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Abstruct.    This paper presents an overview of our research project on digital preservation of cultural heritage objects and 
digital restoration of the original appearance of these objects. As an example of these objects, this project focuses on the 
preservation and restoration of the Great Buddhas. These are relatively large objects existing outdoors and providing various 
technical challenges. Geometric models of the great Buddhas are digitally achieved through a pipeline, consisting of acquiring 
data, aligning multiple range images, and merging these images. We have developed two alignment algorithms: a rapid 
simultaneous algorithm, based on graphics hardware, for quick data checking on site, and a parallel alignment algorithm, based 
on a PC cluster, for precise adjustment at the university. We have also designed a parallel voxel-based merging algorithm for 
connecting all aligned range images. On the geometric models created, we aligned texture images acquired from color cameras. 
We also developed two texture mapping methods. In an attempt to restore the original appearance of historical objects, we have 
synthesized several buildings and statues using scanned data and a literature survey with advice from experts. 
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1. Introduction 
 
Currently, a large number of cultural heritage objects 
around the world are deteriorating or being destroyed 
because of natural weathering, disasters, and civil wars. 
Among them, Japanese cultural heritage objects, in 
particular, are vulnerable to fires and other natural 
disasters because most of them were constructed of wood 
and paper.  

One of the best ways to prevent these objects from loss 
and deterioration is to digitally preserve them. Digital data 
of heritage objects can be obtained by using modern 
computer vision techniques. Once these data have been 
acquired, they can be preserved permanently, and then 
safely passed down to future generations. In addition, such 
digital data can be used for many applications that aim to 
restore real objects through digital simulation and to plan 
restoration projects through precise measures given by 

such digital models. And by creating multi-media content 
from digital data, a user can view digital contents through 
the Internet from anywhere in the world, without moving 
the objects or visiting the sites. 

One of the origins of this line of research is Kanade’s 
virtualized reality project [1]. The basic idea of this 
project was to create 3D virtual reality models through 
observation of the real objects. Kanade and his students 
constructed an experimental room equipped with multiple 
TV cameras, which were focused in the center of the room. 
By observing some event at the center of the room, such 
as a player playing basketball, they obtained sequences of 
2D images captured through synchronized TV cameras. 
By applying a multi-baseline stereo algorithm or its 
variation to these image sequences, they created a series 
of 3D models of an object, a moving 3D model. By 
combining this moving 3D model with a background 3D 
model and rendering the resulting synthesized 3D model, 
they generated a series of 2D images from many 
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directions. This line of research has been extensively 
explored [2-5] and a couple of representative results are 
included in this special issue. 

Another line of research has been directed toward 
modeling of various cultural heritage objects in a very 
precise manner, using laser range sensors [6]. Recently, 
technologies of laser sensing have drastically advanced, 
and laser range sensors provide very accurate 3D range 
images of an object. However, those range images, given 
by a range sensor, are partial mesh models of an entire 
object, obtained from arbitrary directions. Thus, the 
research issues include how to align, or to determine 
relative relations, among such partial meshes, and how to 
merge these aligned partial mesh models into a unified 
mesh model of the object. Representative examples 
include Stanford University’s Michelangelo Project [7], 
IBM’s Pieta Project [8], and Columbia University’s 
French cathedral project [9], to name a few. 

We have been working to develop digital archival 
methods by using laser range sensors [6]. Our project has 
a number of unique features; among them is its focus on 
digitizing large outdoor objects such as the Kamakura 
great Buddha and Cambodia’s Bayon temple. These 
large-scale objects present several challenges in 
processing range data into a unified mesh model. Our 
project emphasizes not only geometric modeling but also 
photometric and environmental modeling, particularly for 
outdoor objects. 

The remainder of this paper is organized as follows. 
Section 2 describes the outline of the geometric pipeline 
developed, a rapid alignment algorithm based on graphics 
hardware, a parallel simultaneous alignment algorithm 
based on a PC cluster, and a parallel voxel-based merging 
algorithm, solving the issues given under digitizing large 
objects. Section 3 describes methods to align observed 
textures from a digital camera with range data for 

texturing large outdoor objects. Section 4 reports our 
efforts to restore the original appearance of these objects 
using acquired digital data and a literature survey. Section 
5 summarizes this paper.  
 
 
2. Geometric Modeling 
 
2.1.  Overview 
 

Figure 1 shows an overview of three steps in geometric 
modeling: data acquisition, alignment, and merging. 
Several computer vision techniques, such as traditional 
shape-from-X and binocular stereo, or modern range 
sensors, provide 3D data points. In this paper, we mainly 
utilize laser range sensors as the input device of the 3D 
data points. These 3D data are represented as a set of 3D 
data points with connecting triangular arcs. This data 
representation is referred to as a (triangular) mesh model 
of an object. By repeating the data acquisition process so 
as to cover the entire object’s surface, we have a set of 
partial mesh models, overlapping each other and covering 
the entire object surface as the combination of those 
partial mesh models.  

The second step in geometric modeling is to align these 
partial mesh models. Since each sensor is located at an 
arbitrary position on data acquisition, we have to 
determine relative relations of these partial mesh models, 
referred to as alignment, by considering resemblances in 
the data set. When we handle a large object, even if we 
can assume that the sensor itself maintains the same 
degree of data accuracy as one for a smaller object, each 
scan covers a smaller portion of the object; many scans 
are necessary to cover the entire surface of the object. As 
the result, a long alignment sequence is formed. It is 
important to avoid accumulation of errors along this 

 
Figure 1.  Three steps in geometric modeling. 

 



International Journal of Computer Vision, 75(1), 189–208, 2007 

sequence of alignment. 
The third step is to integrate the aligned multiple mesh 

models into a complete mesh model, representing an 
entire surface of an object. This step is referred to as 
'merging.' The procedure can be considered as 
determining one surface position from multiple 
overlapping surface observations. In the merging 
procedure, it is important to make the integration 
framework robust against any noise that may occur when 
scanning the range images or that may be inherited from 
the registration procedure. 
 
2.2.  Alignment 
 
2.2.1. A Rapid Alignment Based on Ggraphics Hardware. 
Our rapid algorithm employs points and planes to evaluate 
relative distance as the Chen and Medioni and Gagnon et 
al. methods [13,15]. Scanning a large architectural object 
requires using different types of range sensors, due to 
complex scanning conditions at sites, whose resolutions 
may be different from each other. An alignment algorithm, 
based on point correspondence such as ICP [10], does not 
work well on such range data due to inequality in point 
resolutions. We can mitigate this situation with an 
algorithm based on point-face correspondence, because it 
creates virtual points on face patches, and sets up 
correspondence between the real points and virtual points, 
even if there is unbalance in point distributions. 

Our algorithm uses an M-estimator, in particular, the 
Lorentzian function, as the error measure, to avoid the 
effects from the outliers [18]. It is well known that the L-2 
norm is susceptive to noise. Surfaces of cultural heritage 
objects are often covered by foreign materials such as 
molls or water. Sometimes returned range values are quite 
noisy from such surfaces. The M-estimator effectively 
removes outliers. Since we prefer a smooth differentiable 
function for effective minimization process, we chose the 

Lorentian function as the evaluation function. 
In order to increase computational efficiency, our 

algorithm is designed to utilize graphics processing 
hardware. The corresponding pairs are searched along the 
line of sight for the usage of the graphics hardware. Here, 
the line of sight is defined as the optical axis of a range 
sensor. While this does not guarantee that all the 
corresponding pairs are correct, using the M-estimator 
removes the effect of such mismatching. It is also true that 
after several iterations of the minimization process, the 
process eventually converges into the correct 
corresponding pairs. But for the sake of rapid computation, 
we decided to use the line of sight searching method. 

 Let us denote one mesh as the model mesh and its 
corresponding mesh as the scene mesh. One vertex in the 
model mesh is depicted as the point in Fig. 2. Each 
triangular mesh in the scene model is assigned one 
particular color, and then the color map is depicted on an 
index plane using the painting capability of graphics 
hardware. An extension of the line of sight, from a vertex 
of the model mesh, crosses a triangular mesh of the scene 
mesh and creates the intersecting point. This operation is 
implemented using the Z-buffer capability of the graphics 
hardware. In order to eliminate false correspondences, if 
the distance between the vertex and the corresponding 
point is larger than a certain threshold value, the 
correspondence is removed. This correspondence search is 
computed for every combination of mesh models.  

The error measure between corresponding points is the 
cosine distance between the point and the plane. Let the 
vertex of the model mesh and the corresponding crossing 
point in the scene mesh be xr  and yr , respectively. The 
error measure between the pairs is written as 

)( xyn −⋅      (1) 
where n  is the normal of xr  defined around the 

vertex.  
The transformation matrices of the model and scene 

Vertex of model mesh

Color＝0x0000ff
Triangle Index＝256

index image 
(scene mesh)

Line of sight

color triangular index

Corresponding point y

Vertex of model mesh

Color＝0x0000ff
Triangle Index＝256

index image 
(scene mesh)

Line of sight

color triangular index

Corresponding point yCorresponding point y  
Figure 2.  Search procedure. 
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meshes are computed so that this error measure is 
minimized. The error evaluation function is rewritten as 

)}(){( MMSSM txRtyRnR
rrrrr

+−+⋅     (2) 
Here, the rotation matrix and the translation vector of 

the model and scene mesh are sM RR , , sM tt ,
r  respectively. 

The distance between the model and the scene mesh is 
expressed as 

( )∑
≠

+−+⋅=
kms

MMSSMtR
txRtyRnR

,

2

,

2 )}(){(min
rrrrrε    (3) 

If it is assumed that the angles of rotation are small, the 
rotation matrix R  can be approximated as 
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The translation vector is expressed as 
( )zyx tttt =      (5) 

 After some algebraic manipulations [17], Equation (3) 
is rewritten as  
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Here, m,s,k denotes one model mesh, one scene mesh, 
and one corresponding pair, respectively. 
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where the number of range images is N . By (6) Δ  is 
written as 
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To avoid accumulation of errors, we have developed a 
simultaneous alignment method. Traditional sequential 
methods [10,13,14] such as the Iterative Closest Point 
(ICP) algorithm align these meshes one by one, and 
progressively align a new partial mesh with previously 
aligned meshes. If a few partial meshes can cover the 
entire surface of an object, the accumulation of alignment 
errors is relatively small and can be ignored; sequential 
alignment works well for a small object. However, for 
large objects, sometimes, we may need more than a 
hundred partial mesh models. In such cases, the error 
accumulation would be very large, if we employ 
sequential alignment. Thus, we align all partial meshes so 
as to reduce the errors among all the pairs simultaneously 

in equation (6). 
We have implemented a simultaneous alignment 

algorithm, and verified the effectiveness of the algorithm, 
with respect to the pair-wise alignment algorithm. Since 
we need a true value of the aligned result, we generate 
synthesized 49 data sets by segmenting a whole 3D mesh 
model of the Great Buddha of Kamakura with small 
overlapping boundaries. We add a Gaussian noise, whose 
standard deviation is 3 mm with 1cm cut-off. This level of 
noise is typical in the data obtained by our sensors. These 
data were perturbed along a random direction to simulate 
initial alignment errors in the manual alignment process. 
Figure 3 shows synthesized range data. The simultaneous 
and the pair-wise alignment programs are applied to these 
data. Figure 4 shows the resulting converging process. 
While the simultaneous algorithm provides a constant 
error along the number of data sets, the pair-wise 
algorithm accumulates errors from the true value along the 
number of data sets processed in the horizontal axis. 
 
2.2.2. Parallel alignment based on a PC cluster. The 
rapid simultaneous alignment algorithm, 
described in the previous section, is mainly utilized 
for rough alignment of the data acquired daily at 
the site. Although the algorithm employs 
simultaneous alignment for accuracy, the 
algorithm, designed for a single notebook type PC, 
without considering the aspect of the memory 
capability, may cause memory overflow for 
large-scale data of the entire target. We have 
designed a parallel alignment algorithm based on 
a PC cluster for large-scale alignment of the entire 
data set. 
 
2.2.2.1. Overview of the Parallel Algorithm. The 
simultaneous alignment algorithm is applied in the 
following steps: 
 
1. To compute, for all pairs of partial meshes, 

(a) to search all correspondence of vertices 
(b) to evaluate error terms of all correspondence pairs 

2. To compute transformation matrices of all pairs for 
immunizing all errors 

3. To iterate steps 1 and 2 until the termination condition 
is satisfied 

 
Among these operations, 1(a) correspondence search 

and 1(b) error evaluation require a large amount of 
computational time. They also require data space to read 
in data of all vertices. On the other hand, these two 
operations can be conducted independently in each pair of 
partial mesh models. Computation of transformation in 
step 2 does not require much computational time or 
memory space. Thus, we designed correspondence search 
and error evaluation in step 1 to be conducted in slave PCs 
in a PC cluster, and computation of transformation in step 
2 to be conducted in a master PC. 
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2.2.2.1. Graph simplification. We remove redundant or 
weak data dependency relations of partial mesh models 
for the sake of efficiency in parallel computation. Figure 5 
shows overlapping data-dependency relations. Each node 
in the graph represents one mesh model, and each arc 
represents an overlapping dependency relation among 
mesh models. The left graph shows the original state in 
which all the mesh models overlap each other. If we 
conduct alignment of one mesh as is, we would have to 
read into a PC’s memory all the remaining mesh models. 
By removing some of redundant overlapping 

dependencies, we can transform the original graph into a 
simpler one as shown in the right figure. By using this 
simpler relational graph, we only need adjacent data with 
respect to a vertex for alignment of a vertex, and we can 
reduce the necessary memory space. 

We will remove the dependency relation between the 
two mesh models if any of the mesh pairs does not satisfy 
any one of the following three conditions: 
 

     
Figure 3.  Synthesized range data. (a) Original whole mesh model of Kamakura Buddha, (b) Synthesized range data with initial perturbation and 
Gaussian noise to simulate alignment error and simulate sensor errors, respectively. 
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Figure 4.  Converged result. 
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Figure 5.  Data dependency relation. 

 
1.  The bounding-boxes of two range images overlap 

each other. A sufficient overlapped region exists 
between two mesh models, provided that initial 
positions of two meshes are accurately estimated. 

 
2.  The angle θ between ray directions of two mesh 

models is less than a threshold value. Two 
observation directions of the meshes are relatively 
near. This condition also reduces the possibility of 
false correspondences between front- and backside 
meshes, by setting the threshold, as °= 90θ . We 
could use a more accurately estimated value for this 
threshold, but since this value is used as a constraint 
to reduce the possibility described above, we use this 

°= 90θ  for the sake of safety and simplicity. 
 

3.  Two range images are adjacent to each other. This 
condition removes non-adjacent relations sequentially. 
For example, as shown in Fig. 6, if the length from 

0I  to 3I  is larger than the length from 1I  to 3I  )( 0301 ll < , the arc between 0I  and 3I  is removed. 
Here, the distance is evaluated from the center of a 
mesh model.  

 
2.2.2.3 Parallelization by graph partitioning algorithms. 
The problem of load balancing with a minimum amount 
of required memory is an NP-hard problem. It is difficult 
to obtain an optimal solution in a reasonable time. 
Alternatively, we employ an approximation method to 
solve this problem by applying heuristic 
graph-partitioning algorithms. 

 
Pair-node hyper-graph.  First, we define the pair-node 
hyper-graph. The left image of Fig. 7 shows a graph that 
expresses the relations of partial meshes In. The graph is 
converted to the hyper-graph in which each node 
expresses pairs Pi,j of two partial meshes i and j, and 
networks represent meshes, as shown in the right figure of 
Fig. 7. We refer to it as a “pair-node hyper-graph.”  

The weight of the network Wnet
i is defined as the 

number of vertices iv  in the partial mesh, i ; the weight 
Wnode

i,j of the node is defined as the sum of the number of 
vertices vi and vj. 

ii
net vW =      (13) 

jiji
node vvW +=,     (14) 
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Figure 6.  Non-adjacency relation. 

 
A pair-node hyper-graph is partitioned so that the sum 

of the node weights in each subset is roughly equal for 
computational load balance, and summation of all the 
net-weight in each subset is minimized for efficiency of 
memory usage. 

It is necessary to consider both node weights and net 
weights in optimization, even though they are related to 
each other, and using them seems to be redundant. 
Reducing the computational load requires each sub-group 
to have equal values in the node-weights. On the other 
hand, even when a hyper-graph is portioned equally in 
terms of node-weight, depending on the method, each 
sub-group has different memory usage. Let us consider 
the example, shown in Fig. 7, to divide the hyper-graph 
into two sub-graphs. For the sake of simplicity, we assume 
that all node-weights and net-weights are the same in all 
the nodes and all the networks. When the hyper-graph is 
divided into two groups, {P0,2, P1,3, P2,3} and {P0,1, P0,3}, 
the node balance is achieved in two sub-graphs. The first 
sub-graph needs to load in all the data {I0, I1, I2, I3}. The 
maximum value in sums of net-weights is four units. 
When the hyper-graph is divided into two groups, {P0,2, 
P0,3, P2,3} and {P1,3, P0,1}, each sub-group needs only to 
load in three data sets. The maximum value in the sum of 
net-weights is three units. In these two cases, both 
portioning methods have roughly equal load balance in 
terms of node-weights, but have different memory usage. 
When we divide the graph by considering only memory 
usage, it is not guaranteed that each sub-graph has equal 
load balance. Thus, we will consider both node-weights 
and net-weights in the optimization procedure. 
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Figure 7.  Pair-node hyper-graph. 
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Initial partitioning: The pair-node hyper-graph is initially 
partitioned so that the sum of the node-weights in each 
subset is roughly equal. We used the random seeded 
breadth first search method for initial partitioning. Since 
the sum of net-weight included in each subset is greatly 
influenced by the selection of the seed, we created initial 
partitions for multiple seeds and adopted the partition in 
which the sum of net-weight included is minimized. In 
order to obtain k-way partitions, the recursive bisection 
method is used. After logk phases, the hyper-graph is 
partitioned into k sub-graphs. 

 
Refinement of the partition: The partitioned graphs are 
refined so that the sum of net-weights included in each 
subset graph is minimized. We improved the KLFM 
algorithm, which is an iterative refinement algorithm. The 
algorithm moves a node from one partition to another so 
that the operation causes the greatest improvement in the 
cut-size. While the original KLFM algorithm moves a 
node at one iteration, our method moves a net at one 
iteration. That is, all nodes connected to the net are moved 
at the same time. For k-way refinement, the subset graph 
of which the sum of net-weight is maximum weight is 
computed with all other subsets. The refinement process is 
reiterated until there is no more improvement.  

 The net gain is computed for all nets along the 
boundary of two subset graphs. Now, we consider the kth 
net at the boundary between the subset graphs, Gi and Gj. 
In the case the net N(i,j),k is moved to Gi, the gain gi,j,k is 
expressed using two values, Dint

i,j,k, the variation of the 
sum of net weight of Gi and Dext

i,j k, the variation of the 
sum of net-weight of Gj as 

.,,
int

,,,, kjikji
ext

kji DDg −=    (15) 

On the other hand, in the case where N(i,j),k is moved to 
Gj, the gain gj,i,k is expressed in the similar way as 

.,,
int

,,,, kijkij
ext

kij DDg −=    (16) 

The two lists, ji LL , , consisting of all gains of the all 
nets  at the boundary, are created. The list with the larger 
sum of the total node-weight (computational time) is 
selected for consideration of the movement, and the 
components, candidate nets in the list, are processed one 
by one in descending order of the gain. At each movement 
of one net, all nets and nodes concerned with the net are 
updated, and the moved net is locked in order to avoid 
thrashing. The sum of the net-weight (memory usage) and 
the moved net’s ID are also recorded at each movement. 
After all nets are moved, the minimum value of the sum of 
the net-weight (memory usage) is compared with the 
value at the starting stage. If the minimum value is smaller 
than that of the starting state, the corresponding 
movement-sequence is performed, and the next iteration 
begins. If not, the refinement process is terminated. See 
Fig. 8 for the flow chart of the refinement process. 
 
Implementation: We implemented our method as a 
master/slave system. The procedures of the computation is 
are as follows 

Algorithm Procedure of Parallel Alignment 
/* Check correspondence of all pairs of the range images 
*/ 
Create-Pair-Table; 
/* Create the lists of the files for each processor */ 

Create-File-Lists: 
while(error > threshold){ 
   /* Slave Process*/ 
   for(i = 0; i < nImage; ++i) 
    for(j = 0; j < nImage; ++j) 
      Whether-i-and-j-overlap-each-other?{ 
        Correspondence-Search(i, j); 
        Calculation-Each-Matrix(i, j); 
      } 
  /* Master Process */ 
  CalculationMatrix(all); 
  /* Master & Slave process */ 
UpdatePosition; 
} 

 
The master program holds bounding-boxes and 

transformation matrices from initial position to current 
position of all partial meshes, checks all pairs, and creates 
the list of computations for each node. The pairs list for 
each slave is computed at the beginning of the entire 
iteration process based on the relational table using the 
algorithm described above. The slave programs receive 
the lists and read the required range images into memory. 
Then, each slave computes the matrices mskmsk

T AA  and 
mskmsk

TA γ in (12) independently, and sends the matrices to 
the master program. The master program computes the 
transformation matrices of all range images from the 
matrices mskmsk

T AA  and mskmsk
TA γ  received from the 

slave programs. The results are applied to all master/slave 
data. Each iteration process is continued until the error 
falls below a certain threshold value. Equation (12) is 
evaluated in all the data. The matrix is very sparse; the 
ICCG provides computation 10 times faster than usual 
SVD. 
 
2.3.  Merging 
 
Once we can determine relative configurations among all 
the mesh models through the alignment operations, we 
can connect these aligned mesh models into a unified 
mesh model representing an entire object’s surface. This 
operation is referred to as merging. One of the simplest 
methods is to directly connect each mesh, and remove 
overlapping meshes. This direct method discards multiple 
observations of overlapping regions, and creates a sharp 
jump around the connecting boundaries. In order to avoid 
these shortcomings, we employ a voxel-based merging 
algorithm. 
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Figure 8.  Flow chart of refinement Process. 

 
 

2.3.1. Voxel-based Merging Algorithm. After all partial 
mesh models have been aligned, a volumetric 
view-merging algorithm generates a consensus mesh of 
the object from them. Our method, first, calculates a 
volumetric implicit-surface representation, where each 
voxel in the volumetric space has an estimated signed 
distance from the position of the estimated consensus 
mesh. Unlike previous techniques based on 
implicit-surface representations, our method estimates the 
signed distance to the object’s surface by determining a 
consensus of locally coherent observations of the surface 
[20-23]. This consensus method is effective, in particular, 
for noisy data, often provided at the occluding boundaries. 

We utilize octrees to represent volumetric implicit 
surfaces, thereby effectively reducing the computation and 
memory requirements of the volumetric representation 
without sacrificing accuracy of the resulting surface. Then, 
this signed distance representation is converted to a 
surface mesh by using a variant of the marching-cubes 
algorithm [19].  

We originally designed software for a single PC. 
However, because recent input data is unpredictably huge, 
we decided to build a PC cluster to run this merging 
software; the cluster parallel-processes the merging 
algorithm to save computation time and utilize the large 
memory space of many PCs [24]. We produced one 
integrated digital of the Great Buddha of Kamakura and 
another of the Bayon Temple in Cambodia with this 
software.  
 
2.3.2. Results of merging process. We have digitally 
archived Japanese Buddhas, including Asuka (7th century), 
Kamakura (13th century), and Nara (17th century). Here, 
the great Buddha of Nara, although the name indicates the 
Nara period of the 8th century, was burned, and the current 
one was rebuilt in the 17th century. Thus, it is the newest 
among the three. It is interesting to note that the faces of 

the Buddhas have become wider as the time passed, as 
shown in Fig. 9. 
 

2.4. Analysis of geometric modeling 
 

We extended this effort toward foreign cultural heritage 
objects and obtained all 173 Buddha faces of the Bayon 
temple in the Angkor ruin in Cambodia. Eighteen of these 
faces are shown in Fig. 10. According to the JSA 
(Japanese Government Team for Safeguarding Angkor) 
research, those faces can be classified into three 
categories: Deva, Devata, and Ashura. See Fig. 11 for 
examples. However, some of them are quite difficult to 
classify due to parallel work by different craftsmen and 
different techniques employed. Others have deteriorated 
due to weathering. And still others are unfinished. 

In order to classify these faces in an accurate manner, 
we examined the 173 faces using cluster analysis. First, 
we converted all the faces into normalized depth images, 
defined a standard face among 173 faces, and adjusted all 
the remaining faces onto this standard face using a 
classification procedure. We extracted three key points: a 
pair of inner corners of the eyes, and the middle point 
between the mouth and the nose. We obtained translation, 
rotation, and scaling parameters to minimize the differences 
between two sets of key points of the standard and current 
faces. We applied those parameters to the range data of the 
current face, and obtained a 64 by 64 range image of the 
current face. We conducted two types of analyses: 
supervised and unsupervised. Details are given in [25]. 
 
2.4.1 Supervised analysis: Linear discrimination function.   
The purpose of supervised analysis is to clarify the 
differences among the given classes. JSA has already 
classified all faces into three types based on subjective 
evaluations by an artist. Through such a supervised 
analysis, we can verify correctness of the process, and 
then objectively evaluate the differences using statistical 
analysis methods.  

In this paper, we use a linear function ( ) df +⋅= xnx  
as the classification function. The dimension of the 
sample space, that is, image size ( 6464×= , in this case), 
is much greater than the number of samples; there are only 
173 faces in the Bayon Temple. It is preferred that the 
dimension and parameters of the function are small in 
order to prevent a so-called “over-fitting” problem. 
 
 
Table 1.  3D data of great Buddha. 

 Height 
(m) 

Number 
of vertices 

Number 
of meshes 

Asuka (7th Century) 2.7 1.5 Million 2.9 Million 

Kamakura(13th Century) 13 5.0 Million 9.8 Million 

Nara (17th Century) 15 36.3 Million 69.1 Million
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Roughly speaking, the parameters of the function d,n  
can be determined by maximizing TB SS , where BS  and 

TS  are intraclass and interclass variances, respectively. 
Because the matrix S  is not full-rank matrix, we solve 
the equation using the singular value decomposition 
(SVD) method while minimizing n . Figure 10 illustrates 
the result of the analysis. The graph is obtained by 
projecting all vector points of faces on the 2D flat surface 
that is determined by two linear discriminant functions in 
order to clearly express the classification result. 

The former discriminant function classifies them into 
Devata (female god) and Deva (male god) with separate 
planes corresponding to the y-axis in Fig. 12. The right 
side area is a female area, and the left side area is a male 

area. Although Asura data (male devil) are not used for 
training the function, almost all of Asura data are in the 
male area. 

The second function classifies them into Deva (god) 
and Asura (devil) with separate planes corresponding to 
the diagonal line. The upper side area of the diagonal line 
is a god area and the lower side is a devil area. Almost all 
of Devata (female god) are also in the god area, even 
though we did not use Devata data for training this 
function. 
 
2.4.2. Cluster analysis. The purpose of unsupervised 
analysis is to discover new knowledge through 
classification of the faces without any a priori standards. 

 
Figure 9.  Three great Buddha: Asuka (7th century), Kamakura (13th century), and Nara(16th century) Buddha. 

 

 
Figure 10.  Bayon face library: 18 faces out of 153 faces in Bayon temple in Angkor ruin, Cambodia. 
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Cluster analysis provides us with some classification of 
samples according to distances among them. We calculate 
the distance based on the Ward method, and define the 
distance as the Euclidean distance in the distance image 
space. We employ agglomerative hierarchical cluster 
analysis. This analysis begins with each sample being 
considered as one cluster and then proceeds to combine 
the nearest two clusters until all samples belong to one 
cluster. By conducting this cluster analysis, we observed 
spatial resemblance groups among faces, as shown in Fig. 
13. We determined that there were four or five 
independent worker groups working on these faces in a 
parallel manner. 

 
3. Photometric modeling: Texturing 

 
Surface color distribution is important in representing 

the appearance of cultural heritage objects. Some clay 
statues still retain the surface colors that were painted at 
the time the statue was originally made. For such types of 
cultural properties, we have to archive color information 
as well as geometric information. For this purpose, we 
have developed two kinds of texturing methods: 
calibration-based and reflectance edge-based methods. 
 
 

 
Figure 11.  Ashura, Dava, and Devata. The black parts in the figures indicate areas where data is missing due to occlusion. 
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Figure 12.  Linear discrimination function 
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3.1. Calibration-based Method 
 
The main issue in texturing is how to determine the 

relationship between image sensors and geometrical 
sensors. When short-distance range sensors can be used, 
as shown in Fig. 14, the most promising method is to 
calibrate the geometrical relationship between the image 
sensor and the range sensor before scanning. 

 Assume that the coordinate system of the image sensor 
is (xc,yc) and the corresponding point in the range image is 
(X,Y,Z); the relationship between them can be described 
as: 
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The matrix C34 represents the relationship between the 

image and the world coordinate, and it can be calculated 
by scanning the calibration box. Inversely, when we map 
the texture images onto the geometrical triangular mesh 

{ }31,,( ≤≤= nzyxX nnnn
, the corresponding points in 

image coordinate { }ccc yxx ,=  can be easily calculated 
as: 
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For the modeling of the Koumoku-Ten clay figure, we 
used 60 range images and color images that were taken at 
the same time. Figure 15 shows a picture of Komoku-Ten 
(a), the geometric model (b), and the synthesis result 
under a new lighting condition generated using the 
texturing result (c). 

Color
sensor

Range
sensor

Calibration box

Relative
relation

 
Figure 14.  Calibration method. 

 

Figure 13.  Similarity group. 
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3.2. Reflectance Edge-based Method 
 
  As shown in the previous section, one solution for 

determining the relationship between range and color 
image is through calibration using a calibration fixture. 
However, this method requires that the range and color 
sensors be fixed on the fixture once the relationship is 
calibrated. Further, the calibration-based method is 
accurate only around the position occupied by the 
calibration fixture. When a target object is very large, this 
method becomes unreliable due to the lens distortion. 
Thus, we need a method that does not rely on calibration 
for handling a large object. 

 Generally speaking, range sensors often provide 
reflectance images as side products of range images. The 
returned timing provides a depth measurement, while the 
returned strength provides a reflectance measurement. A 
reflectance image is a collection of the strength of 
returned laser energy at each pixel. This reflectance image 

is aligned with the range image because both images are 
obtained through the same optical receiving device. 
Commonly available range sensors, including ERIM, 
Preceptron, and our main sensor, CYRAX, provide this 
reflectance image. 

 We employ this reflectance image as a vehicle for the 
alignment of range images with color images [9,26]. 
Reflectance images share characteristics similar to color 
images due to the fact that both images are somehow 
related with surface roughness, as shown in Fig. 16. Since 
our CYRAX range scanner uses a green laser diode, 
reflectance edges can be observed along material 
boundaries between two different reflectance ratios for 
this wavelength. Since different materials are of different 
colors, a discontinuity also appears in the color images. 
Jump edges along small ranges in a range image also 
appear as jump edges in a reflectance image as well as in a 
color image. Occluding boundaries are observed both in 
reflectance images and in color images. 

 
(a) 

          
          (b)             (c) 
 
Figure 15.  Synthesized Komoku ten. (a) Picture of Komoku Ten, (b) 3D model, (c) Synthesized result under a new lighting condition generated 
using the texturing result. 
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Prior to the alignments, we paste the necessary 
reflectance edges onto the 3D geometric model. As 
mentioned above, since occluding boundaries vary 
depending on the viewing direction, edges along the 
occluding boundaries are first removed from the 
reflectance images. Edges along the current occluding 
boundaries will be estimated from the 3D geometric 
model and the current viewing direction. Our algorithm 
extracts them automatically, and uses them for alignment. 

 We align edges extracted from reflectance images with 
those in color images so that the 3D position error of those 
edges is minimized by iterative calculation as shown in 
Fig. 17. Extracted edges are represented as a collection of 
points along them. The alignment is done between 3D 
reflectance points on a 3D geometric model projected on 
the image plane and 2D color edge points in the 2D 
image. 

 To establish correspondence, the system finds the 
color image points that are nearest to the projected 
reflectance points. This operation is similar to the ICP 
operation. 

 To determine the relative pose that coincides with the 
position of 2D color edges and projected 3D reflectance 
edges, we use the M-estimator.  
 
 

2D image edge

Image plane

Geometric model

3D edge point

Nearest point

Zi

θ Projection to the image plane

3D error zi

2D image edge

Image plane

Geometric model

3D edge point

Nearest point

Zi

θ Projection to the image plane

3D error zi

 
Figure 17.  Texturing algorithm. 
 

 First, the distance between corresponding 2D color 
edge points and 3D reflectance edge points is evaluated as 
shown in Fig. 17, where iz  is a 3D error vector that is on 
a perpendicular line from a 3D reflectance edge point to 
the stretched line between the optical center and a 2D 
color edge point on the image plane. 

θε sinii Z=    (19) 
where iZ  is the distance between the optical center 

and a 3D reflectance edge point, and θ  is the angle 
between the color edge point and the reflectance edge 
point. 

 The system finds the configuration, P, which 
minimizes the total error, E, where ρ  is an error 
function. The minimum of )( pE  can be obtained by 
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 We can consider ( )εω  as a weight function to 
evaluate error terms. 
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By substituting Eq(21) into (20) we obtain 
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We choose the Lorentzian function for this function. 
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By solving this equation using the conjugate gradient 
method, we can obtain the configuration P that minimizes 
the error term and gives the relative relationship between 
the camera and the range sensor. Figure 18 shows the 
texture-mapped Kamakura Buddha. Since this method 
minimizes a non-linear equation, we need an initial 
alignment. The initial alignment is given manually using 
our GUI. For the current implementation, relatively 
accurate alignment is necessary for rotation, but it is not 
the case for translation. 

Reflectance Color

Material
difference
Material
difference
Jump edgeJump edge

OcclusionOcclusion
 

Figure 16.  Reflectance and color images. 
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Figure 18.  Texturing result. 
 
 
 
4. Restoring the Original Nara Great Buddha 

 
One of the advantages of obtaining digital data of 

cultural heritage objects is to modify those data and 
display the original appearance of the object. In order to 
demonstrate this ability, after we obtain the precise 
geometric and photometric information about cultural 
heritage objects in their current state, we can modify the 
current data into a hypothesized original state. In this 
section, we describe one of the examples: the restoration 
of the Nara Great Buddha and its main hall.  

The Nara Great Buddha is one of the most important 
heritage objects in Japan. The Buddha statue is sitting in 
the Buddha palace at the Toudaiji temple in Nara, Japan. 
Originally, this temple and statue were constructed by 
order of the Shomu emperor, in the 8th century. Here, the 
original one is referred to as “Tempyou Big Buddha.” The 
original Tempyou Buddha was made of bronze and 
covered with gold plate. Unfortunately, however, the 
palace was burned and the statue was melted twice due to 
civil war in Japan. The current Buddha and palace were 
rebuilt in the 17th  and 18th centuries. Accordingly, the 
shape of the current Great Buddha is different from that of 
the original one in the 8th century.  

 
4.1. Restoring the Nara Great Buddha 

 
As the first step, we acquired the complete 3D mesh 

model of the Nara Great Buddha in its current state by 
using the geometrical modeling techniques described in 
Section 2. We collected more than 100 partial mesh 
models using CYRAX sensors. Those partial mesh models 
were aligned using the parallel alignment algorithm on a 
PC cluster and merged into a unified mesh model with 
70M polygon. Figure 19 shows the picture of the current 
Buddha, and its 3D geometric model. 

We synthesized the original state by morphing the 3D 
mesh of the model from this mesh model. From some 
literature inherited at various temples, we knew the sizes 
of various face parts such as the nose and mouth. 

“Enryaku-so-rokubun,” “Daibutsuden-hibun,” 
“Hichidaiji-nikki,” and “Gokokuji-honnsyoji-enngishu” 
are representative documents that contain those sizes. 
Unfortunately, however, those numbers often contradict 
each other. Some researchers investigated which number 
is the most reliable one. We followed their method to 
compare them and determined a common figure for each 
part. 

Table 2 shows the obtained estimated and the current 
dimensions of various face parts. Here, all the documents 
employ the unit called “shaku.” We interpreted shaku as 
the tempyo shaku, and one shaku is assumed to be 0.2964 
meters among the various interpretations of shaku. Notice 
that relatively large differences exist in height 
measurements. 

Using these data, we designed a two-step morphing 
algorithm. First, we globally changed the scale of the 
whole portions (for example, Height when sitting, Face 
Length, Nose Length); these are gradually modified. In 
the second stage, vertices were moved one by one 
iteratively, similarly to the constraint propagation 
algorithm, using smoothness and uniform constraints. The 
two-stage morphing enabled us to obtain the complete 
model of the original Great Buddha. Figure 20 shows the 
3D models of the current (a) and the original Great 
Buddha (Tempyou Buddha) (b). We can easily recognize 
that the original Buddha is larger and rather thin.  
 
4.2. Restoring the Toudaiji Main Hall 

 
The main hall of the Toudaiji Temple was built during 

the same decades as those of the Great Buddha (8th 
century). It was also rebuilt twice: in the 12th and 17th 
centuries. In the 12th century, Tenjiku architecture was 
imported from China, and the main hall was rebuilt in a 
totally different architecture style. The rebuilding in the 
18th century followed the same new style. As a result, the 
style of the current main hall is entirely different from that 
of the original building.  
 
 
 
 
Table 2. Current and estimated dimensions of various face parts. 

Parts Name Current (m) Original (m) 

Height when sitting 14.98 15.85 

Eye length 1.02 1.16 

Face length 3.20 2.82 

Ear length 2.54 2.52 

Palm length 1.48 1.66 

Foot length 3.74 3.56 

Nose height 0.50 0.47 

Mouth length 1.33 1.10 
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Fortunately, the Toudaiji temple has been displaying a 
miniature model of the original hall, constructed for the 
Paris Expo in 1900, as shown in Fig. 21. We digitized it 
using the Pulsteck TDS-1500 and scaled it up to the 
original size as shown in Fig. 22(a). The TDS-1500 can 
scan a range from 3.5 meters through 10 meters with the 
accuracy of 0.5mm to 5mm and the spatial resolution of 
420 X 280. We obtained 12 range images from various 
observation directions. As shown in Fig. 22(b), due to the 
limits of the sensor’s accuracy and constraints of 
observation directions, though the model provides rough 
dimensions of locations of columns and walls, it does not 
provide a precise and accurate picture of the detailed 
parts. 

According to Prof. Keisuke Fujii, who is an architecture 
professor at the University of Tokyo and one of the 
experts on building style in the era, the Toudaiji and 

Toushoudaiji temples share a similar format. The main 
hall of the Toushoudaiji Temple was also built during the 
same period (8th century). We have decided to combine 
the detailed part model of the Toushoudaiji Temple with 
the rough whole model of the Todaiji temple. 

We digitized various key parts of the main hall at 
Toushoudaiji. Using the suggestions of Prof. Fujii, we 
chose 20 important parts of the main hall. Figure 23 
shows 6 parts among 20 important parts. We employed 
Cyrax 2004 and Pulsteck TDS-1500, which have a range 
from 0.5 meter through 1meter, with resolution of 0.23 
mm through 0.83 mm, to obtain 780 range images. Figure 
24 shows the obtained range images of the detailed parts. 

We pasted these partial range data of Touhoudaiji parts 
(Fig. 24) to the scaled-up range data of the Toudaiji (Fig. 
22(b)), using as a scale the average size difference 
between those temples, roughly 1 to 2.3.  But each part 

     
(a)                                           (b) 

Figure 19.  Nara Buddha (a) Picture of current Buddha, (b) 3D geometric model of current Buddha. 

 

     
(a)             (b)  

Figure 20.  Comparison in 3D models. (a) current buddha, (b) original Buddha. 
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needed more precise scaling parameters. The traditional 
alignment algorithm determined translation and rotation 
parameters as six unknown parameters. However, we 
designed an extended alignment algorithm that determined 
not only translation and rotation parameters but also scale 
parameters.   

( )∑
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mmsssmtR
txRtkyKRnR

,

2

,

2 )}()),({(min
rrrrrε   (24) 

where )(,K  is a scaling function to expand each arc 
length in a mesh, and sk is an unknown scaling parameter. 
By using this extended alignment algorithm, we 
completed the 3D model of the original Buddha’s palace. 

 
Figure 21.  Miniature model of Buddha palace. 

 
(a) a cloud of points representation 

 
(b) mesh model (Closed up) 

Figure 22.  3D model acquired from the Miniature model. 
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Figure 25(a) shows the original Buddha’s palace 
digitally restored by our method. By combining the 
original Buddha’s palace and the original Buddha, we 
created the virtual appearance of the Nara Buddha in the 
8th century, as shown in Fig. 25(b-c). The virtual 
appearance of this and other historic objects can be used 
for education about and promotion of our cultural 
heritage. 
 
 
 
 

 
4.3. Analysis 
 

As one of the demonstrations of utilizing digital 
restoration, we conducted an experiment to determine the 
amount of gold used to plate the surface of the Buddha. It 
is well known that the original Buddha was golden due to 
gold plating of its surface. However, several contradictory 
numbers exist in documents. For example, 
“Daibutu-den-hibun” and “Enryaku-sorokubun” say it 
required 5412 ryou and 4187 ryou of gold, respectively, to 
cover the body of the great Buddha. Moreover, there were 

   

   
Figure 23.  Key parts of the main hall at Tousho-daiji digitized. 

       

       
Figure 24.  3D models of those key parts. 

 



International Journal of Computer Vision, 75(1), 189–208, 2007 

 

 
(a) Outside appearance 

 
(b) Insider appearance 

 
(c) Inside appearance 

Figure 25.  Restored nara Buddha. 
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two interpretations of “ryou”; A large ryou was 42 g, 
while a small ryou was 14 g. Thus, there are four 
interpretations determining the amount of gold required.  

In order to disambiguate this discussion, we used our 
restored digital model of the Tempyou great Buddha. The 
surface area, 2597 m , is obtained from the restored digital 
model by taking a summation of all surface areas of 
triangular meshes. For comparison, the surface area of the 
current Buddha is 2556 m . From the documents, it is 
known that the amalgam method was used to put gold 
over the Buddha’s surface. Usually, this method puts 

2

/10~6 cmmg . This number was also confirmed by 
examining the thickness of gold plate on various treasures 
stored in Sho-so-in. By multiplying the surface area of 
Tempyo and the current Buddha with this number, we 
obtained the gold amount as 36kg ~60kg and 33kg ~ 56kg. 
Those numbers indicate that the interpretation of  
“enryaku-sorokubun” with a small ryou is most likely. 

 
 

5. Conclusion 
 
This paper introduced our project to digitally archive 

and restore cultural heritage objects. Our project’s main 
goal was to develop software to create VR models of 
heritage objects through observation of real heritage 
objects. As the input sensor of geometrical information, 
we used laser range sensors because of their accuracy. 
Since only partial mesh models of an object are obtained 
from such sensors, we have developed post-process 
algorithms. These included a rapid alignment algorithm 
based on graphics hardware, a parallel alignment 
algorithm based on a PC cluster, and a parallel merging 
algorithm based on a PC cluster. For texturing color 
information onto geometric modes, we developed a 
non-calibrated texturing method based on laser reflectance 
features.  

Digital restoration of lost cultural heritage objects has a 
great advantage compared with other restoration methods 
such as physical construction of actual temples, because 
we can examine various hypotheses without any physical 
changes or long building periods. We demonstrated the 
effectiveness of this method through the restoration of the 
Nara Great Buddha and its main hall. 
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