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Abstract— In this paper, we present a method for estimating
a dense depth map from a sparse LIDAR point cloud and an
image sequence. Our proposed method relies on a directionally
biased propagation of known depth to missing areas based
on semantic segmentation. Additionally, we classify different
object boundaries as either occluded or connected to limit the
extent of the data propagation. At the regions with large missing
point cloud data, we depend on estimated depth using motion
stereo. We embed our method on a bounded interpolation
strategy which also considers pixel distance, depth difference
and color gradient. We then perform an optimization step
based on tensor-based TGV-L2 denoising. Our results show that
directional propagation and semantic boundary classification
can improve the accuracy of interpolation along the edges for
different types of objects. Moreover, our motion stereo scheme
increases the reliability of extrapolated depth at the regions
with large missing point cloud data. Finally, we show that our
implementation strategy can achieve reliable results in real time.

I. INTRODUCTION
Depth estimation is an integral part of many applications

including robot navigation, autonomous driving and 3D
modeling. Most of these applications require the depth map
to be dense, accurate, and solved in real time. For example, in
outdoor robot navigation and autonomous driving, detecting
distant objects such as humans or traffic signs is difficult
when using low resolution depth. In 3D modeling, dense
depth maps are used for reconstructing an accurate and
detailed 3D map of the environment.

Generally, depth maps can be estimated in two ways
depending on the type of sensor used - passive (image-
based) and active (3D sensors). Image-based methods (stereo,
motion stereo, structure-from-motion) can generate a dense
depth map from a pair of images, or image sequences. How-
ever, these methods are largely dependent on accurate image
correspondences, pose estimation (for motion stereo) and
sufficient baseline (for stereo, in general) and are insufficient
when mapping distant objects.

In contrast to passive sensing, active sensors such as
RGBD cameras and LIDAR can measure the depth in a more
straightforward manner. However, for outdoor applications,
RGBD cameras are insufficient because of their short range
and inaccuracy due to sunlight. LIDAR sensors, on the other
hand, have long range capabilities and are mostly unaffected
by the ambient lighting. However, the inherent sparsity of
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Fig. 1. Overview of our proposed dense depth estimation method using
LIDAR, image sequence, semantic information, and motion stereo.

the measurement points, which is limited by the number of
simultaneous firing lasers, makes LIDARs undesirable when
dense depth maps are required.

In this work, we utilize the advantages of both active and
passive sensing by estimating a dense depth map using an
image sequence and LIDAR point clouds as input. Like in
methods such as [1] and [2], we also embed our method in a
data upsampling framework with improvement on handling
boundaries and extrapolation. We utilize both the information
that can be extracted from an image sequence (color, gra-
dient, visual object recognition, structure-from-motion) and
LIDAR data (accurate depth values), and combine them into
one framework that generates a dense depth map in real-time.

In our method, we use the LIDAR data as anchor points
upon which the depth values of unknown pixels are based.
We design this basis to be dependent on several properties
such as geometry, color, motion and semantic segmentation.
We also improve the handling of object boundaries by
using our proposed boundary class labeling which adjusts
the effects of the neighboring depth value based on the
relationship between semantic classes.

We also propose a directional propagation scheme that
relates the direction of the sequential data interpolation and
extrapolation based on the semantic classes. Additionally, in
parts where there are very few LIDAR points, we use the
motion stereo depth to make the extrapolation more reliable.
Finally, we perform a global optimization scheme to further
smooth the resulting depth and refine the object boundaries
using the visual edge information.

II. RELATED WORK

Several work have been presented that address the sparsity
of LIDAR data. In [3], an interpolation method based on
partial differential equations applied an energy minimization
on sparse point clouds to achieve a smooth upsampled depth
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map. To improve on boundary conditions, bilateral filter-
based approach [4] was proposed which can estimate depth
while preserving edges. In [5], a multilateral filter was used
in addition to semantic segmentation of point clouds that
further improves handling of object boundaries. Recently,
deep neural network based interpolation methods have been
proposed such as in [6]. In general, point-cloud-only methods
are superior to methods that require calibration and syn-
chronization such as RGBD image pairs. Nevertheless, these
methods conduct interpolation with smoothness assumption
and lacks strict boundary handling.

Since a camera image often has higher resolution than a
LIDAR depth map, image-guided point cloud interpolation
have been also explored. High resolution images are used to
refine rough boundary information from low resolution depth
maps. This interpolation is usually performed using various
approach such as filtering [7], [8], [9], geodesic distance [10],
anisotropic total generalized variation [11], autoregressive
model [12], and semantic information [2]. Some methods
also take temporal information into consideration [13], [14]
while others use neural network for further depth map
enhancement [15], [16].

Aside from having a higher resolution, a camera image
can also cover a wider area and can be used as a guide
for extrapolation or inpainting. In [17], a color image was
used to extract structural information and used for depth
map inpainting. On the other hand, edge information and
semantic segmentation was used to extrapolate the LIDAR
data points to missing regions in [2], which results in reliable
depth along object boundaries. However, the use of semantic
segmentation results in over-dominant extrapolation in areas
with no LIDAR points clouds.

III. DENSE DEPTH MAP ESTIMATION

Our method requires a calibrated sparse depth map and
an image sequence. The sparse depth map can come from
different sources such as LIDAR point clouds. In this paper,
we assume that a pair of images from a single-camera system
is given in real-time, but our method is easily extendable on
multiple images and/or multiple camera system (binocular or
multi-view stereo). Our goal is to estimate a complete and
dense depth map by interpolating the known depth map in
areas with a little gap between known points, and extrapolate
at the areas where depth is completely unknown. Using the
information that can be extracted from the image pair, such
as color gradient, semantic classes, and motion stereo, our
proposed scheme can propagate the known depth to missing
areas. After propagation, we perform a global optimization
step to further improve the appearance of the resulting depth
map. We show the overview of our method in Figure 1.

A. Propagation

Our propagation method is dependent on a geodesic
distance-based data interpolation scheme, which solves the
depth of an unknown pixel based on the nearby known
values. Given an image I : Ω→ R+ of the image sequence
S, with corresponding sparse depth map Dp, our aim is to

Fig. 2. Classifying boundaries (Connected, Occlusion) based on semantic
labels.

find D = Dp ∪ De where Dp ∩ De ≡ ∅ and De is the
combined interpolated and extrapolated depth. In order to
solve for De, we define the depth dx ∈ De for every pixel
x in the image domain Ω ∈ R2 of I as:

dx = (1− wm)

∑
y∈N wlwdwcwsdy∑
y∈N wlwdwcws

+ wmdmx (1)

where dy ∈ Dp corresponds to known-depth pixels in
the N ∈ R2 nearest neighborhood of x and dmx is the
depth at x solved using motion stereo between frames I
and Ī ∈ S and I 6= Ī . The weights wl, wd, wc, ws, and
wm are calculated form five properties – pixel proximity,
depth difference, image gradient, semantic labels and motion
stereo, respectively.

1) Pixel proximity (PP): This weight depends on the
Eucledian distance between the estimated pixel x and the
known-depth pixel y. As the distance between the two pixels
increases, the contribution of y to the depth value of x
decreases. We define the weight as:

wl =
1

βl + ‖x− y‖2
(2)

The parameter βl is used for normalization.
2) Depth (DE): We define the depth weight as:

wd =
1

βd + |dg − dy|
(3)

where wd is dependent on the difference between depth
values of y and the nearest known depth to pixel x. We find
the nearest depth, dg, as the value at pixel g with smallest
local geodesic distance from x. The local geodesic distance is
dependent on the difference in proximity and color similarity
of the estimated pixel and the candidate known-depth pixel.
We define this distance as:

G = λl‖x− y‖2 + λc‖I(x)− I(y)‖2 (4)

where λl and λc are normalization weights.
3) Image gradient (IG): Natural object boundaries are

often indicated by the difference in color or intensity of
adjacent pixels. We utilize this assumption to further weight
a pixel based on the similarity of its appearance to the
estimated pixel. To do this, we find the maximum normalized
image gradient, İmax along the path between x and y and
define the color weight as:

wc =
1

βc + İmax

(5)



The image gradient can be solved using edge detection
techniques such as SED [18].

4) Semantic boundary labels (SB): We use semantic seg-
mentation to further identify object boundaries. We classify
different object boundaries as either Connected or Occlusion
as shown in Figure 2. Connected boundaries usually exist
along the edges between the ground and objects on it such as
buildings, cars, or trees, and usually located at the bottom-
most part of these objects. On the other hand, Occlusion
boundaries happen along the edges of two vertical objects
such as buildings and cars.

The difference in semantic labels and the identified bound-
ary determine whether the weight is increased or decreased.
For example, when the boundary is labeled as Connected,
the neighboring pixel should be counted during estimation
and therefore the weight is increased. On the other hand,
when the boundary is classified as Occlusion, there should
be an obvious disconnection between the depth of the two
neighboring pixels and the weight should be decreased.

We define the weight for the semantic boundary as:

ws =

{
1 (Lx = Ly)

αs (otherwise)
(6)

This formula reduces the weight when the semantic labels
between estimated point Lx and the known-depth point Ly

are different and the boundary is classified as Occlusion.
5) Motion stereo (MS): Using sequential images gives

more information other than just color gradient and object
boundaries. In particular, assuming a non-zero translational
motion, dense depth map of static objects can be estimated
from successive frames. Using this information, we can
further improve the estimation of unknown depths in the
image, particularly outside the boundary of the known point
clouds (typically upper part of images when using LIDAR-
image pairs).

We define the weighting of the depth from motion stereo
using concatenated inverse oriented distance function:

wm =

{
0 (x ∈ B)

h(x, δB) (x /∈ B)
(7)

where h(·) defines the Euclidean distance of x to the
boundary δB of the known point cloud area B. The weight
wm increases linearly as the distance to the boundary in-
creases, which decreases the contribution of the known-depth
points along the boundary to the estimated pixel.

B. Semantically Dependent Propagation

In contrast to other methods that also handles interpo-
lation of sparse data ([1], [2], [19]), our method relies on
directionally biased propagation. This means that we give
different importance to the direction the data is propagated
with respect to the semantic classes.

Our idea is based on observable visual properties of ob-
jects in a projective imaging system, where in object shapes
are generally preserved with obvious limits to the inherent

Fig. 3. The intersection between the plane parallel to the image plane
and the 3D structures defines lines of which direction is dependent on the
semantic class.

effects of 3D-2D projection. By relying on the semantic
classes, it is possible to guess the geometric structure of the
object and as a result allows us to constrain the relationship
between neighboring depth pixels.

For example, in a perspective projection where the camera
is perpendicular to the ground, we can define a plane that
is parallel to the camera frame (see Figure 3). Points in
this plane are equidistant to the camera frame, hence have
equal depth values. If we intersect this plane with the 3D
objects, the direction of the lines that are formed appears to
be dependent on the semantic class.

The value of dx is solved sequentially along the direction
indicated by the semantic label. After dx is calculated for x,
it is removed from De and becomes a subset of Dp. Since
the depth map is propagated sequentially, this means that
succeeding pixels will also use the newly added value to the
interpolation. Using this scheme, we were able to improve
the accuracy of estimated depth especially along the object
boundaries. Figure 4 shows the effect of this approach.

C. Optimization

After solving the dense depth map using our proposed
propagation method, we implemented an optimization step
to solve for a smooth depth map D̄. We borrow the tensor-
based TGV-L2 (total generalized variation) denoising method
described in [11]. To do this, we solve for the depth u at pixel
x, where u ∈ D̄, as:

arg min
u,v

∫
Ω

{α1|T
1
2 (∇u− v) |

+ α0|∇v|+ λ‖u− dx‖2}dx (8)

where T is an anisotropic diffusion tensor as described in
[11]. The above optimization function allows u to be smooth
by imposing a small TGV (∇v) through the relaxation vari-
able v, while constraining the value around dx. It improves
the values along the natural object boundaries described by
the edge images and guided by the diffusion tensor. We
assign the parameters α0, α1 and λ in the same manner as
in [11] and solve (8) using primal-dual decomposition and
the second-order approximation of TGV.

IV. IMPLEMENTATION

Our implementation requires a calibrated [20] image se-
quence and a sparse 3D point cloud. We first assume that the
3D points are projected onto the image plane for each frame



Fig. 4. Comparison of depth accuracy along boundaries without directional
propagation (left) and with our proposed directionally biased propagation
(right).

in the sequence as a sparse depth map. This RGBD pairing
is common in publicly available datasets such as [21].

A. Semantic Segmentation

We process each image in the sequence for the semantic
segmentation. We use a publicly available implementation of
the ICNET method [22][23] trained on the CITYSCAPES
[24] dataset. The semantic classes are: road, sidewalk, build-
ing, wall, fence, pole, traffic light, traffic sign, vegetation,
terrain, sky, person, rider, car, truck, bus, train, motorcycle,
bicycle and void. We run ICNET on a GTX1080Ti GPU
computer and achieved a 30fps frame rate on 1242x375
image size.

B. Boundary Labeling

To implement our boundary labeling scheme, we use the
semantic classes generated by ICNET. We devise a simple
boundary traversal in the semantic segmentation image to
determine the type of boundary. We first re-categorized
the objects such as road, sidewalk and terrain as ground,
of which self-boundaries are labeled as Connected. Except
for vehicles (car, truck, bus, train, motorcycle, bicycle),
crossing a boundary to the ground during vertical traversal,
indicates a Connected boundary. For vehicles, the bottom
most section of the segment bounded by the ground (wheels)
are also labeled as Connected. All other boundaries are then
considered as Occlusion.

C. Motion Stereo

For motion stereo, we implemented a depth estimation
method described in [25]. This method solves the motion
stereo problem for two views in a variational framework
and runs in real time. We estimate the correct scale relative
pose between two frames using the LIDAR point cloud data
and the dense correspondence from optical flow [26], and
perform a perspective-n-point [27] estimation. After solving
for the poses, we then estimate the dense depth using [25].
On a GTX1080Ti GPU, we were able to achieve a 10fps
frame rate which is suitable for our method.

D. Propagation and Optimization

We set the parameters of each term in the propagation
step to normalize the values and scale the range between
different terms (i.e. pixel distance, depth, intensity values). In

our implementation, we used the values: βl = 0.4, βd = 1.0,
λl = 0.1, λc = 1.0, βc = 0.1, and αs = 10.0.

We use the sparse depth map from projected LIDAR
points, RGB, semantic segmentation and depth from motion
stereo images as inputs to our proposed method. Both propa-
gation and optimization steps are parallelized using the same
GPU as above with C++/CUDA to achieve real-time results.
The propagation step requires 19ms. In our experiments,
there is a trade-off between optimization iteration steps and
accuracy and smoothness along object boundaries. Higher
iterations result in a more defined object boundaries at the
cost of processing time. For a 1242x375 image, we determine
a range of 29ms to 105ms for iteration values between 50
and 200. In our results, we use an iteration value of 100 and
achieve a processing time of 50ms using parameter values
α0 = 17.0, α1 = 1.2 and λ = 5.0.

V. RESULTS AND COMPARISON

A. Effective Contribution of Each Term

We evaluated the contribution of each term on the accuracy
of the resulting depth map and summarize the results in Table
I and Figure 5 showing the error map as used in [21]. We
added and accumulated the term one by one starting from
the pixel proximity. From the results, each additional term
gradually reduces the MAE and RMSE.

Our proposed semantic boundary labeling scheme im-
proves the RMSE by 27.1mm and the MAE by 210.4mm for
Frame 12 of our dataset. From the images, it is apparent that
the errors along the object boundaries are reduced. Moreover,
by adding the motion stereo term, the accuracy of estimated
depth outside of measured LIDAR regions is greatly im-
proved, with total RMSE improvement of 1458.5mm and
MAE of 476.7mm.

However, while applying the optimization step improves
the RMSE slightly by 7.9mm, the MAE was worse at
+95.1mm. The degradation after optimization is due to
the naive edge smoothing which often excludes semantic
information especially in geometrically smooth areas (e.g.
ground) with visually varying textures (e.g. paints and mark-
ings).

B. Comparison with Existing Methods

We compare the results of our propagation technique with
our implementation of two existing methods [1] and [2] using
our outdoor dataset which consists of image pairs with dense
ground truth depth map, ground truth semantic segmentation

Fig. 5. Contribution of each term on the accuracy of depth estimation.



Fig. 6. Comparison of (a) [1], (b) [2] and (c) our method with error map [21] on samples of our dataset with ground truth dense depth map and semantic
labels. (Top to bottom: frames 12, 18, 29, and 35.)

TABLE I
CONTRIBUTION OF EACH TERM ON THE ACCURACY OF DEPTH

ESTIMATION ON FRAME 12 OF OUR DATASET USING MAE AND RMSE
(IN MM) AND ERROR REDUCTION (DIFF.) WITH THE ADDED TERM.

Term MAE Diff. RMSE Diff.
PP 2092.3 -0.0 4184.2 -0.0

PP+DE 1614.0 -478.3 3685.8 -498.4
PP+DE+IG 1409.0 -205.1 3420.6 -265.3

PP+DE+IG+SB 1198.6 -210.4 3393.5 -27.1
PP+DE+IG+SB+MS 721.8 -476.7 1935.0 -1458.5

All+Optimization 817.0 +95.1 1927.1 -7.9

and known pose. Figure 6 shows the depth results from the
three methods as well as the error map. We also compare
the three methods using maximum absolute error (MAE in
mm) and root mean square error (RMSE in mm) measures
and summarize the results in Table II. In all but one image,
our method outperforms the two other methods in terms
of accuracy. Compared with [1], our obvious advantage is
the availability of estimated depth even without the LIDAR
inputs (top part of the image). Using interpolation-based
completion suffers from the limitation of estimation window
size which is not enough to cover the whole image especially
when large portions are missing. Increasing the window size,
however, significantly increases computation time.

Compared to [2], our method achieves better results in
terms of accuracy especially in regions with large missing
LIDAR data and mostly uniform semantic segmentation
because of our motion stereo scheme. Generally speaking,
when an object is perfectly segmented even without sparse
depth prior (such as the tree trunk in frame 35 of Figure
6), the method described in [2] works very well. However,
in recent cases, semantic segmentation methods can only
identify general object classes and leaves out natural and
specific object boundaries, hence the advantage of motion
stereo-based depth estimation. For example, the wrong depth
of the trees in frame 12, windows in frame 18, and the
fence and building boundary in frame 29, were propagated
to the top of the image when using method [2] due to
the flat semantic label. On the other hand, these regions
were more accurately estimated with our proposed method.
We also evaluated our method on a the KITTI [21] dataset

and show our propagation and optimization result in Figure
7. Even though the semantic segmentation is not perfect,
our proposed approach was able to estimate the depth of
even thin objects outside the boundary of the measured
LIDAR points, such as traffic signs and poles. Moreover,
the optimization step refines the boundary conditions where
the semantic labels fail.



TABLE II
COMPARISON OF OUR METHOD WITH [1] AND [2] USING MAE AND

RMSE (IN MM).

frame [1] [2] Ours
MAE RMSE MAE RMSE MAE RMSE

8 4328.3 8563.3 1022.2 3008.7 529.3 1765.6
12 5733.8 12528.6 1823.5 4031.0 721.8 1935.0
18 5817.6 9498.4 502.8 1494.2 242.2 792.3
29 4970.0 8261.9 415.4 1159.1 387.0 807.4
35 8845.8 14098.1 770.6 1939.1 737.7 1948.0

Fig. 7. Sample result of our method with the KITTI dataset [21] using the
computed semantic segmentation from ICNET [22]. Thin objects outside
of the measured LIDAR region and inaccurate semantic segmentation were
estimated correctly

VI. CONCLUSIONS
In this paper, we proposed a dense depth estima-

tion method by using a sparse LIDAR data and an im-
age sequence. Our results show that using our proposed
directionally-biased propagation, we were able to improve
the accuracy of the result along object boundaries. Further-
more, by utilizing the semantic labels to classify different
type of boundaries, we were able to make the depth estima-
tion more reliable. We were able to accurately estimate the
depth at the regions with large missing LIDAR points using
our motion stereo scheme. In our implementation, we were
able to achieve real-time processing using modern GPUs.

However, our boundary labeling method is dependent on
the accuracy of the semantic segmentation. For future work,
a segmentation method that can classify between individual
objects can be used which will allow for detecting occlusion
boundaries between similar class objects. Additionally, a
wider range of propagation strategy, i.e. non-strict direction,
can be extracted from the semantic classes and can increase
the flexibility of the proposed approach. Moreover, the naive
optimization scheme can be improved to include semantic
information such that the edge refinement is limited to
geometric object boundaries and ignores the visual texture
of smooth surfaces.
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