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ABSTRACT 
There are many situations in which virtual objects are presented 
half-transparently on a background in real time applications. In 
such cases, we often want to show the object with constant 
visibility. However, using the conventional alpha blending, 
visibility of a blended object substantially varies depending on 
colors, textures, and structures of the background scene. To 
overcome this problem, we present a framework for blending 
images based on a subjective metric of visibility. In our method, a 
blending parameter is locally and adaptively optimized so that 
visibility of each location achieves the targeted level. To predict 
visibility of an object blended by an arbitrary parameter, we 
utilize one of the error visibility metrics that have been developed 
for image quality assessment. In this study, we demonstrated that 
the metric we used can linearly predict visibility of a blended 
pattern on various texture images, and showed that the proposed 
blending methods can work in practical situations assuming 
augmented reality. 

Keywords: Visibility, Human visual system model, Blending 

Index Terms: I.5.1 [Information interfaces and presentation]: 
Multimedia Information Systems—Artificial, augmented, and 
virtual realities; H.1.2 [Models and Principles]: User/Machine 
Systems—Human factors 

1 INTRODUCTION 
In many interactive applications, one sometimes needs to render 
an object half-transparently on a background scene image. For 
example, in portable augmented reality systems, rendering virtual 
information in 100% opacity can be dangerous because obstacles 
in the real world are often occluded. Virtual objects may also be 
rendered transparently for the purpose of X-ray visualizations [6, 
26]. In showing virtual objects in optical see-through systems, or 
structured augmented reality systems, virtual information is 
usually perceived half-transparently. 
   Under all of those situations, one often wants to keep visibility 
of a rendered object constant. However, there is still no 
established method that can blend two images according to a 
subjective measure of visibility. In the conventional alpha 
blending method [20], we can change opacity of one image 
relative to another image by an alpha value. However, the size of 
the alpha value does not necessarily correspond with the visibility 
of an image against another image. For example, given a situation 
in which a virtual object is blended with a background image, 
visibility of the virtual object largely depends on intensities and 
textures of the background scene and the virtual object (left 
column in Fig. 1).  

 
Figure 1. A virtual object is blended with two different 
background images by (Right column) the visibility-based 
blending, and (Left column) the conventional alpha blending with 
a constant alpha value (=0.4). Using the conventional alpha 
blending, visibility of the virtual object largely depends on 
intensities and textures of background scenes. The proposed 
blending method overcomes this problem by locally optimizing a 
blending parameter based on a subjective measure of the visibility. 
 
Likewise, in optical see-through systems, the visibility of any 
virtual information necessarily depends on textures or structures 
of background scenes. This causes substantial inconvenience 
when we want to keep visibility of an object constant regardless 
of the background scene. 
   One possible solution to this problem is to predict the visibility, 
and optimize a blending parameter. In this work, we employed 
one of the error visibility models to predict visibility, which have 
been developed for the purpose of image quality assessment [12, 
15]. In the error visibility model, visibility of image distortion is 
predicted by comparing simulated neural responses for an original 
image, and those for a distorted image. The simulation of neural 
responses is based on the computational model of the primary 
visual area (referred to as V1). In our case, the input images are 
replaced with an image before blending, and an image after 
blending; visibility of the blended image is predicted by 
comparing simulated responses for the two input images. A clear 
advantage of this method is that we can estimate visibility of a 
blended object, excluding the effect of the background scene. 
   In this study, we propose two blending methods based on the 
visibility model. One is the visibility-based blending, which 
locally optimizes a blending parameter such that the visibility of 
the blended object achieves the arbitrarily targeted level. The 
other method is the visibility-enhanced blending for optical see-
through systems, in which visibility of a virtual object is 
adaptively and locally enhanced. Using the proposed method, we 
can blend an object with constant visibility across different 
background scenes (right column in Fig. 1). In addition, we can 
keep the visibility uniform across every region within the same 
scene. 

Visibility-based blendingAlpha blending
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   The rest of this paper is organized as follows. In the following 
section, we review related works regarding legibility studies on 
AR/MR as well as error visibility studies for image quality 
metrics. In the third section, we introduce the visibility model we 
used. Then, in the fourth and fifth sections, we propose the two 
blending methods. Subsequently, in the sixth section, we evaluate 
our blending methods. Finally, in the last section, we complete 
this paper with a summary and conclusion. 

2 RELATED WORK 
In AR/MR visualizations, several studies have worked on 
improving legibility of virtual information rendered on 
background scenes. Although those studies did not assume 
rendering virtual information half-transparently, the problems 
considered were very similar to those raised in our work. 
   For example, [7] investigated the effect of background colors 
and textures on legibility of texts rendered on the real scene. They 
found that the background colors and textures can significantly 
affect users’ performance. They also designed a method that 
enhances legibility by setting the color of the text based on 
averaged color of the background. However, their method was not 
based on any quantitative model that predicts legibility on 
arbitrary background with various textures and colors. 
   Some studies used the saliency map model to retain legibility of 
important regions in X-ray visualizations on AR/MR systems. The 
saliency map model is a computational model that predicts how 
much a region can attract bottom-up attention [10]. In order to 
keep legibility of important regions of the real occluding object 
while rendering an occluded scene behind them, [22] extracted 
salient regions from the occluder based on the saliency map and 
overlaid them on the occluded scene. Conversely, [11] used the 
saliency map to adaptively enhance occluded information viewed 
through a real occluding surface. However, the saliency map only 
shows how salient each region of a single image is relative to 
surrounding regions, and does not necessarily provide a 
quantitative visibility level of a half-transparent object relative to 
the background scene at the same location. 
   To correctly predict the visibility level of a half-transparent 
object on an arbitrary background, we adopted the framework of 
error visibility metrics for image quality assessment. Those error 
visibility metrics usually take into account basic features of the 
human visual system that are thought to be important for 
predicting visibility. Hereafter in this section, we introduce those 
basic features of the human visual system, and review some works 
that utilized the human visual system model to design error 
visibility metrics for image quality assessment. 

2.1 Basic features of the human visual system 
Visibility can be mostly understood from two key features, 

contrast sensitivity and contrast masking. Here, we introduce each 
of the two features and their underlying mechanisms. 

2.1.1 Contrast sensitivity 
   One of the key features that contribute to visibility can be 
observed as contrast sensitivity for stimuli with various spatial 
frequencies (known as contrast sensitivity function, CSF). As 
shown in Fig. 2, contrast sensitivity of the human visual system 
has a band-pass nature, with its peak at around 2-5 cycles per 
degree [2,3]. Evidence from psychophysical and physiological 
studies has shown that several different mechanisms, each of 
which is tuned to separate, and a more limited band of spatial 
frequencies, underlie the CSF [2,9]. Each of the spatial frequency 
detection mechanisms is also tuned to a specific range of 
orientations. It is believed that those mechanisms are implemented 
by neurons in V1. Each of those neurons responds most highly 

when a visual stimuli, with its preferred spatial frequency and 
orientation, is presented at its preferred retinal position. Thus, it 
can be said that in the early stage of the visual processing, visual 
stimuli are linearly decomposed by several different neural 
channels, each of which are tuned to a specific band of spatial 
frequencies, a specific range of orientations, and a specific 
location in the visual field.  

 
Figure 2. Contrast sensitivity function. (Left) Contrast sensitivity 
for a visual stimulus depends on its spatial frequency. (Right) 
Schematic illustration of the contrast sensitivity function (solid 
line) and its underlying spatial frequency channels (broken lines). 
 

2.1.2 Contrast masking 
  Visibility of a visual stimulus also depends on contrast of its 
background (a phenomenon known as contrast masking [13]). In 
Fig. 3, a sinusoidal target with the same contrast is embedded on 
different backgrounds. In the leftmost image, the target is 
presented on a plain background, but in the center image, the 
same target is added on a background with a similar sinusoidal 
pattern. Here, physical intensity increment and decrement relative 
to background, is exactly the same between both images. 
However, visibility of the target is lower in the center image. This 
contrast masking also occurs if the orientation of the background 
pattern is different from that of the target (see the rightmost 
image) though the effect becomes relatively smaller [5].  
 

 
Figure 3. Examples of the contrast masking effect. When the 
sinusoidal target is embedded on textured backgrounds, visibility 
of the target decreases though the physical intensity increment or 
decrement is kept constant across images. 
 
   The contrast masking can be explained by a non-linear contrast 
gain control process in V1. Currently, the most influential model 
of the gain control mechanism is the divisive normalization model 
[8]. According to the divisive normalization model, a response of 
each neuron is divisively normalized by the weighted sum of the 
responses of neurons that are tuned to the same location 
(including the neuron whose response is being normalized). 
Because the response to the target stimulus (or increment of the 
response regarding the target stimulus) is reduced due to the 
normalization when another pattern is added on the same location, 
perceived contrast of the target would also be reduced. The model 
can explain a vast variety of data, including physiologically 
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measured neural responses and psychophysically measured 
contrast masking data [8, 25, 28]. 

2.2 Error visibility metric based on V1 model 
The error visibility metrics have been developed using 
computational models of V1 (V1 model) that can simulate the 
basic features described in the previous section. In most of the 
error visibility metrics, the two input images (an original image 
and a distorted image) are processed in the V1 model, and a 
quantitative measure of visible differences between the input 
images is obtained by comparing each output from the V1 model. 
Most of the V1 models are composed of two components, each 
represents the neural mechanisms underlying each of the two 
basic features described in the previous section. 
   In the first stage of the V1 model, the input image is linearly 
decomposed into a set of subbands, consisting of several 
frequency bands and orientation bands, at each location. The 
coefficients of those subbands stand for the responses of the 
neural channels, each tuned to the frequency band, the orientation 
band, and the local position. The coefficients are then multiplied 
by linear gains to simulate the contrast sensitivity function. In the 
second stage, the coefficients are non-linearly processed to 
simulate the contrast masking effect. 
   To simulate the linear decomposition process in V1, [4] used the 
cortex transform [27], which decomposes an image into 4 
frequency levels by 6 orientations in Fourier domain. Although 
filters of the cortex transform are strictly designed to mimic 
selectivities of neural channels in V1, the computational cost of 
the transform is relatively high. Instead of the cortical transform, 
[1] used a wavelet transform for linear decomposition to integrate 
the error visibility metric into a wavelet-based image compression 
scheme (e.g. [16]). The wavelet transform is suitable to simulate 
the linear decomposition process in V1 because it can efficiently 
decompose an image into multiple subbands that have similar 
selectivities to those of neural channels in V1. 
   However, the error visibility metrics in [1,4] only showed 
probabilities of detection of image distortions at each location, 
and could not predict perceived magnitude of visible distortions. 
[14] overcame this limitation by using just-noticeable contrast 
difference as a unit of distortion measure. On the other hand, [12, 
25] explicitly incorporated the divisive normalization model to 
simulate neural responses in V1, and used a difference between 
those simulated responses as the perceived size of visible 
distortion. [12] further showed that their error visibility metric can 
well predict psychophysically measured visibility of several kinds 
of distortions. 

3 VISIBILITY MODEL 
The visibility-based blending proposed in this paper optimizes a 
blending parameter according to the visibility of a blended object 
predicted by the visibility model. The visibility model we used is 
based on the error visibility model proposed by [12].  
   A schematic of the visibility model is shown in Fig. 4. In the 
visibility model, two input images, an image before blending and 
an image after blending, are first converted to a color space that is 
more appropriate to simulate the behaviors of the visual system. 
Next, the converted images are processed in the computational 
model of the visual mechanisms in V1, (V1 model) and simulated 
neural responses of several neural channels are obtained for each 
location of each image. Then, differences of those neural 
responses between the two images are pooled across neural 
channels. Finally, the pooled difference is used as a measure of 
the subjective amount of visibility for that location. 
   Although most of the mathematical formulations are common 
between the visibility model used in this paper and that in [12], 

some modifications are incorporated to obtain better results, as 
well as to reduce computational cost. Those modifications are as 
follows: 
 
1. Using CIE L*a*b* color space instead of YUV 
2. Considering local lightness difference in addition to contrast 
difference 
3. Ignoring chromatic contrast difference 
4. Ignoring inhibition from surrounding pixels in the divisive 
normalization process 
 
In the following part, we show the details of the visibility model 
including explanations for these modifications. 

 
Figure 4. Schematic of the visibility model. The visibility of 
blending image (the right image) is calculated by comparing 
simulated neural responses for the blending image and a 
background image before blending (the left image). 

3.1 Color conversion 
   In the first stage of the visibility model, input images are 
converted from RGB to the CIE L*a*b* color space. Although 
[12] used the YUV color space, the L*a*b* is better because the 
L* channel in the L*a*b* is more perceptually linear than the Y 
channel in the YUV. In addition, we only used L* channel to 
calculate visibility because sensitivity for iso-luminant color 
contrast is small compared to that for luminance contrast [17]. 
Since we assume use of the blending method for real-time 
applications, we gave priority to efficiency at the expense of a 
presumably small contribution of the color channels. 

3.2 Simulation of the contrast sensitivity function 
   The input images are then linearly decomposed into several 
oriented frequency domains to simulate behaviors of the neural 
channels; each tuned to a specific range of spatial frequency bands 
and a specific range of orientation bands. In [12], the separable 
QMF wavelet transform (proposed in [24]) was used for the image 
decomposition. The QMF wavelet filter decomposes an image 
into 4 frequency bands and 3 orientation bands (horizontal, 
vertical, and diagonal), giving a vector w composed of 12 
coefficients for each location. Although two diagonal orientations 
(i.e., 45º and -45º) are confounded with each other in the separable 
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QMF wavelet transform, it fits real time applications quite well 
since the calculation speed is very fast.  
   After the transformation, each of the 12 coefficients w is 
multiplied with linear gains S as follows: 

𝑐! = 𝑆!𝑤! (1) 
where ci and wi denote a wavelet coefficient of the ith filter, after 
and before the linear gain process, respectively. Si is a linear gain 
for the ith filter to simulate the CSF. In [12], Si is modeled by the 
following function: 

𝑆! = 𝑆(!,!) = 𝐴!exp −
4 − 𝑒 !

𝑠!
 (2) 

where e and o denotes the scale (e can be 1, 2, 3, and 4, from fine 
to coarse), and the orientation (o=1, 2, 3, each of which stands for 
horizontal, diagonal, and vertical, respectively). Ao is the 
maximum gain for the orientation o, s controls the bandwidth, and 
θ determines the sharpness of the decay. Here, the parameters Ao, 
s, and θ are given in [12]. The values of those parameters are 
shown in Table 1. 

3.3 Simulation of the contrast masking effect 
   The coefficients are then divisively normalized to simulate the 
contrast masking effect. According to [12], we used the following 
equation to obtain the normalized response of neural channel i: 

𝑟! = 𝑠𝑖𝑔𝑛 𝑐!
𝑐! !

𝛽!
! + 𝐻!! 𝑐! !!

!!!
 (3) 

where γ is a constant given in [12]. βi is a saturation constant for 
the ith filter, which defines the point at which saturation begins 
(this is also necessary to prevent division by zero). The saturation 
constants are determined according to a standard deviation of each 
wavelet coefficient of 100 natural images sampled from a 
calibrated image database [18]. Since the standard deviations of 
wavelet coefficients can differ between different color spaces 
(L*a*b* in our model and YUV in [12]), we recalculated the 
standard deviations, and multiplied them by a scaling constant b 
to obtain βi. The scaling constant b was determined via 
optimization described in section 3.6. 
  In Eq.3, Hik denotes a weight that defines the size of influence of 
the kth filter to the ith filter. Hik is assumed to be larger if the kth 
filter is neighboring the ith filter in its dimension, and is defined 
as follows: 

𝐻!" = 𝐻 !,! , !!,!!
!!!"# ! !!!! !

!!!
! !!!! !

!!!
 

(4) 

where (e, o) and (e’, o’) indicates the frequency level and 
orientation to which each of the ith and kth filters is tuned. K is a 
normalization factor, which ensures that summation of Hik for all k 
equals one. σe and σo are given in [12]. In [12], they assumed not 
only interactions from nearby frequency levels or orientations, but 
also interactions from nearby pixels. However, it is quite time 
consuming to access surrounding pixels every time we calculate 
each of the divisive normalization responses. Since we need to 
iteratively calculate the visibility to optimize a blending parameter, 
in this work, we approximated the weight function Hik as in Eq. 4, 
omitting the term related to the spatial interaction. In section 6.1, 
we show that the approximated model can predict visibility of a 
blended pattern quite well. A previous study also suggested that 
spatial pooling over space was very localized [28]. 

3.4 Responses for local lightness 
In [12], only 4 band-pass subbands are taken into consideration 
for visibility calculation. Thus, the visibility model in [12] cannot 

correctly predict visibility if the differences exist in the frequency 
range lower than that covered by those subbands. This defect can 
cause incorrect blending results due to visibility underestimation 
around pixels where both virtual object and background real scene 
have smooth surfaces (e.g. sky, less textured walls, darkly shaded 
regions, etc.). 
   To prevent this, in this work, we additionally consider responses 
for local lightness by using low-pass residual in the result of the 
QMF wavelet transform. We modeled the response for local 
lightness rL as follows: 

𝑟! = ω𝑤! (5) 
where wL denotes a wavelet coefficient of the low-pass residual 
and ω denotes a linear gain. 

3.5 Pooling simulated responses 
   After simulated responses are obtained for both input images, 
the differences of the responses between the two images are 
pooled across neural channels for each location. This process is 
modeled as an lp norm: 

𝑑!" =
1

𝑛 + 1
𝑟! − 𝑟′! ! + 𝑟! − 𝑟′! !

!

!!!

!
!

 (6) 

where dxy denotes the pooled difference of simulated responses for 
a local position (x,y). ri and ri’ are the simulated responses of the 
ith neural channel (filter) for each of the two input images. n is the 
number of neural channels and thus is equal to 12. rL and r’L are 
the simulated responses for local lightness for each of the two 
input images. 

3.6 Parameter optimization 
In [12], the parameters in the visibility model were optimized via 
fitting to a set of subjectively rated image quality data. They 
demonstrated that the optimized model not only explains a larger 
set of image quality data, but also reproduces basic trends in 
psychophysical data (i.e., contrast sensitivity and contrast 
masking). So as not to impair the compatibility of their optimized 
model, we used the parameters given in [12], except for the 
saturation constants β (in Eq. 3), and a linear gain ω for local 
lightness (in Eq. 5). Thus, in this paper, only two parameters (the 
scaling constant b and the linear gain ω) were optimized. 
  The parameters were optimized via fitting to the subjectively 
rated visibility of a pattern that was blended with various natural 
textures and with various transparencies. The detail of the data 
acquisition procedure is described in section 6.1. To compare the 
visibility predicted by the model simulation with a subjective 
visibility score, the local visibility values dxy (Eq. 6) were pooled 
across pixels according to the following equation. 

𝑑 =
1
𝑚

𝑑!"
!

(!,!)∈𝑶

!
!

 (7) 

where O denotes a group of pixels that belong to the pattern, and 
m is the number of pixels in O. Here, we used q=2.2, according to 
[12]. The parameters (b, ω) were optimized by minimizing the 
residual sum of squares as a result of linear regression between 
the subjective visibility scores and the predicted visibility d. 
   The obtained parameters (b, ω) were (10.3, 0.35). The saturation 
constants β scaled by b are shown in Table 1. It should be noted 
that the saturation constants β obtained in this paper are quite 
similar to those obtained in [12]. Thus, the changes in those 
parameters did not affect the predictability of the model optimized 
in [12]. 
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Parameters Optimized values 

Ao 
40 when o=1 or 3 (horizontal or vertical) 
36.6 when o=2 (diagonal) 

s 1.5 
θ 6 
γ 1.7 
σe 0.25 
σo 3 
p 4.5 
ω 0.35 

βi =β(e,o) 
 e=1 e=2 e=3 e=4 
o=1,3 0.3 0.8 1.9 4.6 
o=2 0.2 0.5 1.1 2.7 

Table 1. Parameters of the visibility model used in this study. In 
these parameters, ω and β were optimized via fitting to the 
subjectively rated visibility data obtained in this work (section 
6.1). The other parameters were obtained from [12]. 

4 VISIBILITY-BASED BLENDING 
Based on the visibility model described in the previous section, 

we propose the visibility-based blending. The visibility-based 
blending locally optimizes a blending parameter (α) such that the 
visibility of the blended object achieves the arbitrarily targeted 
level. The blending equation we assumed is as follows: 

𝐼 = 𝛼𝐼! + 1 − 𝛼 𝐼! (8) 
where I1 denotes an image intensity of the to-be-blended object 
and I2 denotes an image intensity of the background scene (both 
colors are in the L*a*b* color space). 

A schematic of the visibility-based blending is shown in Fig. 5. 
In the first stage, the two input images are converted into CIE 
L*a*b* color space and the images in L* channel are decomposed 
by the 4-scale separable QMF filter. Those two images are a 
background image before blending and an image in which a to-be-
blended object is rendered on the background image with 100% 
opacity. Since the QMF transform is a kind of linear transform, 
we can generate decomposed image data of any blending image 
with arbitrary transparency level by linearly combining these two 
decomposed images.  

After the QMF transform, we have 12 coefficients (4 frequency 
levels by 3 orientations) for every location of the input images. 
The next step is to find an optimum blending parameter to realize 
the target visibility for every location. The optimum α is searched 
for by the binary search method. In every step of the search 
algorithm, the visibility of the rendering result by the current α is 
calculated and whether the visibility is higher than the target 
visibility is checked. 
   The visibility at the current α is obtained as follows. Firstly, the 
coefficients of the blending image at the current α are generated 
by linealy combining the coeffients of the two input images using 
the current α and Eq. 8. Here, I in Eq. 8 denotes the combined 
coefficients. I1 and I2 denote the coefficients of the input image 1 
(background scene) and the coefficients of the input image 2 (the 
background + an opaque object), respectively. 
   The combined coeffients are then processed by the linear gains 
S, and divisively normalized according to Eq.3. The coeffients of 
the background image (the input image 1) are also processed by 
Eq. 3. The responses for local lightness are also calculated for 
both images by Eq. 5. Then, the pooled difference of those 
simulated responses is calculated by Eq. 6. 
   The value d obtained in Eq. 6 is used in comparison to the target 
visibility. The next α is decreased if the visibility d is higher than 
the target and the next α is increased if d is not higher than the 
target. The size of increment/ decrement is initially set 0.25, but it 
is halved at the end of every step. The initial blending parameter 
α0 is 0.5. The search is finished after 8 iterations. 

   Finally, the blending is conducted according to Eq. 8, using the 
optimized α. However, a locally optimized α can often cause 
artificial edge or discontinuity in appearance of a blended object 
because optimization is independent across pixels. Therefore, we 
averaged each α within a predifined window. The size of the 
window is emperically given. 
 

 
Figure 5. Overview of the visibility-based blending. Input images 
are (1) a background image before blending and (2) an image after 
blending an object with 100% opacity. In each step of the 
optimization process of the blending parameter α, filter 
coefficients w of a blending image by the current α are generated 
by linearly combining those of the two input images. Then, 
visibility at the current α is calculated by Eqs. 3 to 6. Finally, the 
current visibility is compared with the target visibility and α is 
updated. After 8 iterations of this step, the blending result is 
generated by Eq. 8 using the optimized α value. 

5 VISIBILITY-ENHANCED BLENDING FOR OPTICAL SEE-THROUGH 
SYSTEMS 

In usual optical see-through devices using half-mirrors, colours of 
a virtual object are added on colours of a real scene. Therefore, a 
virtual object the observer sees is always transparent to a certain 
extent. Under such circumstances, the visibility of a virtual object 
depends not only on incoming light intensity from the real scene 
and the display device, but also on textures or structures of the 
virtual object and its background real scene. Using the visibility 
model, we are able to take into consideration such attributes to 
predict visibility. Here, we propose a blending method that can 
adaptively enhance the visibility of a virtual object added on a real 
scene in optical see-through systems. In our method, the visibility 
is enhanced by increasing intensities of local pixels where 
visibility is lower than the targeted level. 

To accurately predict visibility of virtual objects in optical see-
through systems, we need to know the exact location of the object 
in the scene in the user’s visual field. Moreover, we have to know 
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the adaptation level of the user’s eyes to the current light level in 
the real scene. This kind of information is necessary for 
simulating how the AR/MR scene is seen through the user’s eyes. 
Although those calibrations are important issues, and 
indispensable for applying our method to practical systems, in the 
present work we assumed that the simulated MR/AR scene image 
under accurate calibrations is already given. Therefore, we 
focused on describing the visibility enhancement method itself.  

 

 
Figure 6. Overview of the visibility-enhanced blending for optical 
see-through systems. There are three input images: (1) a 
background real scene image, (2) a simulated mixed reality scene, 
as an original rendering result, and (3) a simulated mixed reality 
scene in which the object is rendered with the maximum intensity. 
The final blending result is obtained by linearly combining (2) and 
(3) with a locally optimized weight α. 

 
A schematic of the visibility enhanced blending is shown in Fig. 6. 
As shown in Fig. 6, the process of the visibility-enhanced 
blending is almost the same as that of the visibility-based blending 
in the previous section. The major difference is that we need three 
input images: (1) a background real scene image, (2) a simulated 
mixed reality scene, as an original rendering result, and (3) a 
simulated mixed reality scene in which the object is rendered with 
the maximum lightness level. To obtain the object’s color of the 
maximum lightness, the object’s image is first converted to CIE 
L*a*b* space and then the values in L* channel are replaced with 
the maximum value. The final blending result is obtained by 
linearly combining (2) and (3) with a locally optimized weight (α) 
for each pixel using Eq. 8. Here, I1 denotes a simulated image in 
which the object is rendered with the maximum intensity, and I2 
denotes a simulated image of the original rendering result. 

Again, the optimum α, which shows the nearest visibility to the 
target visibility, is searched for within a range between 0 and 1 by 
the binary search. In each step of the search algorithm, the 
visibility with the current α is calculated by Eq. 6. To calculate 
the visibility in Eq. 6, simulated responses for a simulated mixed 
reality scene, generated by a linear combination of the input 
images (2) and (3) with the current α, are compared with 
simulated responses for the background real scene. 
   The other details are exactly the same as those of the visibility-
based blending method. The visibility at the current α is compared 
with the target visibility. According to the result of the 

comparison, the next α is increased or decreased by the current 
stepsize. Then, the stepsize is halved, and the next step begins. 
The search is finished after 8 iterations. 

   Finally, the blending is conducted according to Eq. 8, using 
the optimized α that is averaged within a predefined window. 

6 EXPERIMENT 
In this section, we firstly test the validity of the visibility model, 
which we described in section 3 and used in the two proposed 
blending methods. As for the original visibility model proposed in 
[12], they demonstrated that their model can explain subjective 
error visibility data for a large variety of image distortions. 
However, how well the model can explain perceived visibility of a 
blended object was not explicitly studied. Moreover, we modified 
their model in several points. Thus, we need to validate our 
version of the visibility model. After the validation of the 
visibility model, we tested the proposed blending methods using 
several real scene images and virtual objects. 

6.1 Validation of the visibility model 
We conducted an experiment in which human observers rated the 
visibility of a pattern blended by various levels of transparency on 
various textures. The rated visibility data was used to test the 
visibility model as well as to optimize a couple of parameters in 
the model (see section 3.6 for the details of the parameter 
optimization). Here, we show the details of the data acquisition 
procedure and the results of comparison between the visibilities 
obtained from the visibility model and subjectively rated visibility 
data.  

6.1.1 Methods 
・Apparatus 
Stimuli were presented in a dark room on a CRT monitor (Sony 
Trinitron Multiscan CPD-17SF9, 17 inch, 1024 × 768 pixels, 
refresh rate 75 Hz, mean luminance 44.6 cd/m2). Each subject 
placed his/her head on a chin-rest and used both eyes to view the 
stimuli. The viewing distance was 114 cm. According to [12,15], 
the visibility model assumes that images are observed at a 
distance where the images are sampled at 64 cycles per degree. 
The viewing distance was determined by following this 
assumption. 
 
・Stimuli 

 
Figure 7. Examples of the stimuli. The observers rated the 
visibility of the checkerboard pattern blended on the natural 
texture image. 
 
In every stimulus, a checkerboard pattern was blended on a 
natural texture image (Fig. 7). The checkerboard pattern 
subtended 200 pixels (a visual angle of 3.1 deg) both horizontally 
and vertically, and was composed of two colors, whose RGB 
values are (0, 0.8, 0) and (0.2, 0, 0.2). 50 different photo images 
were used as the texture images. The resolution of the textures 
was 512 x 512 and subtended 8 deg in visual angle. The texture 
images were mostly taken from [19]. 48 homogeneous textures in 
frontal perspective were chosen from the database. Those textures 
included photos of bark, brick, fabric, flowers, food, grass, leaves, 
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metal, sand, stone, and tile. 2 photo images of leaves were 
additionally taken by one of the authors. The checkerboard and 
the textures were blended by the simple alpha blending (Eq. 8). 
Here, I1 and I2 in Eq. 8 denote the checkerboard pattern image and 
the texture image, respectively. For each natural texture image, 5 
blending images were produced using different α’s. The α was 
modulated approximately on a logarithmic scale so that visibility 
of the checkerboard varied as equally and broadly as possible. 
 
・Static and Dynamic conditions 
   In addition to the static condition in which both the 
checkerboard pattern and the texture image were fixed at the 
center of the display, we also tested the dynamic condition in 
which the checkerboard pattern and the texture image were 
moving at different speeds, assuming practical situations. Under 
the dynamic condition, both the checkerboard pattern and the 
texture image were swinging horizontally in the same direction. 
Their speeds were modulated sinusoidally in the same temporal 
frequency, 1 Hz, but the widths of the swings were different: 0.8 
deg for the checkerboard and 1.6 deg for the texture. 
 
・Participants 
Ten observers, unaware of the purpose of the experiment (9 male 
and 1 female, aged 22–27), participated in the study. 9 of the 
observers completed both static and dynamic conditions. The 
other male observer participated only in the dynamic condition. 
 
・Procedure 
Before starting the experiment, a training session was conducted. 
In training, the approximate range of visibility of the stimuli was 
presented, and the observers were told to make a consistent 
criterion to judge visibility. 
   In the experiment, one of the stimuli was presented for 1.6 
seconds in each trial. After disappearance of the stimulus, the 
observer evaluated visibility of the checkerboard pattern in a 
numerical scale of 1 to 5, where 1 denotes “invisible,” 2 denotes 
“barely visible,” 3 denotes “visible,” 4 denotes “fairly visible,” 
and 5 denotes “very clear.” Those words were always presented 
beside the corresponding numerical values. The observer could 
also choose an intermediate scale between arbitrary abutting 
scales. The observer performed the task by using a mouse. For 
each of the static and dynamic conditions, there were in total 250 
stimuli. The 250 stimuli were presented in a random order. For 
those who participated in both of the conditions, the observers 
completed the dynamic condition first, and the static condition 
was conducted on another day. A training session was conducted 
every time they started the experiment in that day. 

6.1.2 Results 
We compared the visibility estimated by the visibility model 
described in section 3 with the subjectively evaluated visibility. 
The subjective data was converted into Z scores within observers 
using the following equation: 

𝑧 =
𝑣 − 𝜇!
𝜎!

 (9) 

where v denotes a raw score of visibility. μv and σv denote the 
average and the standard deviation of the raw scores for the 250 
stimuli, respectively. The z scores of individual observers were 
then averaged across observers for each stimulus, which was used 
as representatives for subjective visibility. 
   We calculated the visibility by the visibility model described in 
section 3 for each of the 250 stimuli. In calculating visibility, a 
stimulus image and a texture image of the stimulus were used as 
the input images. To obtain a representative value of visibility of 
the pattern as a whole, we pooled dxy in Eq. 6 using Eq. 7. 

 

 
Figure 8. Subjectively rated visibility (z scores) plotted as a 
function of Predicted visibility d (A) and RMSE (B). ρs and ρd 
shown in each plot denote Pearson’s correlation of the static 
condition and the dynamic condition, respectively. 
 
   In Fig. 8A, the subjective visibility (z scores) was plotted as a 
function of the predicted visibility (d values in Eq. 7) for each of 
the 250 stimuli. Red circles show the data of the static condition, 
and blue circles show the data of the dynamic condition. As a 
comparison, in Fig 8B, we also plotted the same subjective 
visibility data as a function of Root Mean Squared Error (RMSE) 
between a blending image and a texture-only image calculated in 
L*. The Pearson correlation of each plot was also shown in Fig 8. 
   As shown in the scatter plot and its Pearson correlation, the 
prediction by the visibility model was remarkably good, despite 
the fact that most of the parameters of the visibility model were 
obtained from [12]. Although the data of the subjective visibility 
was slightly higher in the dynamic condition than in the static 
condition, the predicted visibility linearly correlated with those 
data in both conditions. 
   The reason why the subjective visibility was higher in the 
dynamic condition may be that the perceived visibility was 
temporally pooled in a winner-take-all fashion across frames in 
the dynamic condition. Another possibility is that adaptation of 
the detection mechanisms in the visual system may reduce 
responses to the checkerboard pattern in the static condition. 
Taking into consideration those behaviors in the visual system 
would further improve predictability of the model. 
   However, given the linearity and high correlation between the 
prediction and the subjective data, we can conclude that the model 
used in the present study was accurate enough for practical uses. 

6.2 Evaluation of the proposed blending methods 
In the previous section, we demonstrated that the visibility model 
used in the proposed blending methods can accurately and linearly 
predict visibility of a blended object on various natural texture 
patterns. In this section, we firstly show the efficiency of the 
blending methods (section 6.2.1). Then, we show the effectiveness 
of each of the proposed blending methods using several 
experimental images (section 6.2.2. and 6.2.3). 

6.2.1 Evaluation of computational efficiency 
We implemented all calculations in both of the proposed 

blending methods in the GLSL shader. The QMF transform in 
each scale was implemented in GLSL as shown in Fig. 9. In the 1st 
and 2nd passes, the original image is horizontally convolved by a 
one-dimensional low-pass (1st pass) or high-pass (2nd pass) filter 
kernel, and down-sampled in the same direction. Those convolved 
images are rendered in the same frame buffer. Then, in the 3rd and 
4th passes, the combined convolved images are vertically 
convolved by the low-pass (3rd pass) or high-pass (4th pass) filter 
kernel and down-sampled. A resultant low-pass image (“LL” in 
Fig. 9) is then processed into the convolution process in the next 
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scale. In this way, 6 convolutions in each frequency level are 
accomplished by 4 passes. The 4-scale QMF transform was thus 
completed after 16 convolution passes. 

In a preliminary experiment, however, we found that 
downsampling noises in the lower frequency subband images can 
cause temporal inconsistency in the blending result across frames. 
To reduce the downsampling noise while keeping the 
computational speed as fast as possible, we modified the 
algorithm of the QMF wavelet transform such that the 
downsampling is only applied in the two higher frequency levels. 
Accordingly, distances between sampling pixels for the 
convolution kernel were doubled in the second lowest frequency 
level, and quadrupled in the lowest frequency level. 

 

 
Figure 9. Processes of the QMF wavelet transform in each scale. 
In each process, the image is convolved by a one-dimensional 
low-pass or high-pass kernel, either horizontally or vertically, and 
down-sampled. To reduce downsampling noise in the lower 
frequency subband images, the downsampling is only applied in 
the two higher frequency levels. 

 
In the visibility-based blending (proposed in section 4), L* 

channel of the two input images are rendered in different channels 
of a single image, and every convolution is conducted together for 
both of the images. To reduce degradation of convolved image 
values due to quantization, we preserved the data in each pass 
using 2 channels (16 bit) for each input image (i.e., R and G 
channels for one image, B and alpha channels for the other image). 
In the case of the visibility-enhanced blending (proposed in 
section 5), two of the three input images are rendered within a 
single image and the other input image is rendered on another 

image. Therefore, the QMF transform is conducted twice to obtain 
wavelet coefficients of the three input images. 

In the experiment, we used a personal computer (OS: Windows 
7, CPU: Corei7 2.93 GHz, RAM: 8GB, GPU: nVIDIA GTX 
550Ti 1024MB). The resolution of the input images was 640x480. 
The size of the window to average each optimized α was 65 x 65. 
Under this condition, both of the proposed blending methods 
worked at a frame rate higher than 60 FPS. 

6.2.2 Experiment on the visibility-based blending  
In the experiment, we assumed a situation in which a virtual 

object is blended with a background real scene. We tested the 
blending method using a static image. The resolution of the image 
was 640x480. 

Firstly, we tested the visibility-based blending by blending a 
virtual object with two different real scene images (one had a 
relatively smooth texture and the other had a high-contrast 
texture) using 4 different target visibilities (vt=0.6, 1.2, 1.8, and 
2.4). As a comparison, we also blended the same virtual object 
with the same real scene images using the conventional alpha 
blending using 4 different alpha values (α=0.2, 0.4, 0.6, and 0.8). 
The results are shown in Fig. 10. In the results of the visibility-
based blending, the visibility of the virtual object (the colorful 
cubes) looks similar between the two vertically aligned images 
(an image pair in which the same target visibility was used). By 
contrast, in the results of the alpha blending, the visibility looks 
significantly different between the two vertically aligned images 
though the blending parameters (α) are the same for both of them. 

In Fig. 11, we show additional experimental results including a 
more practical situation. Here, a virtual model (a colorful cube or 
a tower-like building) was blended by the visibility-based 
blending (left column) and by the alpha blending (right column). 
In the results of the alpha blending, a constant alpha value was 
used for every region of the same scene. However, the visibility of 
the virtual object blended by the alpha blending looks different 
between regions within the image. 

This problem of non-uniform visibility is found in both results 
of the alpha blending. On the other hand, in the results of the 
visibility-based blending, the problem is mitigated, and every part 
of the virtual object looks almost uniform in every image (the 
target visibility was 1.5). Therefore, the visibility-based blending 
will be useful when one wants to show a virtual object with 
constant and uniform visibility across different scenes as well as 
across local regions within the same scene, irrespective of textures 
or structures in the scene.  

Figure 10. Blending results by the visibility-based blending with 4 different target visibilities, vt (left images) and by the conventional alpha 
blending with 4 different alpha values (right images). In the images of the visibility-based blending, the visibility of the virtual object (the 
colorful cubes) looks similar between the two vertically aligned images. By contrast, in the images of the alpha blending, the visibility 
looks significantly different between the two vertically aligned images though the blending parameters (α) are the same for both of them. 
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Figure 11. Examples of the visibility-based blending (Top images) 
and comparison results of the conventional alpha blending 
(Bottom images). In the images of the alpha blending, the 
visibility varies depending on lightness and textures of 
background scene. On the other hand, in the images of the 
visibility-based blending, the visibility is kept constant. 

6.2.3 Experiment on the visibility-enhanced blending 
method for optical see-through systems 

Here, we tested the visibility-enhanced blending method 
described in section 5. To see how our blending method works 
under ideal calibrations, we first simulated rendering results in an 
optical see-through system within an intensity range between 0 
and 1 using Eq. 8. Here, α in Eq. 8 represents relative influence of 
the light from the device to that of the incoming light from the 
real scene. I1 and I2 denote linearized RGB colors of a virtual 
object and a real scene, respectively. The parameter α we used in 
the experiment was 0.5. In Fig. 12A, we show experimental 
results obtained by the simulation. In each image, a virtual object 
(a colorful cube or an ancient building) was blended on a 
background real scene. In each row of the figure, the left image 
shows the result by the visibility-enhanced blending method 
(target visibility=1.5), and the right image shows the original 
scene without visibility enhancement. In the original images (right 
column), the virtual objects are partially hard to see. In the results 
of the visibility-enhanced blending (top), the visibility is 
improved in those regions, and we can perceive the whole contour 
of the virtual object.  

Secondly, we tested the visibility-enhanced blending method 
using an actual optical see through glasses (MOVERIO BT-200, 
EPSON). To analyze the real scene, we captured the real scene by 
a camera (Grasshopper2, Point Gray Research). In this experiment, 
the calibrations were manually conducted such that appearance of 
the input images for the blending pipeline and that of the actual 
scene seen through the glasses became as similar as possible (both 
photometrically and geometrically). Then, the optimized virtual 
scene was presented on the glasses. The resultant AR scene was 
captured from outside of one of the glasses by the camera 
(Grasshopper2). The results are shown in Fig. 12B. The left image 
shows the result by the visibility-enhanced blending method 
(target visibility=1.5), and the right image shows the original 
scene without visibility enhancement. Again, we can see that the 
visibility is improved in the result with visibility enhancement.  

 

 
Figure 12. Examples of the visibility-enhanced blending for 
optical see-through systems. (A) The experimental results 
obtained by simulation assuming ideal calibrations. (B) The 
experimental results obtained using an actual optical see-through 
device. For both cases, the left images show the results of the 
visibility-enhanced blending, and the right images show the 
original rendering results. 

6.3 Discussion 
We demonstrated that the visibility model can linearly predict 
visibility of a blended object on various natural texture images. 
Then we showed that the proposed blending methods are effective 
to blend images with constant and uniform visibility, or enhance 
visibility of a blended object. 

However, the blending methods proposed in this study have 
some limitations. Firstly, the parameters of the visibility model 
should be recalibrated depending on the observation distance, or 
the pixel density per visual angle. In [12], the parameters of the 
visibility model were optimized via fitting to the psychophysically 
measured error visibility data. In the data acquisition, the 
observers rated the image quality at a particular range of 
observation distances [23]. Thus, the visibility model with the 
current parameters would not provide precise prediction if the 
user sees a blending image outside the tolerated range of distances.  

Secondly, the visibility model that we implemented in the 
blending methods only analyzes luminance, and does not include 
color-opponent channels. Although we demonstrated the model 
can accurately predict visibility without considering color-
opponent channels, considering them would further increase 
accuracy under cases in which luminance contrast is quite small, 
but chromatic contrast is large. 

As for the visibility-based blending proposed in section 4, there 
is a problem that the visibility cannot be increased beyond the 
visibility of a blended object in 100% opacity. However, the 
problem will be easily solved if we prepare another image that 
emphasizes existence (e.g. edges) of the object. (Such an attempt 
is also found in [11]) Adjusting the blending parameter of the 
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emphasizing image according to predicted visibility would 
adequately increase visibility of such regions. 

Finally, as for visibility enhancement for optical see-through 
systems proposed in section 5, one clear problem is that the 
enhancement does not work at all when light from a real scene is 
too intense compared to maximum light intensity of the display 
system. Another problem is that contrast within surfaces of a 
virtual object decreases as the enhancement parameter α becomes 
larger. If one valued quality of appearance of virtual objects, 
support from hardware (e.g. occluding light from a real scene 
[21]) would be an ideal solution. 

7 CONCLUSION AND FUTURE WORK 
We proposed two blending methods based on the visibility model. 
One is the visibility-based blending, which locally optimizes a 
blending parameter α such that the visibility of the blended object 
achieves an arbitrarily targeted level. The other is the visibility 
enhanced-blending for optical see-through systems, in which 
visibility of a virtual object is adaptively and locally enhanced to 
an arbitrary targeted level. 

In the experiment, we demonstrated that the visibility model 
can linearly predict the visibility of a blended object on various 
natural texture images. Then, we showed that the proposed 
blending methods are effective to blend images with constant and 
uniform visibility, or to enhance visibility of a blended object. 
Since the proposed blending methods work at a sufficiently fast 
frame rate, they will not violate interactivity even in combination 
with other computations indispensable for constructing AR/MR 
scenes (e.g. tracking). 

Although the experimental images we showed in this study 
assumed augmented (mixed) reality scenes, the uses of the 
proposed methods are not restricted to those situations; the 
blending methods can be used whenever an image is half-
transparently rendered on another image. For example, the 
visibility-based blending method will be effectively used in 
blending a virtual object with a virtual scene. The visibility 
enhancement method is also applicable to spatially augmented 
reality systems. Another possible use may be stimulus 
presentation in user studies for such applications. When rendering 
objects half-transparently, we usually want to know optimum 
transparency depending on purposes and situations. Using the 
visibility-based blending, we can modulate visibility of an object 
independently of its background scene as an independent variable. 

In addition, given the generality of the underlying theory (i.e., 
V1 model), we think that the visibility model we used can also 
predict legibility of texts on various background scenes. Using an 
algorithm similar to the one proposed in this paper, we will be 
able to adaptively enhance legibility of the texts. 
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