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Abstract— In this paper, we propose a method of targetless
and automatic Camera-LiDAR calibration. Our approach is
an extension of hand-eye calibration framework to 2D-3D
calibration. By using the sensor fusion odometry method, the
scaled camera motions are calculated with high accuracy.
In addition to this, we clarify the suitable motion for this
calibration method.

The proposed method only requires the three-dimensional
point cloud and the camera image and does not need other
information such as reflectance of LiDAR and to give initial
extrinsic parameter. In the experiments, we demonstrate our
method using several sensor configurations in indoor and
outdoor scenes to verify the effectiveness. The accuracy of our
method achieves more than other comparable state-of-the-art
methods.

I. INTRODUCTION

Sensor fusion has been widely studied in the field of
robotics and computer vision. Compared to a single sensor
system, higher level tasks can be performed by a fusion
system combining multiple sensors. This type of system
can be directly applied to three-dimensional environmental
scanning. For example, by combining cameras with LiDAR,
it is possible to perform color mapping on range images
(Fig. 1) or estimate accurate sensor motion for mobile
sensing systems [1], [2], [3], [4].

In a 2D-3D sensor fusion system composed of a camera
and LiDAR, an extrinsic calibration of the sensors is re-
quired. There are methods that can obtain extrinsic parameter
by using target cues or manually associating 2D points on the
image with 3D points on the point cloud. However, manually
establishing correspondences for accurate calibration is labo-
rious because it requires multiple matches. Moreover, even
though a lot of correspondence can be created in this way,
the accuracy of calibration is still insufficient. Automated
methods such as [5], [6] use targets that can be detected
on both 2D images and 3D point clouds. However, since
it is necessary to prepare targets detectable by both the
camera and LiDAR, it is impractical and undesirable for
on-site calibration. Recently, automatic 2D-3D calibration
methods that do not require targets have been proposed.
However, since the information obtained from each sensor is
multi-modal, the calibration result depends on the modality
between the sensors.

In this paper, we propose an automatic and targetless
calibration method between a fixed camera and LiDAR. As
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Fig. 1. Top: Motion-based 2D-3D Calibration. In our method, the LiDAR
motion is estimated by ICP algorithm and Camera motion is initially
estimated by using feature point matching and then estimated with scale
by sensor fusion system. Bottom: Colored scan by HDL-64E. Texture is
taken by Ladybug 3 and our calibration result is used for texturing.

shown in Fig. 1, the proposed method is based on hand-eye
calibration. In our method, the motions of the sensors are
estimated respectively and calibration is performed using the
estimated motions. Each sensor motion is calculated in the
same modal and extrinsic parameter is derived numerically
from each sensor motion. In the conventional motion-based
2D-3D calibration, the motion of the camera is obtained
from only 2D images [7]. However, the motion can only
be estimated up to scale using only camera images. The
precision of the extrinsic parameter is greatly affected by
the motion error in the hand-eye calibration. Although the
scale itself can be calculated simultaneously with extrinsic
parameter from multiple motions, hand-eye calibration with
scaleless motion deteriorates the accuracy of calibration.

On the other hand, in the sensor fusion odometry using
the LiDAR and the camera, the motion of the camera can
be accurately estimated with scale if the extrinsic parameter
between the sensors are known [1], [2], [3], [4]. In our
method, we adopt the idea of camera motion estimation using
sensor fusion odometry. First, an initial extrinsic parameter is
obtained from scaleless camera motions and scaled LiDAR
motions. Next, the camera motions are recalculated with
scale using the initial extrinsic parameter and the point
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cloud from the LiDAR. Then the extrinsic parameter is
calculated again using the motions. This recalculation of
camera motions and recalculation of the extrinsic parameter
are repeated until the estimation converges.

Our proposed method requires that the camera and the
LiDAR have overlap in their measurement ranges and that
the LiDAR’s measurement range is 2D to align scans for the
LiDAR motion estimation. The contributions of this paper
are shown below.

• As far as we know, this method is the first approach that
incorporates camera motion estimation through sensor
fusion into 2D-3D calibration.

• We study the optimal sensor motion which this calibra-
tion method works effectively.

• The input is only the RGB image from a camera and the
three-dimensional point cloud from a LiDAR and does
not need any other information such as the reflectance of
a LiDAR or the initial value of the extrinsic parameter.
The estimation result of the extrinsic parameter is more
accurate than other methods with a small number of
motion.

II. RELATED WORKS

Our work is related to the targetless and automatic 2D-3D
calibration and hand-eye calibration.

A. Target-less multi-modal calibration

Targetless and automatic 2D-3D calibration methods gen-
erally use the common information existing in both image
and point cloud. For example, portions that appear as dis-
continuous 3D shapes are highly likely to appear as edges
on an RGB image. Methods that align this three-dimensional
discontinuous portion with the 2D edge has been proposed
[8], [9]. Meanwhile, a multi-modal alignment method using
Mutual Information (MI) was proposed by Viola et al. [10],
and it has been developed mainly in the field of medical
imaging. 2D-3D calibration methods using MI for evaluating
the commonality between LiDAR and camera have also been
proposed in recent years. As indicators evaluated through
MI, reflectance - gray scale intensity [11], surface normal -
gray scale intensity [12], and multiple evaluation indicators
including discontinuities of LiDAR data and edge strength
in images [13] etc. are used. Taylor and Nieto also proposed
gradient based metric in [14].

While these methods align 3D point cloud to 2D image
using 3D to 2D projections, some texturing methods using
images taken from multiple places with a camera to construct
a stereo, reconstructing 3d structure from the images and
aligning it to 3D point cloud has also been proposed. In
[15], a method of computing the extrinsic parameter between
the LiDAR and the camera for the texturing a dense 3D
scan is proposed. The extrinsic calibration was done by
aligning dense three-dimensional range data and sparse three-
dimensional data reconstructed from two-dimensional stereo
images.

B. Hand-eye Calibration

The method of changing the position and orientation of
the sensor and performing the calibration using the motions
observed by each sensor is known as hand-eye calibration.
Let A and B are the changes in position and orientation
observed by two fixed sensors respectively, and X be the
unknown relative position and orientation between sensors.
Then the expression AX = XB holds(Refer top of Fig. 1).
By using this expression to solve X, extrinsic parameter
between sensors can be obtained [16], [17]. Furthermore,
due to the influence of noise on the sensor, Kalman Filter
was used in calibration methods for estimating the bias of
the sensor simultaneously [18], [19].

In [20], a method to calibrate the transitions between
four cameras mounted on the car using visual odometry
is proposed. In [7], Taylor and Nieto propose a method
to obtain the motion of a sensor in 2D-3D calibration
and estimate the extrinsic parameter and the time offset
of the motion between the sensors. In their method, a
highly accurate result is obtained by combining a multi-
modal alignment method. However, since the method uses
the scaleless position transition estimated from the camera
images, it is difficult to obtain an accurate camera motion.
In particular, it is difficult to accurately obtain the translation
parameters with a small number of motions.

III. METHODOLOGY

Figure 2 shows the overview of our method. This method
is roughly divided into two steps. In the initialization phase,
we estimate the extrinsic parameter from the LiDAR motions
using ICP alignment and camera motions using feature
point matching. Then we alternatingly iterate estimating the
extrinsic parameter and the camera motions through sensor
fusion odometry.

A. Initial calibration parameter estimation

1) Sensor motion estimation: First, we explain about the
motion estimation of each sensor in the initial extrinsic
parameter estimation.

LiDAR
For the estimation of the LiDAR motion, we use a high-

speed registration method through ICP algorithm which
searches correspondence points in gaze directions [21]. We
create meshes on point clouds in advance using a sequence
of points and project these points onto two dimension and
use Voronoi splitting. When aligning scans, initially, the
threshold value of the distance between corresponding points
is set to be large, and the outlier correspondences are
eliminated while gradually decreasing the threshold value.

Camera
For the initial motion estimation of the camera, a method

using standard feature point matching is used. First, we ex-
tract feature points from two images using AKAZE algorithm
[22], calculate descriptors, and make matchings. From the
matchings, we calculate the initial relative position and pose
between camera frames using 5 point algorithm [23] and
RANSAC [24]. After obtaining the initial relative position
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Fig. 2. Overview

and orientation, optimization is performed by minimizing the
projection error using an angle error metric with the epipolar
plane was used [25].

2) Initial extrinsic parameter calibration from sensor mo-
tion: In order to obtain the relative position and orientation
between the two sensors from the initially estimated motions,
we use a method that extends the normal hand-eye calibration
to include the estimation of the camera motion’s scale. Let
the i th position and pose changes measured by the camera
and the LiDAR be 4 × 4 matrix Ai, Bi respectively and
extrinsic parameter between two sensors be 4 × 4 matrix
X. AiX = XiB can be established and the following two
equations hold by decomposing it [16],

Ri
aR = RRi

b (1)
Ri

at+ tia = Rtib + t, (2)

where Ri
a and Ri

b is a 3×3 rotation matrix of Ai and Bi, tia
and tib represents the 3×1 vector of translational component
of Ai, Bi. Let ki

a and ki
b be rotational axis of rotation matrix

Ri
a and Ri

b. When Eq. 1 holds, following equation holds,

ki
a = Rki

b. (3)

Since the absolute scale of translational movement between
camera frames can not be calculated, Eq. 2 is written as
following using the scale factor si,

Ri
at+ sitia = Rtib + t. (4)

R is linearly solved by using SVD from series of ki
a,k

i
b.

However, to solve the rotation, more than two position
and pose transitions are required and rotations in different
directions must be included in the series of transition. In
nonlinear optimization, R is optimized by minimizing the
following cost function derived from Eq. 1,

R = arg min
R

∑
i

∣∣Ri
aR−RRi

b

∣∣ (5)

After optimizing R, t and si is obtained by constructing a
simultaneous equation and solving it linearly using the least
squares method.

B. Iteration of Camera motion estimation and Calibration
from sensor motion

Initial extrinsic parameter can be obtained using estimated
LiDAR motions and initial camera motions. However, scale
information of camera motion cannot be obtained from
camera images alone. The rotation component of the extrinsic
parameter is independent of the scale information and can
be accurately estimated in the initial parameter estimation
phase. On the other hand, the translation of the extrinsic
parameter can be calculated from the difference between
the movement amount of the camera and the LiDAR when
rotating sensors as indicated in Eq. 2. Therefore, since the
precision of the translational component of the extrinsic
parameter is deeply related to the accuracy of camera motion
estimation, it is difficult to accurately estimate the extrinsic
parameter from the scaleless camera motion.

On the other hand, the motion estimation using the sensor
fusion system can solve the scaled motion with high accuracy
[1], [2]. Once the extrinsic parameter is estimated, we can
estimate the camera motion Ai with scale by using the given
extrinsic parameter X and the range data scanned by the
LiDAR. After motion estimation, the extrinsic parameter X
is re-estimated using the series of AiandBi. Since there is no
need to estimate the translation component of Ai at the same
time, it is possible to estimate the translation component of
X more accurately than the initial estimation. Estimating
the camera motion Ai again using the re-estimated X and
the range data increases the accuracy of Ai. The extrinsic
parameter is then optimized by repeating the estimation
of the camera motion and the estimation of the extrinsic
parameter alternately until convergence.

1) Camera motion estimation with range data: Figure 3
shows that the schematic diagram of constructing 2D-3D cor-
respondence. Inputs are point cloud in the world coordinates,
two camera images taken at the position of camera 1, 2,
and extrinsic parameter to localize camera 1 into the world
coordinates. First, a certain point p in the point cloud onto
the image in Camera 1 using projection function Proj(pc)
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Fig. 3. Schematic diagram of how to obtain 2D-3D correspondences

which project 3D points pc in camera coordinates onto
camera image and extrinsic parameter by following equation,

v = Proj(Rp+ t), (6)

where v is the vector heading from the center of camera 1 to
the corresponding pixel. Then we track the pixel on which
p is projected from camera image 1 to image 2 using KLT
tracker [26]. Let v′ be the vector heading from the center
of camera 2 to the tracked pixel. Now the point p and the
vector v′ of 2D-3D correspondence is constructed.

After constructing 2D-3D correspondences, it is possible
to optimize the relative position and orientation of the camera
1 and the camera 2 by minimizing the projection error. Let
(v′j ,pj) be the j th 2D-3D correspondence in i th motion,
the position and pose transition between cameras Ri

a, t
i
a can

be optimized by minimizing the following angle metric cost
function.

Ri
a, t

i
a = arg min

Ra,ta

∑
j

∣∣v′j × Proj(Ra(Rpj + t) + ta)
∣∣ (7)

For the initial values of Ra and ta, generalized perspective
3 point algorithm [27] is used in the first iteration. After the
second iteration, the estimation result in the previous iteration
is used.

2) Parameter Calibration: Once the position and pose
transition of the camera is recalculated, the extrinsic param-
eter is optimized again using the motion of the camera and
the LiDAR. In each iteration, R and t is solved linearly and
non-linearly. In non-linear optimization, R is optimized by
Eq. 5 and t is optimized by following,

t = arg min
t

∑
i

∣∣(Ri
at+ tia)− (Rtib + t)

∣∣ (8)

IV. OPTIMAL MOTION FOR 2D-3D CALIBRATION

We consider the motion suitable for the calibration taking
into consideration the influence each other’s error has on
the mutual parameter estimation. During the alternating
estimation of the extrinsic parameter between the sensors
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Fig. 4. Schematic diagram when there is an error in the localized position
of the camera 1

and the motion of the camera, it is inevitable to estimate
the position and pose of each other with the error. Since
motion estimation and extrinsic parameter estimation are also
dependent on the measured environment and the number
of motions, it is difficult to obtain precise convergence
conditions. However, it is possible to consider the motion
that is likely to converge the estimation.

A. Camera motion estimation

First, we consider the influence of the extrinsic parameter
error on the localization of the camera and the conditions
under which the estimation is successful. We suppose the
case where there is an error in the extrinsic parameter given
in the section as shown in Fig. 4. Let ”Estimated Camera 1”
be the estimated position of camera 1 with respect the actual
camera position (Camera 1, 2 in Fig. 4). The rotation error
between Camera 1 and Estimated Camera 1 is considered to
be negligibly small.

Next, consider the operation of creating 2D-3D correspon-
dence. In the projection step, a certain point p′ on the point
cloud is projected onto the Estimated camera 1. However,
a difference is caused between the projected pixel and the
3D point due to the error of the extrinsic parameter. Then
the pixel on which the point p′ is projected is tracked on the
Camera 2 image. Let v be the vector heading from Estimated
camera 1 to the point p′. Point p is actually corresponds
of the vector v. Ignoring the error of pixel tracking from
Camera 1 to Camera 2, the direction vector from Camera 2
to the pixel corresponding to v is v′. On the computer, the
three-dimensional point p′ and v′ correspond to each other.

For the projection error, assuming that there is no rotation
error in estimating the position and orientation of the camera



2, the projection error when the estimated position is aest is

e(aest) =

∣∣∣∣v′ × αv − aest
|αv − aest|

∣∣∣∣ . (9)

From Fig. 4, let a be the vector directing from Camera 1 to
Camera 2, v′ is expressed as following,

v′ =
βv − a

|βv − a|
. (10)

Substitute Eq. 10 for Eq. 9,

e(aest) =

∣∣∣∣ βv − a

|βv − a|
× αv − aest
|αv − aest|

∣∣∣∣ . (11)

When optimizing aest, we compute the projection error for
v in all directions and aest approach to the point where the
sum of the projection error is minimized.

Now, in order to estimate the extrinsic parameter ac-
curately, ideal camera motion should be estimated as real
camera actually moves. In other words, ideally estimated
motion becomes aest → a. In order for aest to approach a,
the projection error e(a) when Estimated Camera 2 is located
away from Estimated Camera 1 by a becomes small. e(a)
is represented by the following equation:

e(a) =

∣∣∣∣ (α− β)(a× v)

|βv − a||αv − a|

∣∣∣∣ . (12)

From Eq. 12, the followings can be said.
• The smaller the a, the smaller the projection error

even if the extrinsic parameter contains error. That is,
the smaller the moving distance of the camera is, the
more accurate the estimation becomes. In other words,
when a is small, the existence probability of Estimated
Camera 2 appears to the periphery of the ideal place
acutely. Therefore in the subsequent extrinsic param-
eter estimation, the existence probability of Estimated
Camera 1 also appears sharply around the true value.

• The smaller the value of (α − β), the smaller the
projection error. The cases the difference of (α − β)
comes out are, for example, when there is a large step
under environments or when the incident angle from
the camera is shallow. Therefore it is preferable that
the calibration environment is, for example, surrounded
by smooth walls.

B. Extrinsic parameter estimation

Next, we consider the influence of the error in the esti-
mated motions on extrinsic parameter calibration. Ignoring
the rotation error for the simplification, consider the case
where there is the error in the translation of the camera
motion and the translation of the extrinsic parameter for
Eq. 2. Let ea and e be the error with respect to ta and
t,

Ra(t+ e) + ta + ea = Rtb + t+ e. (13)

Taking the difference between Eq. 13 and Eq. 2,

ea = (I−Ra)e. (14)

Fig. 5. Indoor and outdoor calibration scene taken by Ladybug 3

In the case seeing Eq. 14 as a single unit, when the rotation
amount of the Ra is small, the translation errors become
|ea| < |e|. This indicates that the error of the camera
motion propagates to the extrinsic parameter in the diverging
direction to the error.

If the amount of error propagation in estimating the
extrinsic parameter from the camera motions does not exceed
the amount of the error reduction in the camera motion esti-
mation using the distance image, the accuracy of the relative
position and orientation is improved by the proposed method.
Therefore, in order to reduce the propagation amount of
error in relative position and pose estimation, increasing the
rotation amount of the camera motion is effective. It is also
effective to sample a plurality of motions as much as possible
for robust extrinsic parameter estimation. Regarding the
amount of rotation of the camera motion, if the appearance of
the image changes significantly, it might affect the accuracy
of the motion estimation. Therefore this also needs to be
taken into account. Although the proposed method can be
applied to perspective camera, an omnidirectional camera has
advantage because it is possible to secure a common field of
view even when the camera rotates significantly.

V. EXPERIMENTAL RESULTS

In the experiments, we conduct calibrations in indoor
and outdoor environments shown in Fig. 5 using panoramic
LiDAR, multi-beam LiDAR, and omnidirectional camera.
One of the compared methods is image-based calibration
using the camera motions with no scale, which is used as
the base in [7]. In Fig. 2, this is the initialization output
and hereinafter referred to it as ”Scaleless”. In addition to
Scaleless, we used calibration by Manual correspondence
acquisition and calibration with alignment using MI [11] as
the other compared methods.



Fig. 6. Sensor configuration. (a)Imager 5010C and Ladybug 3, (b)HDL-
64E and Ladybug 3
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Fig. 7. Transition graph of rotation error when changing the number of
motion. Blue line: Scaleless, Red line: Ours.

A. Evaluation with colored range data

First, the results using the evaluation datasets are shown.
To measure the data set, two range sensors Focus S 150 by
FARO Inc.1 and Imager 5010C by Zollar+Flöhlich Inc.2 are
used. Three-dimensional panoramic point clouds are scanned
with both range sensors. In the data measured by Focus
S 150, a colored point cloud is obtained using a photo
texture function of it. In the evaluation, inputs are a pseudo
panorama rendered image obtained from colored point cloud
scanned by Focus S 150 and a point cloud scanned by Imager
5010C. Ground truth is computed through registration of two
point clouds scanned by the two sensors.

In the indoor scene dataset, motions are obtained by
rotating sensors 5 times in the vertical direction and 5 times
in the horizontal direction to measure the data. The result of
calibration with changing the number of motion in the indoor
scene is shown in Fig. 7 and Fig. 8. The horizontal axis of
the graphs indicates the number of horizontal and vertical
motions used for calibration. For example, when the number
is one, it indicates that the calibration is performed using
two motions in total with one horizontal and one vertical
motion. Evaluation is performed by conducting calibration
10 times in each motion number sampling motions randomly.

1https://www.faro.com
2http://www.zf-laser.com
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Fig. 8. Transition graph of translation error when changing the number
of motion. Blue line: Scaleless, Red line: Ours. Bottom shows the result of
our method only.
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Fig. 9. Error from the ground truth of the calibration result by each method
in indoor scene

Figure 7 and Fig. 8 show the graphs plotting the average and
standard deviation of the error of rotation and translation of
extrinsic parameter. The blue line indicates the error of the
Scaleless and the red line indicates the error of the extrinsic
parameter estimated by ours. In terms of rotation, there is no
great improvement in accuracy. However, for the translation
error, the accuracy improves dramatically using the proposed
method as shown in Fig. 8. It is also shown that the error is
gradually decreasing by increasing the number of motions.

The results compared with other methods (Manual, MI)
are shown in Fig. 9. In the registration by maximizing
MI, only 1 scan is used, and the initial point was shifted
from the ground truth by a fixed distance (0.1m) in the
random direction only for the translation parameter. In the
Manual calibration, calibration is carried out by acquiring
30 correspondings as much as possible from all directions.
From the Fig. 9, the rotational error is less than 1 degree in
any method. While, in translational error, ours achieves the
least error compared to other methods.

Evaluation results using the outdoor environment dataset
are also shown in Fig. 10. Motions are obtained by rotating
sensors by 3 times in the vertical direction and 3 times in the
horizontal direction to measure the data. For the rotation, our
method obtained the best result. However, in any method, the
errors are less than 0.5 degrees and no significant difference
is seen. On the other hand, ours has the best estimation
result for the translation. Considering that the accuracy is less
than 1 cm with the same number of motions in the indoor
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Fig. 10. Error from the ground truth of the calibration result by each
method in outdoor scene

Fig. 11. The pictures in which panorama images taken by Ladybug 3
and panorama rendered reflectance image scanned by Imager 5010C are
alternately arranged like a checker. When extrinsic parameter is correct,
consistency is established between the two images. We set stitching distance
of panoramic image to 4m in indoor scene and 7m in outdoor scene.

environment, we can say that the indoor scene is good for
calibration.

B. Ladybug 3 and Imager 5010C

Next, we show the results of calibration using omnidirec-
tional camera Ladybug 3 by FLIR Inc.3 and Imager 5010C.
The appearance of the sensor configuration is shown in
Fig. 6 (a).

For the evaluation, as shown in Fig. 11, the evaluation
is performed by overlaying the image of Ladybug 3 and
the reflectance image obtained by panorama rendering from
the center of the estimated camera position in the point
cloud. Images are displayed alternately in the checker pat-
tern. We then confirm the consistency on the two images.
From Fig. 11, Scaleless before optimization does not have
consistency between RGB image and reflectance image, but
the results of the proposed method have consistency between
two images.

C. Ladybug 3 and Velodyne HDL-64E

We show the result of extrinsic calibration of HDL-
64E by Velodyne Inc. 4 which is multi-beam LiDAR and
Ladybug 3 in the indoor scene. The appearance of the sensor
configuration is shown in Fig. 6 (b). In the measurement of

3https://www.ptgrey.com/
4http://velodynelidar.com/
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Fig. 12. Error from the ground truth of the calibration result by each method
using HDL-64E and Ladybug 3. In MI, Scaleless, and ours, calibration
performed with 16 scans

data, the rover loading the sensors is operated to generate the
rotation motion in the vertical direction and the horizontal
direction. For the rotation in the vertical direction, motions
are generated by raising and lowering only the front wheel
by about 4 cm step. When acquiring data, we stopped the
rover and measured it with stop-and-scan. To obtain range
data and camera image scanned at the same position, we
visually check the timing when the LiDAR and the camera
were stationary.

The ground truth of extrinsic parameter between HDL-64E
and Ladybug 3 is indirectly obtained by using the point cloud
measured by Imager 5010C under the same environment and
computing the relative positions and orientations with Imager
5010C. Regarding the HDL-64E and Imager 5010C, the po-
sition and orientation are obtained by aligning the range data
scanned by each sensor. For Ladybug 3 and Imager 5010C,
the extrinsic parameter is obtained by manually specifying
the correspondence point between the panorama image and
the three-dimensional reflectance image and computing the
extrinsic parameter using the correspondences. In Scaleless
and the proposed method, eight horizontal rotation motions
and eight vertical rotation motions are randomly sampled
each time, and an average error of 10 times is recorded.
In Manual calibration, calibration is carried out using only
one scan, taking corresponding points between the panoramic
image of Ladybug 3 and the 3D reflectance image of HDL-
64E. For MI, MI is calculated with 16 scan sets of image-
point cloud scanned at each position.

From Fig. 12, Manual calibration fails to obtain accurate
results because the narrow scan range and the sparse point
cloud of HDL-64E make correspondence construction dif-
ficult. Also in MI, since HDL-64E has low resolution and
information of reflectance is not clear, optimization cannot
be completed with this dataset. On the other hand, in the
motion-based methods, accuracies are less than 1 degree in
the rotation in both Scaleless and ours. However, in Scaleless,
translation is significantly different from the ground truth.
In contrast, in ours, highly accurate translation results are
obtained.

The proposed method can also work with motions acquired
by operating rover. To obtain all the extrinsic parameter of
6-DoF by hand-eye calibration based method, it is necessary
to rotate in two or more directions. However, regarding the
rotation motion in the vertical direction, a part of the platform
on which the sensors are mounted must be raised. Although



this operation is more difficult than the horizontal rota-
tion, this experiment demonstrates that the proposed method
works well with the vertical rotational motions obtained by
a reasonable mobile platform operation such as raising and
lowering the small step.

VI. CONCLUSION

In this paper, we present targetless automatic 2D-3D
calibration based on hand-eye calibration using sensor fu-
sion odometry for camera motion estimation. The proposed
method can be fully utilized with less translation and larger
rotation camera motions. It is also preferable to carry out the
measurement for calibration in the place surrounded by flat
terrains as much as possible.

It is necessary to rotate the sensor in multi directions
to carry out the hand-eye calibration. However, in many
cases it is more difficult to make rotation in the vertical
direction than in the horizontal direction. Although the
proposed method also requires satisfying this conditions, it
is enough for carrying out the calibration to use vertical
rotation obtained through reasonable movement by using
mobile platform. Therefore this method is highly practical
and it is possible to calibrate dynamically during scanning
by choosing appropriate motions.
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