundaries. This way, the distance be-
tween pixels belonging to the same region will be low. It en-
sures a proper edge-respecting interpolation as long as the
number of matches in each region is sufficient. Similarly,
Criminisi et al. [13] showed that geodesic distances are a
natural tool for edge-preserving image editing operations
(denoising, texture flattening, etc.) and it was also used re-
cently to generate object proposals [21]. In practice, we set
the cost map C using a recent state-of-the-art edge detector,
namely the “structured edge detector” (SED) [15]1. Fig-
ure 4 shows an example of a SED map, as well as examples
of geodesic distances and neighbor sets NK(p) for differ-
ent pixels p. Notice how neighbors are found on the same
objects/parts of the image withDG, in contrast to Euclidean
distance (see also Figure 6).

3.4. Fast approximation

The geodesic distance can be rapidly computed from a
point to all other pixels. For instance, Weber et al. [32] pro-
pose parallel algorithms that simulate an advancing wave-
front. Nevertheless, the computational cost for computing
the geodesic distance between all pixels and all matches (as

1https://github.com/pdollar/edges

(a) (b) (c)  (d)
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Figure 5. For the region shown in (a), (b) shows the image edges
C and white crosses representing the match positions {pm}. (c)
displays the assignment L, i.e., geodesic Voronoi cells. We build a
graph G from L (see text). (d) shows the shortest path between two
neighbor matches, which can go through the edge that connects
them (3-4) or a shorter path found by Dijkstra’s algorithm (1-2).

required by our interpolation scheme) is high. We now pro-
pose an efficient approximation D̃G.

A key observation is that neighboring pixels are often in-
terpolated similarly, suggesting a strategy that would lever-
age such local information. In this section we employ the
term ‘match’ to refer to pm instead of (pm,p

′
m).

Geodesic Voronoi diagram. We first define a clustering
L, such that L(p) assigns a pixel p to its closest match
according to the geodesic distance, i.e., we have L(p) =
argminpm

DG(p,pm). L defines geodesic Voronoi cells,
as shown in Figure 5(c).
Approximated geodesic distance. We then approximate
the distance between a pixel p and any match pm as the
distance to the closest match L(p) plus an approximate dis-
tance between matches:

D̃G(p,pm) = DG(p, L(p)) +DG
G(L(p),pm) (4)

where DG
G is a graph-based approximation of the geodesic

distance between two matches. To define DG
G we use

a neighborhood graph G whose nodes are {pm}. Two
matches pm and pn are connected by an edge if they are
neighbors in L. The edge weight is then defined as the
geodesic distance between pm and pn, where the geodesic
distance calculation is restricted to the Voronoi cells of pm

and pn. We, then, calculate the approximate geodesic dis-
tance between any two matches pm,pn using Dijkstra’s al-
gorithm on G, see Figure 5(d).

4



Piecewise field. So far, we have built an approximation of
the distance between pixels and match points. We now show
that our interpolation model results in a piece-wise corre-
spondence field (either constant for the Nadaraya-Watson
estimator, or piece-wise affine for LA). This property is
crucial to obtain a fast interpolation scheme, and experi-
ments shows that it does not impact the accuracy. Let us
consider a pixel p such that L(p) = pm. The distance be-
tween p and any match pn is the same as the one between
pm and pn up to a constant independent from pn (Equa-
tion 4). As a consequence, we have NK(p) = NK(pm)
and kD̃G

(p,pn) = kDG
(p,pm) × kDG

G
(pm,pn). For the

Nadaraya-Watson estimator, we thus obtain:

FNW (p) =

∑
(pn,p′

n) kD̃G
(p,pn)p′

n∑
(pn,p′

n) kD̃G
(p,pn) (5)

=
kDG

(p,pm)
∑

(pn,p′
n) kDG

G
(pm,pn)p′

n

kDG
(p,pm)

∑
(pn,p′

n) kDG
G

(pm,pn) = FNW (pm)

where all the sums are for (pn,p
′
n) ∈ NK(p) = NK(pm).

The same reasoning holds for the weighted affine interpo-
lator, which is invariant to a multiplication of the weights
by a constant factor. As a consequence, it suffices to com-
pute |M| estimations (one per match) and to propagate it
to the pixel assigned to this match. This is orders of mag-
nitude faster than an independent estimation for each pixel,
e.g. as done in [22]. We summarize the approach in Algo-
rithm 1 for Nadaraya-Watson estimator. The algorithm is
similar for LA interpolator (e.g. line 6 becomes “Estimate
affine parameters Apm , tpm” and line 8 “Set WLA(p) =
AL(p)p+ t>L(p)”).

Algorithm 1 Interpolation with Nadaraya-Watson
Input: a pair of images I, I ′, a set M of matches
Output: dense correspondence field FNW

1 Compute the cost C for I using SED [15]
2 Compute the assignment map L
3 Build the graph G from L
4 For (pm,p′

m) ∈ M
5 Compute NK(pm) from G using Dijkstra’s algorithm
6 Compute FNW (pm) from NK(pm) using Eq. 1
7 For each pixel p
8 Set FNW (p) = FNW (L(p))

4. Optical Flow Estimation
Coarse-to-fine vs. EpicFlow. The output of the sparse-to-
dense interpolation is a dense correspondence field. This
field is used as initialization of a variational energy min-
imization method. In contrast to our approach, state-of-
the-art methods usually rely on a coarse-to-fine scheme to
compute the full-scale correspondence field. To the best of
our knowledge, there exists no theoretical proof or guaran-
tee that a coarse-to-fine minimization leads to a consistent

estimation that accurately minimizes the full-scale energy.
Thus, the coarse-to-fine scheme should be considered as a
heuristic to provide an initialization for the full-scale flow.

Our approach can be thought of as an alternative to the
above strategy, by offering a smart heuristic to accurately
initialize the optical flow before performing energy mini-
mization at the full-scale. This offers several advantages
over the coarse-to-fine scheme. First, the cost map C in
our method acts as a prior on boundary location. Such
a prior could also be incorporated by a local smoothness
weight in the coarse-to-fine minimization, but would then
be difficult to interpret at coarse scales where boundaries
might strongly overlap. In addition, since our method di-
rectly works at the full image resolution, it avoids possible
issues related to the presence of thin objects that could be
oversmoothed at coarse scales. Such errors at coarse scales
are propagated to finer scales as the coarse-to-fine approach
proceeds, see Figure 2.
Variational Energy Minimization. We minimize an en-
ergy defined as a sum of a data term and a smoothness term.
We use the same data term as [40], based on a classical
color-constancy and gradient-constancy assumption with a
normalization factor. For the smoothness term, we penalize
the flow gradient norm, with a local smoothness weight α
as in [33, 38]: α(x) = exp

(
− κ‖∇2I(x)‖

)
with κ = 5.

We have also experimented using SED instead and obtained
similar performance.

For minimization, we initialize the solution with the out-
put of our sparse-to-dense interpolation and use the ap-
proach of [8] without the coarse-to-fine scheme. More pre-
cisely, we perform 5 fixed point iterations, i.e., compute
the non-linear weights (that appear when applying Euler-
Lagrange equations [8]) and the flow updates 5 times it-
eratively. The flow updates are computed by solving linear
systems using 30 iterations of the successive over relaxation
method [39].

5. Experiments
In this section, we evaluate EpicFlow on three state-of-

the-art datasets:
•MPI-Sintel dataset [10] is a challenging evaluation bench-
mark obtained from an animated movie. It contains multiple
sequences including large/rapid motions. We only use the
‘final’ version that features realistic rendering effects such
as motion, defocus blur and atmospheric effects.
• The Kitti dataset [16] contains photos shot in city streets
from a driving platform. It features large displacements,
different materials (complex 3D objects like trees), a large
variety of lighting conditions and non-lambertian surfaces.
• The Middlebury dataset [4] has been extensively used for
evaluating optical flow methods. It contains complex mo-
tions, but displacements are limited to a few pixels.

As in [34], we optimize the parameters on a subset (20%)
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of the MPI-Sintel training set. We then report average end-
point error (AEE) on the remaining MPI-Sintel training set
(80%), the Kitti training set and the Middlebury training
set. This allows us to evaluate the impact of parameters on
different datasets and avoid overfitting. The parameters are
typically a ' 1 for the coefficient in the kernel kD, the
number of neighbors is K ' 25 for NW interpolation and
K ' 100 when using LA. In Section 5.4, we compare to
the state of the art on the test sets. In this case, the param-
eters are optimized on the training set of the corresponding
dataset. Timing is reported for one CPU-core at 3.6GHz.

In the following, we first describe two types of input
matches in Section 5.1. Section 5.2 then studies the differ-
ent parameters of our approach. In Section 5.3, we compare
our method to a variational approach with a coarse-to-fine
scheme. Finally, we show that EpicFlow outperforms cur-
rent methods on challenging datasets in Section 5.4.

5.1. Input matches

To generate input matches, we use and compare two re-
cent matching algorithms. They each produce about 5000
matches per image.
• The first one is DeepMatching (DM), used in Deep-
Flow [34], which has shown excellent performance for op-
tical flow. It builds correspondences by computing similar-
ities of non-rigid patches, allowing for some deformations.
We use the online code2 on images downscaled by a fac-
tor 2. A reciprocal verification is included in DM. As a
consequence, the majority of matches in occluded areas are
pruned, see matches in Figure 6 (left).
• The second one is a recent variant of PatchMatch [6] that
relies on kd-trees and local propagation to compute a dense
correspondence field [18] (KPM). We use the online code
to extract the dense correspondence field3. It is noisy, as
it is based on small patches without global regularization,
as well as often incorrect in case of occlusion. Thus, we
perform a two-way matching and eliminate non-reciprocal
matches to remove incorrect correspondences. We also sub-
sample these pruned correspondences to speed-up the inter-
polation. We have experimentally verified on several image
pairs that this subsampling does not result in a loss of per-
formance.
Pruning of matches. In both cases, matches are extracted
locally and might be incorrect in regions with low texture.
Thus, we remove matches corresponding to patches with
low saliency, which are determined by the eigenvalues of
autocorrelation matrix. Furthermore, we perform a consis-
tency check to remove outliers. We run the sparse-to-dense
interpolation once with the Nadaraya-Watson estimator and
remove matches for which the difference to the initial esti-
mate is over 5 pixels.

2http://lear.inrialpes.fr/src/deepmatching/
3http://j0sh.github.io/thesis/kdtree/

Figure 6. Left: Match positions returned by [34] are shown in blue.
Red denotes occluded areas. Right: Yellow (resp. blue) squares
correspond to the 100 nearest matches with a Euclidean (resp.
edge-aware geodesic) distance for the occluded pixel shown in red.
All neighbor matches with a Euclidean distance holds to a differ-
ent object while the geodesic distance allows to capture matches
from the same region, even in the case of large occluded areas.

Matching Interpolator MPI-Sintel Kitti Middlebury

In
te

rp
ol

at
io

n KPM NW 6.052 15.679 0.765
KPM LA 6.334 12.011 0.776
DM NW 4.143 5.460 0.898
DM LA 4.068 3.560 0.840

E
pi

cF
lo

w

KPM NW 5.741 15.240 0.388
KPM LA 5.764 11.307 0.315
DM NW 3.804 4.900 0.485
DM LA 3.686 3.334 0.380

Table 1. Comparison of average endpoint error (AEE) for different
sparse matches (DM, KPM) and interpolators (NW, LA) as well
as for sparse-to-dense interpolation (top) and EpicFlow (bottom).
The approximated geodesic distance D̃G is used.

We also experiment with synthetic sparse matches of var-
ious densities and noise levels in Section 5.3, in order to
evaluate the sensitivity of EpicFlow to the quality of the
matching approach.

5.2. Impact of the different parameters

In this section, we evaluate the impact of the matches
and the interpolator. We also compare the quality of the
sparse-to-dense interpolation and EpicFlow. Furthermore,
we examime the impact of the geodesic distance and its ap-
proximation as well as the impact of the quality of the con-
tour detector.
Matches and interpolators. Table 1 compares the result of
our sparse-to-dense interpolation, i.e., before energy min-
imization, and EpicFlow for different matches (DM and
KPM) and for the two interpolation schemes: Nadaraya-
Watson (NW) and locally-weighted affine (LA). The ap-
proximated geodesic distance is used in the interpolation,
see Section 3.4.

We can observe that KPM is consistently outperformed
by DeepMatching (DM) on MPI-Sintel and Kitti datasets,
with a gap of 2 and 8 pixels respectively. Kitti contains
many repetitive textures like trees or roads, which are often
mismatched by KPM. Note that DM is significantly more
robust to repetitive textures than KPM, as it uses a multi-
scale scoring scheme. The results on Middlebury are com-
parable and below 1 pixel.

We also observe that LA performs better than NW on
Kitti, while the results are comparable on MPI-Sintel and

6



Contour Distance MPI-Sintel Kitti Middlebury Time
SED [15] Geodesic (approx.) 3.686 3.334 0.380 16.4s
SED [15] Geodesic (exact) 3.677 3.216 0.393 204s

- Euclidean 4.617 3.663 0.442 40s
SED [15] mixed 3.975 3.510 0.399 300s
gPb [3] Geodesic (approx.) 4.161 3.437 0.430 26s

Canny [11] Geodesic (approx.) 4.551 3.308 0.488 16.4s
‖∇2I‖2 Geodesic (approx.) 4.061 3.399 0.388 16.4s

GT boundaries Geodesic (approx.) 3.588
Table 2. Comparison of the AEE of EpicFlow (with DM and LA)
for different distances and different contour extractors. The time
(right column) is reported for a MPI-Sintel image pair.

Middlebury. This is due to the specificity of the Kitti
dataset, where the scene consists of planar surfaces and,
thus, affine transformations are more suitable than transla-
tions to approximate the flow. Based on these results, we
use DM matches and LA interpolation in the remainder of
the experimental section.

The interpolation is robust to the neighborhood size K
with for instance an AEE of 4.082, 4.053, 4.068 and 4.076
for K = 50, 100, 160 (optimal value on the training set),
200 respectively, on MPI-Sintel with the LA estimator and
before variational minimization. We also implemented a
variant where we use all matches closer than a threshold
and obtained similar performance.
Sparse-to-dense interpolation versus EpicFlow. We also
evaluate the gain due to the variational minimization using
the interpolation as initialization. We can see in Table 1
that this step clearly improves the performance in all cases.
The improvement is around 0.5 pixel. Figure 7 presents re-
sults for three image pairs with the initialization only and
the final result of EpicFlow (row three and four). While the
flow images look similar overall, the minimization allows
to further smooth and refine the flow, explaining the gain in
performance. Yet, it preserves discontinuities and small de-
tails, such as the legs in the right column. In the following,
results are reported for EpicFlow, i.e., after the variational
minimization step.
Edge-aware versus Euclidean distances. We now study
the impact of different distances. First, we examine the ef-
fect of approximating the geodesic distance (Section 3.4).
Table 2 shows that our approximation has a negligible im-
pact when compared to the exact geodesic distance. Note
that the exact version performs distance computation as well
as local estimation per pixel and is, thus, an order of mag-
nitude slower to compute, see last column of Table 2.

Next, we compare the geodesic distance and Euclidean
distances. Table 2 shows that using a Euclidean distance
leads to a significant drop in performance, in particular for
the MPI-Sintel dataset, the drop is 1 pixel. This confirms
the importance of our edge-preserving distance. Note that
the result with the Euclidean distance is reported with an
exact version, i.e., the interpolation is computed pixelwise.

We also compare to a mixed approach, in which the
neighbor list NK is constructed using the Euclidean dis-

tance, but weights kD̃(pm,p) are set according to the ap-
proximate geodesic distance. Table 2 shows that this leads
to a drop of performance by around 0.3 pixels for MPI-
Sintel and Kitti. Figure 6 illustrates the reason: none of the
Euclidean neighbor matches (yellow) belong to the region
corresponding to the selected pixel (red), but all of geodesic
neighbor matches (blue) belong to it. This demonstrates the
importance of using an edge-preserving geodesic distance
throughout the whole pipeline, in contrast to [22] who in-
terpolates matches found in a Euclidean neigbhorhood.
Impact of contour detector. We also evaluate the impact of
the contour detector in Table 2, i.e., the SED detector [15]
is replaced by the Berkeley gPb detector [3] or the Canny
edge detector [11]. Using gPb leads to a small drop in per-
formance (around 0.1 pixel on Kitti and 0.5 on MPI-Sintel)
and significantly increases the computation time. Canny
edges perform similar to the Euclidean distance. This can
be explained by the insufficient quality of the Canny con-
tours. Using the norm of image’s gradient improves slightly
over gPb. We found that this is due to the presence of holes
when estimating contours with gPb. Finally, we perform ex-
periments using ground-truth motion boundaries, computed
from the norm of ground-truth flow gradient, and obtain an
improvement of 0.1 on MPI-Sintel (0.2 before the varia-
tional part). The ground-truth flow is not dense enough on
Middlebury and Kitti datasets to estimate GT boundaries.

5.3. EpicFlow versus coarse-to-fine scheme

To show the benefit of our approach, we have carried
out a comparison with a coarse-to-fine scheme. Our im-
plementation of the variational approach is the same as in
Section 4, with a coarse-to-fine scheme and DeepMatching
integrated in the energy through a penalization of the differ-
ence between flow and matches [9, 34]. Table 3 compares
EpicFlow to the variational approach with coarse-to-fine
scheme, using exactly the same matches as input. EpicFlow
performs better and is also faster. The gain is around 0.4
pixel on MPI-Sintel and over 1 pixel on Kitti. The impor-
tant gain on Kitti might be explained by the affine model
used for interpolation, which fits well the piecewise planar
structure of the scene. On Middlebury, the variational ap-
proach achieves slightly better results, as this dataset does
not contain large displacements.

Figure 7 shows a comparison to three state-of-the-art
methods, all built upon a coarse-to-fine scheme. Note how
motion boundaries are preserved by EpicFlow. Even small
details, like the limbs in the right column, are captured.
Similarly, in the case of occluded areas, EpicFlow benefits
from the geodesic distance to produce a correct estimation,
see the right part of the left example.
Sensitivity to the matching quality. In order to get a bet-
ter understanding of why EpicFlow performs better than
a coarse-to-fine scheme, we have evaluated and compared
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Figure 7. Each column shows from top to bottom: mean of two consecutive images, ground-truth flow, result of sparse-to-dense interpola-
tion (Interpolation), full method (EpicFlow), and 3 state-of-the-art methods. EpicFlow better respects motion boundaries, is able to capture
small parts like the limbs of the character (right column) and successfully estimates the flow in occluded areas (right part of left column).

Flow method MPI-Sintel Kitti Middlebury Time
DM+coarse-to-fine 4.095 4.422 0. 321 25s

DM+EpicFlow 3.686 3.334 0.380 16.4s
Table 3. Comparison of AEE for EpicFlow (with DM + LA) and a
coarse-to-fine scheme (with DM).

their performances for different densities and error rates
of the input matches. To that aim, we generated synthetic
matches by taking the ground-truth flow, removing points in
the occluded areas, subsampling to obtain the desired den-
sity and corrupting the matches to the desired percentage
of incorrect matches. For each set of matches with a given
density and quality, we have carefully determined the pa-
rameters of EpicFlow and the coarse-to-fine method on the
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Figure 8. Comparison of AEE between EpicFlow (left) and a
coarse-to-fine scheme (right) for various synthetic input matches
with different densities and error levels. For positions above the
red line, EpicFlow performs better.

8



Method AEE AEE-occ s0-10 s10-40 s40+ Time
EpicFlow 6.285 32.564 1.135 3.727 38.021 16.4s
TF+OFM [20] 6.727 33.929 1.512 3.765 39.761 ∼400s
DeepFlow [34] 7.212 38.781 1.284 4.107 44.118 19s
S2D-Matching [22] 7.872 40.093 1.172 4.695 48.782 ∼2000s
Classic+NLP [28] 8.291 40.925 1.208 5.090 51.162 ∼800s
MDP-Flow2 [38] 8.445 43.430 1.420 5.449 50.507 709s
NLTGV-SC [25] 8.746 42.242 1.587 4.780 53.860
LDOF [9] 9.116 42.344 1.485 4.839 57.296 30s

Table 4. Results on MPI-Sintel test set (final version). AEE-occ
is the AEE on occluded areas. s0-10 is the AEE for pixels whose
motions is between 0 and 10 px and similarly for s10-40 and s40+.

MPI-Sintel training subset, and then evaluated them on the
remaining training images.

Results in term of AEE are given in Figure 8, where den-
sity is represented vertically as the ratio of #matches / #non-
occluded pixels and matching error is represented horizon-
tally as the ratio of #false matches / #matches. We can ob-
serve that EpicFlow yields better results provided that the
matching is sufficiently dense for a given error rate. For
low-density or strongly corrupted matches, EpicFlow yields
unsatisfactory performance (Figure 8 left), while the coarse-
to-fine method remains relatively robust (Figure 8 right).
This shows that our interpolation-based heuristic for initial-
izing the flow takes better advantage of the input matches
than a coarse-to-fine schemes for sufficiently dense matches
and is able to recover from matching failures. We have in-
dicated the position of DeepMatching and KPM in terms of
density and quality on the plots: they lie inside the area in
which EpicFlow outperforms a coarse-to-fine scheme.

5.4. Comparison with the state of the art

Results on MPI-Sintel test set are given in Table 4.
Parameters are optimized on the MPI-Sintel training set.
EpicFlow outperforms the state of the art with a gap of
0.5 pixel in AEE compared to the second best perform-
ing method, TF+OFM [20], and 1 pixel compared to the
third one, DeepFlow [34]. In particular, we improve for
both AEE on occluded areas and AEE over all pixels and
for all displacement ranges. In addition, our approach is
significantly faster than most of the methods, e.g. an order
of magnitude faster than the second best.

Table 5 reports the results on the Kitti test set for meth-
ods that do not use epipolar geometry or stereo vision. Pa-
rameters are optimized on the Kitti training set. We can
see that EpicFlow performs best in terms of AEE on non-
occluded areas. In term of percentage of erroneous pixels,
our method is competitive with the other algorithms. When
comparing the methods on both Kitti and MPI-Sintel, we
outperform TF+OFM [20] and DeepFlow [34] (second and
third on MPI-Sintel) on the Kitti dataset, in particular for
occluded areas. We perform on par with NLTGV-SC [25]
on Kitti that we outperform by 2.5 pixels on MPI-Sintel.

On the Middlebury test set, we obtain an AEE below 0.4
pixel. This is competitive with the state of the art. In this

Method AEE-noc AEE Out-Noc 3 Out-All 3 Time
EpicFlow 1.5 3.8 7.88% 17.08% 16s
NLTGV-SC [25] 1.6 3.8 5.93% 11.96% 16s (GPU)
BTF-ILLUM [14] 1.5 2.8 6.52% 11.03% 80s
TGV2ADCSIFT [7] 1.5 4.5 6.20% 15.15% 12s (GPU)
Data-Flow [30] 1.9 5.5 7.11% 14.57% 180s
DeepFlow [34] 1.5 5.8 7.22% 17.79% 17s
TF+OFM [20] 2.0 5.0 10.22% 18.46% 350s

Table 5. Results on Kitti test set. AEE-noc is the AEE over
non-occluded areas. Out-Noc 3 (resp. Out-all 3) refers to the
percentage of pixels where flow estimation has an error above 3
pixels in non-occluded areas (resp. all pixels).
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Figure 9. Failure cases of EpicFlow due to missing matches on
spear and horns of the dragon (left column) and missing contours
on the arm (right column).

dataset, there are no large displacements, and consequently,
the benefits of a matching-based approach are limited. Note
that we have slightly increased the number of fixed point
iterations to 25 in the variational method for this dataset
(still using one level) in order to get an additional smooth-
ing effect. This leads to a gain of 0.1 pixels (measured on
the Middlebury training set when setting the parameters on
MPI-Sintel training set).

Timings. While most methods often require several min-
utes to run on a single image pair, ours runs in 16.4 seconds
for a MPI-Sintel image pair (1024 × 436 pixels) on one
CPU-core at 3.6Ghz. In detail, computing DeepMatching
takes 15s, extracting SED edges 0.15s, dense interpolation
0.25s, and variational minimization 1s. We can observe that
91% of the time is spent on matching.

Failure cases. EpicFlow can be incorrect due to errors in
the sparse matches or errors in the contour extraction. Fig-
ure 9 (left column) shows an example where matches are
missing on thin elements (spear and horns of the dragon).
Thus, the optical flow takes the value of the surrounding
region for these elements. An example for incorrect con-
tour extraction is presented in Figure 9 (right column). The
contour of the character’s left arm is poorly detected. As a
result, the motion of the arm spreads into the background.
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6. Conclusion
This paper introduces EpicFlow, a novel state-of-the-

art optical flow estimation method. EpicFlow computes
a dense correspondence field by performing a sparse-to-
dense interpolation from an initial sparse set of matches,
leveraging contour cues using an edge-aware geodesic dis-
tance. The approach builds upon the assumption that con-
tours often coincide with motion discontinuities. The result-
ing dense correspondence field is fed as an initial optical
flow estimate to a one-level variational energy minimiza-
tion. Experimental results show that EpicFlow outperforms
current coarse-to-fine approaches. Both the sparse set of
matches and the contour estimates are key to our approach.
Future work will focus on improving these two components
separately as well as in an interleaved manner.
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