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Abstract
This paper describes our current research on how a

robot, through observation of human demonstrations, can
learn task level representations of human hand-work tasks.
Representations proposed so far typically handle a human
hand trajectory as it is or segment the entire task into a
discrete pre-determined symbol sequence; but to make a
generalized model of human hand-work tasks, both types
of information must be incorporated into the model appro-
priately. We propose a technique for segmenting an ob-
served hand-work task into pieces which are composed of
fine motion or coarse motion. Fine motion means delicate
manipulation and holds the relative trajectory between the
grasped object and the target object, while coarse mo-
tion is a symbol which connects each fine motion. During
coarse motion, a trajectory can be adjusted according to
the environment or the structure of a robot when the robot
performs the same task performed by a human.

To extract essential fine motion automatically, we pro-
pose a technique for integrating and aligning multiple ob-
servations of different demonstrations, which are virtually
the same task, by using data gloves and multi-dimensional
Dynamic Programming (DP) matching. Along each fine
motion, the relative trajectory (position and orientation)
is calculated by tracking the manipulated object using a
stereo vision. To localize and track the manipulated object
efficiently, we propose a model-based localization tech-
nique, which combines 2D and 3D template matching.

We have implemented those techniques on our human-
form robot and present an experimental result which ana-
lyzed and performed a non-contact hand-work task.

1 Introduction
Our research goal is automatic acquisition of robot be-

havior, in particular, hand-actions, from an observation
based on automatic programming approach[1, 2]. In this
framework, a robot obtains knowledge of various types
of human behavior mainly from observation and then ef-
ficiently constructs a reusable model of a human task.

So far, many techniques for acquiring human hand tasks
have been proposed[3, 2, 5]. They are classified into two
types: one is for handling the entire trajectory of the arm
directly and realizing the imitated robot arm motion[3];
the other is for generating a symbolic representation of the
hand behavior[2, 5]. But direct imitation of the entire tra-
jectory is undesirable because of the difference in mecha-
nism of the body between a human and a robot and also
the difference between the situation at the demonstration
time and that at the performing time. On the other hand,
segmentation and labelling of robot motion into the corre-
sponding symbols (ex. grasp) do not mean that manipula-
tion skills have been obtained.

To acquire the manipulation skills automatically, we
have been analyzing contact-state relationship between the
manipulated objects[4], but this technique cannot be ap-
plied to non-contact behavior which typically appears in
everyday tasks. Toward this end, we previously presented
a technique for constructing a symbolic task model. This
technique is composed of hand-motion primitives and ob-
ject primitives in a specified task domain[5]; however, this
model describes nothing about dextrous manipulation mo-
tion.

In this paper, we propose a technique for incorporating
trajectory information into the symbolic task model. We
segment each grasping phase into two kinds of motion: fine
motion and coarse motion. Fine motion means a delicate
behavior, and the relative motion between the manipulated
objects must be carefully maintained. Coarse motion is
defined as an intermediate state between fine motions; a
trajectory during coarse motion can be reconstructed to fit
the structure of a robot or the environment.

In Section 2, we present the definition of fine motion
and how to incorporate it into the task model. In Section
3, we propose a technique to automatically segment a hu-
man hand-work task into fine motion and coarse motion by
integrating multiple observations with multi-dimensional
Dynamic Programming (DP) matching. In Section 4, we
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Figure 1: Fine motion and coarse motion.

propose a technique for robustly localizing and tracking the
object in the scene to obtain the relative trajectory. In Sec-
tion 5, we describe how we implemented these techniques
on our human-form robot; we then present results of an
experiment which analyzed and performed a non-contact
hand-work task. We present our conclusions in Section 6.

2 Task representation
2.1 Fine motion and coarse motion

Figure.1 shows a typical flow of a hand-work sequence.
We define fine motion and coarse motion as shown below.

Fine Motion �� �������� �

�	
�������hand�  DT �

�� �����m-obj�� �����t-obj��

Coarse Motion �� �������� �

��Fine Motion�

DT is the deviation threshold of a successive hand po-
sition which is used to determine whether the hand is sta-
tionary or moving. OF() is the function which estimates
the likeliness between the corresponding relative trajecto-
ries (����m-obj�������t-obj� among all the observations.
The target of this analysis is hand-work tasks, which are
sequential mutual actions between the manipulated object
and a target object, and each mutual action is assumed to
be the same among all the demonstrations.

All motion except fine motion during grasping is classi-
fied as coarse motion.

2.2 Relative trajectory
As described above, fine motion represents interaction

between two objects and, during that time, maintaining the
mutual relations is very important to the success of the
task. So, during fine motion, we calculate the relative po-
sition and orientation of the manipulated object in the tar-
get object’s coordinates (���, ���) �� � � � � � and store
the trajectory in the model (Figure.1). We use quarternion
��� � ��� 
� �� ��� to represent the orientation.

When the robot performs fine motion in the task,: (I) the
robot calculates the pose of the target object in the world
coordinates (���, ��� ); (II) the robot calculates the pose
of the manipulated object in the target object’s coordinates
(��� �� �� �

� �� , ��� �� �� ) �� � � � � � and moves the
already grasped object to that pose.

3 Segmentation of hand-work tasks
3.1 Initial segmentation

We adopted the Polhemus 3D tracker to acquire the po-
sition of the hand during a demonstration. We capture data
in about 15 fps and calculate the standard deviation of each
successive three position data. By hysteresis threshold-
ing (lower=5mm, higher=10mm; the value was determined
empirically), we can obtain an initial segmented motion.
For each segmented fine motion, we calculate the list of
average distance between the manipulated object and the
other detected objects in the scene. We also calculate the
normalized vector (from the hand to each detected object)
list (Figure.2). To recognize and identify the objects in the
scene, we adopted the model based recognition technique
presented in [5].

Distance list and vector list is defined as follows.

distance list(i,j) �� �����
�����
� � ����

�����
� � � � � � ����

�����
�	
 �� ����

vector list(i,j) �� �
	�
�����
� � 
	�

�����
� � � � � � 
	�

�����
�	
 �� ����

Where � is an order of a motion sequence, and � is an
order in a motion sequence, ���� means Euclidean distance
between the hand and each object. 
	� means normalized
vector from the hand to each object.
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Figure 2: Matching between multiple motion sequences.
A, B and C are the detected objects in the scene and the
upper vertical bars mean the average distance to the manip-
ulated object. The lower arrows mean the direction from
the hand.

3.2 Multi-dimensional DP matching
A single observation will easily lead to misunderstand-

ing of the demonstration, because the obtained relationship



between fine motion and the detected event (e.g., “hand is
stationary”) is groundless: this means that one cannot de-
termine whether the obtained relationship is essential to the
task or is just an accidental factor in a demonstration. This
causes the generation of massive fine motion which should
be regarded as noise behavior (coarse motion).

To remove those non-essential fine motions, we propose
a technique for integrating multiple observations of virtu-
ally the same task by multi-dimensional DP matching.

Multiple sequence alignment based on DP matching is
extensively studied in the field of biological computing[6].
For a small scale problem, natural extension of pair-wise
DP matching to higher dimensions can be adopted, but
its computing cost is ��	���� so it is impractical to ap-
ply it to long or a large number of sequences. For a
medium scale problem, minimization of search area in a
multi-dimensional lattice by using constraints from possi-
ble combinations of pair-wise DP matching has an effect.
For a large scale problem, progressive pair-wise alignment
algorithm using a likelihood tree has a great advantage. But
the latter two methods are not guaranteed to find the opti-
mal solution.

In this study, the number of sequences (demonstrations)
is relatively small (5-10 sequences) and, because alignment
is processed on each grasping period, the length of each se-
quence is also relatively short. So we adopted the simplest
method described first.
3.3 Integration of multiple observations

To apply DP matching, each hand-work sequence must
be discretely segmented in advance and also we have to
decide which evaluation function to use for calculating the
likelihood between nodes on different sequences. In this
study, the initial segmentation is done as described in the
previous section and each sequence is rearranged to be
composed of discrete distance lists and vector lists, i.e.,
fine motion.

Multi-dimensional DP matching is a natural extension
of pair wise DP matching and can be calculated by itera-
tively computing the following recursion formula.

����� ��� � � � � �� � � ����� ��� � � � � �� �

�min�������� ���� � � � � ����	

�� � � � ��� � ��� � � � � �� � � � ��� � �� �

������ � ��� � � � � � ���� � �� �


Where N is the dimension (the number of the se-
quences): �� is the current node in the �th sequence.
����� ��� � � � � �� � is the accumulated likelihood from the
origin to this node (��� � � � � �� ). ����� ��� � � � � ��� is the
evaluation function to calculate the likelihood between
nodes. S is the limit factor to suppress the amount of tran-
sition, and we set S to 2.

We define an evaluation function ����� ��� � � � � �� � as
follows. This function returns the smallest variance among
the detected objects. weighted deviation in the function
calculates �	�����
��������
	���� � ���
	���.

function evaluationFunction: real;
var ��� ��� � � � � �� : integer;
�	
�� �	
�� � � � � �	
�	
�� �� ������: real;
i,k: integer;
begin

k := 1;
repeat
�	
� := standard deviation (�����������

	�  ��� 	� � � � � �
);
�	
� := �	
�

+ weighted deviation (
	��������

	�  ��� 	� � � � � �
);
until k � ����	� �� ���	���;
i := argmin���	
�	

� � � � ����	� �� ���	���

;
evaluationFunction := �	
�;

end;

Multi-dimensional DP matching finds reasonable corre-
spondences among all motion sequences and we can re-
move non-essential fine motion which resides in some of
the sequences(Figure.2).

4 Object localization method
In this section, we present a robust object localization

technique which combines error from edge (2D constraint)
and error from depth (3D constraint), and converges the
total amount of error between the estimated object pose
and the real pose by iterative computing.

4.1 3D constraint
The 3D-3D pose-estimation problem is to compute the

pose which aligns the 3D model points ��, with their cor-
responding image points (3D depth data) � � where � �
�� � � � � �. The rigid transformation is specified by the
matrix-vector pair  �� � � where � is a 3 � 3 rotation
matrix and � is a 3D translation vector (Figure.3 (left)). In
general, the image (3D) points �� will be contaminated by
noise:

�� � ��� � ��  

.
where  is a random 3D variable. Assume that  follows
gaussian distribution; then  �� � � is obtained by mini-
mizing the following equation by the least-squares method.

���� �� � � � ��� � �� �� �
�
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Figure 3: Object localization method which makes use of
error from edge and error from depth simultaneously. Error
is calculated from sum of weighted distance between each
model point and input data (edgel or depth point).Blue line
in the intensity image indicates extracted edgels.

However, in real applications, errors in the data are not
normally distributed and, in that case, least-squares estima-
tion is inappropriate.

Wheeler et al. proposed 3D template matching tech-
nique as a robust pose estimator based on M-estimation[7],
which is used in the field of robust statistics, and which
can eliminate noise belonging to outliers. M-estimator is
a generalization of least-squares and is defined in the form
of !�"� � 
�#�"��, where #�"�� is an arbitrary function of
the errors, "� is the observation. Kawamura el al. tried sev-
eral error distribution functions as #�"�� in the task of lo-
calizing real electric facilities on an electric pole and found
that, when the initial pose error is within 50mm, Lorentzian
function is the best function among them[8].

In our experiment, the system could generally estimate
the initial position error within 50mm, so we adopted the
3D template matching (3DTM) technique with Lorentzian
function as an error distribution function.

$�"� �
"

� � �
�"

�
� � �Lorentzian weight function

For each piece of captured depth data, 3DTM first con-
structs a KD-tree from the dense depth points(%� &� ").
Then it searches in the KD-tree for the closest point to each
model triangle and estimates the average of the weighted
distance between the model pose and the data. To minimize
the matching cost, we use the gradient-descent search.

4.2 2D constraint
2D template matching (2DTM)[7] is much the same

technique as described above, but it estimates the 3D points
from the extracted edges on an intensity image.

2DTM first extracts edgels from an intensity image by
use of Canny Operator and then constructs a KD-tree from
the image-points and their differentials (4 dimensions) for
each edgel. 2DTM then searches for the closest point in the
KD-tree to each edgel of the model projected on the image.
Edgels of the model are determined in two ways: some are
determined off-line as explicit corners formed by two adja-
cent meshes, while the others are determined online from
the edges whose normal is perpendicular to the viewing di-
rection. As a result, 2DTM determines the correspondence
between the 2D image point in the input image and the 3D
model point. 2DTM estimates the 3D position of each 2D
edgel point as shown in Figure.3 (right).

The correspondence between the 3D model points and
the 3D image points is calculated in just the same way as
3DTM.

4.3 2DTM & 3DTM combined localization
2DTM is sensitive to the edges that appear in the image

background and does not offer a good guess about " po-
sition (parallel to the viewing direction) of the model be-
cause of the approximation of " position of the 3D edgels.
But, at the final stage of the localization, 2DTM offers a
good guess about the position and orientation perpendicu-
lar to the viewing direction.

So, we first adopt the 3DTM only to localize the object
to the approximate position; then we adopt the 2DTM &
3DTM combined method to localize the object to the exact
position as shown in Table1.

Table 1: 2DTM & 3DTM combined localization
Method Sigma[mm]

1 3DTM 20.0
2 3DTM 5.0
3 3DTM 2.0
4 3DTM & 2DTM 2.0
5 2DTM 1.0

2DTM and 3DTM are calculated in the same 3D space
by M-estimator (Lorentzian) with different weights. Sigma
is the parameter for determining the width of the distribu-
tion function to reduce the effect of outliers.

We utilize a 9-eye stereo vision system to produce the
intensity and disparity images. This vision system also pro-
vides the least and the second least Sum of Sum of Abso-
lute Difference (SSAD) value for each pixel. We can re-
gard pixels in a disparity image as noise or as being out
of the measurement range when the difference between the
above two SSADs is too small. By excluding those pix-
els, we can reduce the computation time for building and
searching the KD-tree and miss-matching.



5 Experiment
5.1 Platform

We developed a human-form robot as a test-bed to ver-
ify our algorithms, to test the validity of a constructed task
model and to realize human-robot cooperative behavior.

This robot has similar capabilities to those of the hu-
man upper torso and is equipped with a real-time 9-eye
stereo vision system, 7 D.O.F. dual robot arms and delicate
hands which have 4 fingers and 3 fingers, each equipped
with force/torque sensor on its finger tips. This stereo vi-
sion system was utilized to observe human demonstration.

5.2 Integration of multiple observations
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Figure 4: Configuration of multiple motion sequences.

In this experiment, a human demonstrated the same task
five times with minor deviations, i.e., the arrangement of
the objects and the hand motion path in each demonstra-
tion was different. The nature of this task was to pour the
contents of container A into container B and then pour the
contents of the container A into container C as shown in
Figure.4; this was achieved by maintaining a specific rela-
tive motion between the two objects when pouring.

Figure.5 shows an example of the segmented hand tra-
jectory. From the initial segmentation, we obtained the
data set as shown in Figure.6. Clearly we see that non-
essential fine motion was detected and, to disregard that
useless motion, we have to relate the sequences to one
another. We applied the technique introduced in Section
3 and, as a result of DP matching, the system correctly
made a correspondence between all of the five sequences
as a thick line box shown in Figure.6 and removed non-
essential motion.

Figure 5: Trajectory of the motion sequence 4. The big
spheres indicate stationary state and the small spheres in-
dicate moving state. The numbers in the figure correspond
to the numbers in the next figure.
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Figure 6: Result of integration by multi-dimensional DP
matching.

5.3 Tracking of fine motion
Tracking was performed off-line. All the disparity and

intensity images from the stereo vision were recorded in
about 15fps during the demonstration. After the fine mo-
tion was integrated, the system fetched the recorded im-
ages corresponding to the fine motion period and tracked
the manipulated object in the successive scenes by using
the technique presented in the previous section. The initial
position is determined by the data from polhemus sensor
attached on the data glove. Figure.7 shows the tracking
result and we see that the object is correctly localized.

At the time of tracking, the position and the orientation
of the manipulated object in the target object’s coordinates
are stored in the task model for each image.
5.4 Performance by the robot

After the task model was successfully constructed, the
robot performed the same task (in this case, pouring mo-
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Figure 7: Tracking of container A in “Pour” motion. Thick
white wire-frame indicates the projected geometric model.
Winding line fragments all over the image are the detected
edges. Clutter in the background is caused by the limitation
of measurement range and is almost removed by SSAD
thresholding.

Figure 8: Human demonstration and robot perfor-
mance.The pose of the robot arm in the right figure is cal-
culated from the relative pose of the object in the left figure.

tion). The arrangement of the objects differs from the sit-
uation at the demonstration, but the robot successfully lo-
calized container B in the scene and estimated its position
and the orientation. Then the robot recomputed the trajec-
tory of the manipulated object (Container A) to maintain
the relative relationship as written in the task model during
fine motion.

In this experiment, the reference relative trajectory was
selected from sequence 5, but the averaged trajectory de-
rived from all the sequences will be much more reliable.

6 Conclusions
In this paper, we have proposed a technique to auto-

matically segment non-contact hand-work tasks into fine
motion and coarse motion by integrating multiple observa-
tions using multi-dimensional DP matching. We have also
presented a robust object localization technique, which is
necessary to extract trajectory during fine motion. This tra-
jectory information can make up for the previously pro-
posed symbolic task model.

Multi-dimensional DP matching is applied to align five
demonstration sequences, but this method is computation-
ally expensive when the number of sequences increases.
If the dimension or the length of the sequences are to be
larger, we can apply other efficient algorithms introduced

in Section 3.
We also proposed 2D & 3D combined template match-

ing technique which can eliminate the effects of outliers to
enable us to register the pose of the manipulated objects in
the images obtained from vision. Matching calculation is
processed so as to first utilize 3D information only to esti-
mate the approximate pose and then to fine tune the pose
using 2D edge correspondences.

In this study, we focused only on fine motion. As for
coarse motion, some optimization of the trajectory fitted to
the robot body structure rather than to human body struc-
ture is necessary for a robot to be skillful in a certain task.
The contemplated future work is to solve the problem of
detecting and recovering from errors when the robot fails
to perform a task.
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