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Abstract

Edges are caused by the discontinuities in surface-reflectance, illumination, surface-
normal, and depth (RIND). However, extensive research into the detection of specific
edge types has not been conducted. Thus, in this paper, we propose a Swin Transformer-
based method (referred to as SWIN-RIND) to detect these four edge types from a single
input image. Attention-based approaches have performed well in general edge detection
and are expected to work effectively for RIND edges. The proposed method utilizes
the Swin Transformer as the encoder and a top-down and bottom-up multilevel feature
aggregation block as the decoder. The encoder extracts cues at different levels, and the
decoder integrates these cues into shared features containing rich contextual information.
Then, each specific edge type is predicted through independent decision heads. To train
and evaluate the proposed model, we used the public BSDS-RIND benchmark, which
is based on the Berkeley Segmentation Dataset and contains annotations for the four
RIND-edge types. The proposed method was evaluated experimentally, and the results
demonstrate that the proposed SWIN-RIND method outperforms several state-of-the-art
methods.

1 Introduction
General edge detection is a fundamental problem in computer vision that has been studied
widely [5, 9, 20, 37, 40], and, in recent years, increasing attention has been paid to specific
edge detection. As shown in Fig. 1 [23], edges are caused by four factors, i.e., (1) surface-
reflectance discontinuity, (2) illumination discontinuity, (3) surface-normal discontinuity,
and (4) depth discontinuity (RIND). More detailed categories clarify the essence and bene-
fits of edges. For example, depth edges improve the accuracy of depth estimation [30, 35],
high-quality illumination edge detection is required for contrast enhancement and shadow
removal [39], and reflectance edges are necessary for road crack detection in intelligent
transportation systems [19, 42]. Treating edges without distinguishing types can lead to the
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(a) (b) (c) (d) (e) (f)

Figure 1: Examples of specific edges in the BSDS-RIND [28] dataset: (a) reference image;
(b) general edges; (c) reflectance edges; (d) illumination edges; (e) normal edges; and (f)
depth edges. These examples show that different factors cause edges. Due to the unique
nature of these examples, there are no edges in (d) caused by illumination discontinuities,
which indicates that the ratios of the RIND edges in images differ and can fluctuate signifi-
cantly.

loss of important information or increased computational costs for downstream tasks; thus,
previous studies have focused on the detection of specific edge types [2, 13, 14, 32].

Pu et al. [28] presented the BSDS-RIND, which is the first public benchmark with RIND-
edge labels based on the Berkeley Segmentation Dataset (BSDS) benchmark [3]. In the same
study, they also proposed a convolutional neural network (CNN)-based framework to predict
RIND edges simultaneously; however, this approach struggles to extract fine edges since the
emphasis on its loss design is more inclined towards the local context, and the estimation
accuracy was not satisfactory.

Therefore, in this paper, we propose an end-to-end transformer-based RIND-edge detec-
tion method that takes a single image as input and predicts the four types of edges simul-
taneously. The proposed method utilizes the Swin Transformer [21] to encode multilevel
cues and construct a top-down and bottom-up decoder for integration. The integrated feature
is then transferred to independent decision heads to predict the corresponding specific edge
maps. The primary contributions of this study are summarized as follows. (1) We propose
an end-to-end network architecture using the Swin Transformer for RIND-edge detection.
(2) We propose a combination of dice and attention losses with a self-weighted strategy to
realize effective fine edge detection. (3) We demonstrate that the proposed SWIN-RIND de-
tection method outperforms state-of-the-art methods and exhibits significant advantages in
accuracy and visual performance.

2 Related Work
Early studies into edge detection [5, 18, 24, 38] focused on general edge detection and
primarily utilized image gradients to find the edges. These studies extracted elementary
low-level cues, e.g., color, brightness, and texture. These model-based methods were simple
and tractable; however, they suffered from inferior performance compared to contemporary
learning-based approaches.

With the rapid development of deep learning technologies, the CNN has demonstrated
effectiveness in edge detection tasks. Conventional learning-based methods [9, 18] used
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Figure 2: Overall architecture of SWIN-RIND framework. First, the image is input to the
Swin Transformer to calculate multilevel semantic information. Second, a top-down and
bottom-up multilevel aggregation decoder integrates cues and generates a high-dimensional
feature. Finally, each decision head predicts a corresponding specific edge map.

low-level features, e.g., handcrafted features, to train a classifier to predict general edges. In
contrast, CNN-based methods [3, 4, 17, 31] integrate multiscale features to achieve outstand-
ing general edge detection performance. Recent CNN-based methods have focused on the
specific edge detection task [1, 44, 45]. For example, Fu et al. [11] proposed a CNN model
that generates depth edges by parsing optical flow features and small image patches, and Pu
et al. [28] proposed a framework that combines multilevel features to generate specific edge
maps.

In addition, the Transformer model [33] has been introduced successfully in edge detec-
tion research [29]. For example, the Vision Transformer (ViT) [10] divides an image into
16 patches to simulate input via natural language processing, and this method has achieved
outstanding performance in various computer vision tasks [29, 36, 41]. A previous study[29]
proposed a two-stage general edge detection framework that utilizes the ViT as a backbone
network. However, the computational costs incurred by high-resolution images are such that
use of the ViT method is not practical, and the global modeling capacity of ViT is limited
by its lack of attention interaction between patches. In contrast, the Swin Transformer [21]
is a hierarchical transformer that employs a shifted window to enhance interaction between
patches.

Building on the success of the Swin Transformer, we propose the SWIN-RIND-edge
detection framework to detect all four types of edges simultaneously. The proposed method
leverages the hierarchical feature extraction capabilities of the Swin Transformer to learn
multiscale and multilevel cues from a single input image. In addition, the dice coefficient
is utilized in the loss calculation to enhance global predictions, which results in significant
visual and accuracy improvements.
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3 Method
An overview of SWIN-RIND is shown in Fig. 2. First, each Swin Transformer block in the
SWIN module extracts different levels of information from the input image, and then the
MLA decoder integrates multiscale cues and generates a concatenated feature. Finally, four
independent decision heads are used to predict each specific edge type.

3.1 SWIN-RIND
3.1.1 Feature map extraction

The edges in an image have rich semantic meanings; thus, it is important to integrate in-
formation from both multilevel features and global contexts. A conventional Transformer
model might fall short in terms of handling downsampled data and providing attention in-
teraction due to its restricted attention calculation in a small image patch. To address this
issue, the proposed method employs the Swin Transformer, which utilizes a shifted window
attention calculation process and has a hierarchical architecture.

In the Swin Transformer, the patch partition block first splits an H ×W RGB image into
nonoverlapping 4× 4 patches. Then, the feature dimension of the input is 3× 4× 4 = 48,
and the resolution is H

4 × W
4 . As shown in Fig. 2, four repeated stages are followed by the

patch partition module. There are three main modules in the Swin Transformer backbone.
The linear embedding module projects the features to an arbitrary dimension C. The Swin
Transformer block computes self-attention using a shifted window, which enhances the at-
tention interaction. The patch merging module then downsamples the patches to enhance
the feature dimension, which merges 2× 2 adjacent patches inside each patch, thereby re-
sulting in a fourfold increase. Then, a built-in linear layer projection process reduces the
number of patches by half. We extract the feature maps ω generated by each stage of the
Swin Transformer to form group Ω as follows:

Ω = {ω1,ω2,ω3,ω4}, (1)

where ω1,ω2,ω3,ω4 correspond to the outputs of the four stages, respectively. As a result,
the features become more semantically meaningful in the higher stages, which realizes better
global modeling capabilities.

3.1.2 Multilevel feature aggregation

The architecture of the decoder has a significant impact on the capability of the encoder. To
identify edges, it is important to represent edge pixels in sufficient detail. Thus, inspired by a
previous study[29, 46], we designed the MLA decoder with a top-down and bottom-up struc-
ture. As shown in Fig. 2, Deconv comprises a single deconvolution layer, and TDL and BUL
comprise a 3×3 convolution layer and a deconvolution layer. The top-down and bottom-up
paths combine the multilevel features effectively and accelerate the encoder’s learning pro-
cess. In the MLA decoder, the module first utilizes the Deconv layers to reshape the feed
feature into the same size. Then, it integrates them from top-down and bottom-up paths
and concatenates all cues to form a higher-dimension feature. This process is formulated as
follows:

F = Φm(Ω), (2)

where Φm denotes the MLA decoder, and F represents the concatenated features.
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3.1.3 Decision heads

Four independent decision heads are employed to jointly predict the different specific edge
types. Here, each decision head comprises four consecutive 3 × 3 convolution layers, a
single 1×1 convolution layer, a batch normalization layer, and ReLU. The model feeds the
concatenated features into an independent decision head Γ to obtain the initial result O:

Ok = Γk(F),k ∈ {r, i,n,d} (3)

where Γk denotes the different decision heads in Reflectance, Illumination, Normal, Depth,
and Ok represent the corresponding initial predictions. Finally, the initial prediction results
are normalized by the sigmoid function σ to generate the final results:

Yk = σ(Ok),k ∈ {r, i,n,d} (4)

where Yk denotes different edge predictions in Reflectance, Illumination, Normal, Depth.

3.2 Loss function
3.2.1 Attention loss

For edge detection tasks, there is an extreme imbalance between the number of edge pixels
and the number of background pixels. Typically, natural images comprise less than 1% edge
pixels. In this case, the imbalance makes the loss during the training process overwhelming,
and inefficient training leads to model degeneration.

To mitigate the influence of this imbalance, we utilize the loss proposed in a previous
study [34], which considers the ratio of edges to background as follows:

La(Y,G) =−∑
(i, j)

(
G(i, j)αβ

(1−Y(i, j))
γ

· log(Y(i, j))+(1−G(i, j))(1−α)βY(i, j)
γ

· log(1−Y(i, j))

)
,

(5)
where La represents the attention loss, which is applied to each specific edge map, Y

denotes the final prediction of an edge map, and G represents the corresponding ground
truth. In addition, α is the ratio of edge pixels to background pixels, which is calculated
as α = |G+|/|G−|, where |G+| and |G−| correspond to the sum of the edge pixels and back-
ground pixels, respectively. Subscripts (i, j) represent the (ith, jth) elements of the matrix,
respectively, and γ and β are hyperparameters that can be set manually. For the attention
loss, the modulation factor α strongly enhances the penalization of incorrect positive classi-
fication, and (1−α) reduces the influence of the number of background pixels.

3.2.2 Dice loss

Edge detection is a binary segmentation task, and it is natural to utilize the binary cross-
entropy loss to calculate the loss in such cases; however, the cross-entropy loss focuses more
on pixel-level information, which is insufficient for global-level prediction in edge detection
tasks. Inspired by a previous study [7, 8, 25], we utilize the dice loss Ld to allow the network
to better learn fine edges as follows:

Ld(Y,G) = 1−
2 · ∑

(i, j)
Y(i, j)G(i, j)

∑
(i, j)

Y(i, j)
2 + ∑

(i, j)
G(i, j)

2 , (6)
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(a) Reflectance edges (b) Illumination edges

(c) Normal edges (d) Depth edges

Figure 3: Evaluation results obtained on BSDS-RIND dataset for (a) reflectance edges, (b)
illumination edges, (c) normal edges, and (d) depth edges. It has been shown that SWIN-
RIND has a certain advantage and performs best in all specific edge detection tasks.

where Ld denotes the dice loss of specific edges. In the dice loss calculation, the value
of the dice loss is not greater than one. If the value approaches zero, this indicates that the
overall prediction is more accurate (rather than relying on a single pixel).

3.2.3 Self-weighted total loss

Many previous studies [28, 29] manually set parameters to balance multiple losses. However,
separate losses typically work against each other during network training. In this case, the
most appropriate weights may change during the training process; thus, a combination of
losses can be taken as an uncertainty problem [16]. Here, we utilize self-updating parameters
ρ,τ,ε,µ to find the most suitable values during the training process, and the total loss Lt is
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Figure 4: Representative detection results for four edge types. From left top to right
bottom, each column corresponds to: (a) the reference image, (b) RINDNet, (c) SWIN-
RIND (the proposed method), and (d) the ground truth. In each column, there are different
edge types present in each patch (top left: reflectance edges; top right: illumination edges;
bottom left: normal edges; and bottom right: depth edges).

defined as follows:

Lt =
1

ρ2La,r +
1
τ2La,i +

1
ε2La,n +

1
µ2La,d +η ·∑

k
Ld,k + log(ρτεµ), (7)

where ρ,τ,ε,µ are the self-updating parameters, and η is an amplification factor that can be
set manually. In addition, {La,r,La,i,La,n,La,d} are the attention losses of the different edge
types. Ld,k,k ∈ {r, i,n,d} is the dice loss of the corresponding edges, and log(ρτεµ) is a
constraint term to keep the loss factors from overinflating.

4 Experiment

4.1 Dataset
The proposed model was trained and evaluated using the BSDS-RIND [28] dataset. The
resolution of the images in this dataset is 321×481 or 481×321 pixels. In addition to gen-
eral edge annotation, the BSDS-RIND dataset appends RIND-edge labels and augments the
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Table 1: Metrics value comparison (“red" for the best and “blue" for the second best.)

Method Reflectance Illumination Normal Depth Average
ODS OIS AP ODS OIS AP ODS OIS AP ODS OIS AP ODS OIS AP

HED [40] 0.412 0.466 0.343 0.256 0.290 0.167 0.457 0.505 0.395 0.644 0.679 0.667 0.442 0.485 0.393
CED [37] 0.429 0.473 0.361 0.228 0.286 0.118 0.463 0.501 0.372 0.626 0.655 0.620 0.437 0.479 0.368
RCF [20] 0.429 0.448 0.351 0.257 0.283 0.173 0.444 0.503 0.362 0.648 0.679 0.659 0.445 0.478 0.386
DFF [15] 0.447 0.495 0.324 0.290 0.337 0.151 0.479 0.512 0.352 0.674 0.699 0.626 0.473 0.511 0.363

BDCN [12] 0.358 0.458 0.252 0.151 0.219 0.078 0.427 0.484 0.334 0.628 0.661 0.581 0.391 0.456 0.311
OFNet [22] 0.437 0.483 0.351 0.247 0.277 0.150 0.468 0.498 0.382 0.661 0.687 0.637 0.453 0.486 0.380

DexiNed [27] 0.402 0.454 0.315 0.157 0.199 0.082 0.444 0.486 0.364 0.637 0.673 0.645 0.410 0.453 0.352
CASENet [43] 0.384 0.439 0.275 0.230 0.273 0.119 0.434 0.477 0.327 0.621 0.651 0.574 0.417 0.460 0.324
DOOBNet [34] 0.446 0.503 0.355 0.228 0.272 0.132 0.465 0.499 0.373 0.661 0.691 0.643 0.450 0.491 0.376

DeepLabV3+ [6] 0.444 0.487 0.356 0.241 0.291 0.148 0.456 0.495 0.368 0.644 0.671 0.617 0.446 0.486 0.372
RINDNET [28] 0.478 0.521 0.414 0.280 0.337 0.168 0.489 0.522 0.440 0.697 0.724 0.705 0.486 0.526 0.432

SWIN-RIND(Ours) 0.556 0.570 0.518 0.452 0.412 0.369 0.543 0.573 0.501 0.733 0.749 0.750 0.571 0.576 0.534

dataset by rotating and flipping each image. There are approximately 2400 annotated train-
ing images in the BSDS-RIND dataset.

4.2 Implementation details
We implemented the proposed method in PyTorch [26] and fine-tuned a pretrained Swin
Transformer model. Here, we optimized the model in an end-to-end manner using stochastic
gradient descent (momentum=0.9, initial learning rate = 10−4, and weight decay=10−4),
and the model was trained over 30 epochs with a batch size of 16 using an Nvidia RTX
A6000 GPU. In terms of the loss calculation, we set β = 4 and γ = 0.5 for the attention loss
calculation[34], and η = 103 was used to balance the magnitude between the attention and
dice losses. During training, each image is cropped randomly to a size of 320×320 pixels,
and the original size is maintained during the testing phase.

4.3 Quantitative evaluation
We compared the proposed method with 11 state-of-the-art edge detection works: HED [40],
CED [37], RCF [20], DFF [15], BDCN [12], OFNet [22], DexiNed [27], CASENet [43],
DOOBNet [34], DeepLabV3+ [6], and RINDNet [28]. In this evaluation, the BSDS-RIND
dataset was used for evaluation, and the performance of the compared methods was eval-
uated in terms of three metrics [3], i.e., the Optimal Dataset Scale (ODS), Optimal Image
Scale (OIS) and Average Precision (AP). In addition, prior to conducting the evaluation, the
predicted edge maps were subjected to non-maximum suppression [5]. Table 1 and Fig. 3
show the metrics and F-measure comparison of the four types of edges. As can be seen, the
proposed SWIN-RIND method outperformed the compared methods in all metrics.

4.4 Qualitative evaluation
We compared the edge detection results obtained by the proposed SWIN-RIND method with
those obtained by the RINDNet method [28], and the results are shown in Fig. 4. From
the comparison, we found that thicker edges indicate a higher number of misidentified edge
pixels. Thick edge prediction is a typical performance issue introduced by the cross-entropy
loss calculation because it focuses more on the pixel itself rather than the entire image. The
weighted cross-entropy loss can be very effective in terms of improving edge prediction
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in cases where the number of edge pixels is significantly less than that of the background
pixels. However, this reduces the loss of background pixels, which in turn reduces the penalty
incurred due to their misidentification. In this case, methods that only use the weighted cross-
entropy loss generate thicker edges. In contrast, the proposed SWIN-RIND method, which
utilizes dice loss to support attention loss, generates fine edge results and achieves better
accuracy. Dice loss through a global calculation to rectify the learning process. In addition,
we implemented the self-updating strategy to improve the integration of both loss functions.

4.5 Ablation study

We conducted an ablation study on the BUL and TDL layers inside the decoder and loss
components to demonstrate their effectiveness. The results are shown in in Table 2 and Ta-
ble 3, respectively. In terms of the network architecture, we consider the encoder, Deconv
layers, and the decision heads as indispensable components. Thus, here, the primary fo-
cus of the ablation experiments was the BUL and TDL layers. As shown in Table 2, the
impact of the unidirectional decoding on boundary comprehension was rather limited, and
the bidirectional decoding process provided the highest accuracy. For the experiments con-
ducted in terms of the loss calculation, we tested different combinations of loss components
and self-learning parameters. Here, La and Ld denote the attention loss and dice loss, re-
spectively, and SP1 and SP2 denote the self-learning parameter set 1/{ρ,τ,ε,µ} and set
1/{ρ2,τ2,ε2,µ2}. CT refers to the constraint term log(ρτεµ). We believe that the dice loss
plays an important role in global control. Without global control of the dice loss, coefficient
1/{ρ2,τ2,ε2,µ2} reduce the loss value too fast to train. The situation remains unchanged
even when attempting to decrease the impact of the coefficient to 1/{ρ,τ,ε,µ}.

MLA BUL TDL ODS OIS AP
- - - 0.461 0.427 0.418
� × � 0.552 0.521 0.515
� � × 0.535 0.500 0.505
� � � 0.571 0.576 0.534

Table 2: Ablation study on network archi-
tecture

La Ld SP1 SP2 CT ODS OIS AP
� × × × × 0.492 0.476 0.439
� × × � � 0.113 0.114 0.052
� × � × � 0.425 0.407 0.349
� � × × × 0.489 0.464 0.441
� � � × � 0.573 0.561 0.557
� � × � � 0.571 0.576 0.534

Table 3: Ablation study on loss compo-
nents

5 Conclusion

In this paper, we have proposed a Swin Transformer-based end-to-end network to detect
RIND edges simultaneously. The proposed SWIN-RIND method also employs a self-balance
loss calculation strategy, which results in promising accuracy and visual effects. The ex-
perimental results have shown that the proposed SWIN-RIND method outperforms several
state-of-the-art edge detection methods.

However, specific edge detection remains an open challenge. For example, the number
of RIND-edge datasets is extremely limited. To the best of our knowledge, BSDS-RIND is
the only dataset containing RIND-edge labels. In terms of performance, developing a unified
model that excels at both general and specific edge detection requires further investigation.
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