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Abstract

3D sensing systems mounted on mobile platform are

emerging and have been developed for various applica-

tions. In this paper, we propose a profiler scanning sys-

tem mounted on a rover to scan and reconstruct a bas-relief

with high density and accuracy. Our hardware system con-

sists of an omnidirectional camera and a 3D laser scanner.

Our method selects good projection points for tracking to

estimate motion stably and reject mismatches caused by dif-

ference between the positions of laser scanner and camera

using an error metric based on the distance from omnidi-

rectional camera to scanned point. We demonstrate that

our results has better accuracy than comparable approach.

In addition to local motion estimation method, we propose

global poses refinement method using multi modal 2D-3D

registration and our result shows good consistency between

reflectance image and 2D RGB image.

1. Introduction

3D digital archiving is a technique that uses 3D scanning

systems in creating models of existing real-world objects.

It has particularly played an important role in the preserva-

tion and restoration of cultural heritage assets. These assets

are exposed to the risk of deterioration due to natural and/or

man-made causes and preserving their fine shape and struc-

ture is of great interest. For example, Fig. 1 (a) shows a

bas-relief in a Khmer-style temple which contains a deli-

cately fine detail. Moreover, this relief is carved over a very

wide area and it is challenging to produce a high density

scan of all its parts.

(a)

(b) (c)

Figure 1. (a) A bas-relief in a Khmer-style temple. (b)Proposed

scanning sensor system mounted on a rover. (b)Obtained recon-

struction result of relief by our method.

Traditional modeling methods use stationary laser scan-

ner placed in different locations of the scanned object. The

obtained data is later aligned and merged. Using these

methods on large data is laborious. Alternatively, various

scanning systems mounting the laser scanner on a mobile

platform can help speed up the scanning process such as

LiDAR-only system [26, 31], LiDAR + IMU and GPS sys-
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tem [25, 3, 22], LiDAR + camera system [32, 2, 33, 1].

Zheng et al. [33] proposed a rail system for scanning re-

lief. However, it is heavy, difficult to transport and has very

limited moving flexibility. To address this problem, we have

developed a rover scanning system (See Fig. 1 (b)) which is

far lighter and less constrained.

Mobile scanning platforms introduce a problem of mo-

tion estimation during merging and alignment. In this pa-

per, we present a sensor motion estimation method by tri-

angulating correspondences in 2D panoramic image and

3D point clouds from calibrated and synchronized omni-

directional camera and laser scanner. We construct 2D-3D

correspondences using projection and point tracking and

only choose pairs where the pixels of projected 3D points

constitutes a high curvature. We then estimate the poses

of the camera frames using triangulation. An error met-

ric based on distance from laser scanner to scanned point

is adopted to reject outlier from 2D-3D mismatches caused

by difference of positions between the laser scanner and the

omni directional camera. Our scanning system can obtain

reconstruction 3D point clouds of relief with good fidelity

as shown in Fig. 1 (c).

In addition to local motion estimation by triangulation,

we also demonstrate a multi-modal 2D-3D registration be-

tween RGB color from camera and reflectance of laser by

deforming estimated motion using mutual information.

This paper makes the following contributions.

• Our rectification method obtains stable construction

results by directly projecting 3D points onto 2D im-

ages and only select points on pixels with high curva-

ture.

• We propose a multi-modal registration for motion esti-

mation that result in a consistent projected reflectance

image and 2D RGB image.

• Our method considers mismatches due to the differ-

ence of positions between the laser scanner and the

camera and rejects them as outlier by adopting the

error metric based on distance from omni-directional

camera to scanned point.

Our hardware system mainly consists of a rover, a 3D

laser scanner and an omnidirectional camera as shown in

Fig. 2. The laser scanner is used in profiler mode, that is,

the scans are round slices that move with the rover. To syn-

chronize the data, a trigger signal is sent from the laser scan-

ner to the camera when scanning starts. The two sensors are

positioned such that there is enough overlapping area on the

obtained data. The motion of laser scanner is then estimated

using the 2D images and the 3D scans.

Rover

3D Laser

Scanner

Omni directional

camera

Scan line

Figure 2. Hardware system

2. Related Work

Variety hardware systems are used in researches about

3D reconstruction with mobile platform.

Camera system

Recently, monocular camera systems based on SfM,

such as [7, 12, 20, 6, 13], have shown impressive results.

However, these methods generally do not solve the scale of

the motion without fusion with other sensors or assumptions

about the sensor motion. Alternatively, stereo camera sys-

tems, such as [21, 17], can determine scale of motion which

is provided by the baseline reference between two cameras.

Nevertheless, the accuracy and resolution is still far from

the level of the laser scanners.

RGB-D camera system

Motion estimation using both images and depth data

from RGB-D camera [19, 29, 4, 28] can be conducted eas-

ily and stably without the scale issue. A number of RGB-D

SLAM methods have also been proposed showing promis-

ing mapping results [10, 9, 11]. While the real-time CMOS

RGB-D sensor is good for motion tracking due to low dis-

tortion of depth map, Signal-to-Noise Ratio (SNR) is low

because of the low Light Concentration Ratio (LCR) [18].

Therefore RGB-D camera is not good for outdoor environ-

ments with strong background light and long range scan-

ning.

LiDAR-only system

On the other hands, laser scanning systems concentrate

the available light source power in a smaller region, re-

sulting in a larger SNR [18]. Laser scans can obtain far-

ther distance measurements with lower noise than hand-
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Figure 3. Method overview. The inputs are the synchronized and calibrated 3D point clouds and 2D image sequence. Initial motion is

computed by 3D-2D projection, point tracking and triangulation. Then the motion is optimized using mutual information resulting in a

motion and rectified data.

held RGB-D cameras because of large SNR. However it

requires long acquisition time, which leads to the distor-

tion of point clouds caused by movement during scanning.

State estimation made with LiDARs only [26, 31] is good in

terms of low hardware costs. Although LiDAR-only system

not required to calibrate or synchronize with any other sen-

sor, it is difficult to obtain accurate estimation results due to

its long acquisition time.

LiDAR + IMU, GPS

One way to estimate LiDAR sensor motion is by incor-

porating other sensors to recover the motion. Incorporating

IMU, GPS with LiDAR is simple and direct solution of mo-

tion estimation problem [25, 3, 22]. However, the accuracy

of them is not enough for 3D digital archive.

LiDAR + Camera fusion system

Motion estimation methods with images or/and addi-

tional depth sensor (e.g., 1-axis lidar) are well designed for

SLAM system in robotics [32]. A proposed in [22] also

combines lidar with RGB camera for indoor/outdoor 3D re-

construction which enhances the robustness of motion esti-

mation. 3D laser scanner is used as profiler mode in scan

systems proposed in [33, 2]. Bok et al. demonstrate 3D re-

construction of village-level scale heritage in [2] using four

cameras and two 2D laser sensors with weak GPS prior.

However our work requires millimeter units quality and it

is difficult to estimate accurate sensor position using GPS.

3. Local camera pose estimation

We address the motion estimation problem during scan-

ning by using laser scanner and camera fusion system. An

overview of our method is shown in Fig. 3. The inputs are

3D point clouds from the laser scanner and 2D panoramic

image sequence from the omni directional camera. These

two sensors are calibrated and synchronized. The data is

taken with the rover moving in the forward direction.

In our motion estimation method, first, 2D-3D corre-

spondences are constructed by projection of 3D points onto

2D images. Then the 2D-3D correspondences are filtered

and tracked using KLT tracker [15]. Local camera poses are

then triangulated using linear and non-linear optimization.

3.1. Coordinate system

Laser scanner and omni-directional camera are cali-

brated in advance. Now, let i, j be the index of 2D frame

and 3D point, ti, tj be a time that 2D frame i is taken and

3D point j is scanned, XL
j be 3D coordinates of point j in

the laser scanner local coordinates, x
j
i be the corresponded

2D point on image i of 3D point j. We want to estimate the

sensor position Ri,Ti at ti. Translation from laser scan-

ner to camera coordinates is as following. An operation to

project XL
j onto image is described as following.

x
j
i = Proj(XL

j ). (1)

X
L
j can be translated to world coordinates XW

j by the po-

sition parameter Rj ,Tj as:

X
W
j = RjX

L
j +Tj . (2)

Rj ,Tj are computed through linear interpolation of

Ri,Ti.



3.2. 2D-3D correspondence

To make 2D-3D correspondences, 3D points scanned

during ti − ∆t < tj < ti + ∆t are projected onto 2D

frame i. Using all the projected point results in high com-

putational cost and has the risk to include unstable points

for tracking. To prevent this, only the points projected onto

pixels which is located on high curvature edge are selected

as feature points. Let XL
(i,j) be local coordinates of 3D point

j which is projected onto frame i and selected as a feature

point and X
W
(i,j) is global coordinates of XL

(i,j). Now X
L
(i,j)

and x
j
i are corresponded by projection. Then x

j
i is tracked

on the image sequential by using KLT tracker and we obtain

corresponded point of x
j
i on each frame.

3.3. Triangulation

The triangulation is based on Zheng’s method proposed

in [33]. Assuming that the poses of camera frame 0 to n

are already computed and point j, where ti − ∆t < tj <

ti + ∆t, is aligned to world coordinates XW
j . The pose of

camera n+1Rn+1,Tn+1 is initially computed by perspec-

tive 3-point algorithm [8] and RANSAC [5] with correspon-

dences between X
W
j and x

j
i+1. Then an energy function is

constructed from the correspondences defined as:

{Rn+1,Tn+1}

= arg min
R,T

n
∑

i=1

∑

j

(||Proj(RT (XW
(i,j) −T))

− x
j
n+1||

2)

+

n
∑

i=1

∑

j

(||Proj(RT
i ((RX

L
(n+1,j) +T)−Ti))

− x
j
i ||

2). (3)

Eq. 3 indicates the summation of the reprojection errors of

projected 3D-points in the world coordinates onto current

frame n+1 and projected 3D-points in the local coordinates

of current sensor position (at tn+1) onto all of the previous

frames (from 0 to n). Figure. 4 shows a schematic diagram

of the triangulation method.

3.4. Error metric for outlier rejection

It is inevitable to make a mismatch with 3D-2D pro-

jection especially when the center positions of camera and

laser scanner are gapped as shown in Fig. 5. This mismatch

causes the error accumulation to the red arrow direction in

Fig. 5. Moreover, it is difficult to remove this correspon-

dence using reprojection error on the image when the base-

line between two sequential camera positions is short be-

cause of the small angle θ between the two vectors from

camera center to the tracked point and scanned point.

It is difficult to reject the mismatch based on angle even

if there is large difference between distance from camera to

n-1 Frame
n+1 Frame

n Frame

World Coordinate

R     ,Tn+1 n+1

Figure 4. Triangulation. When 0 to n frames are worked out (only

n − 1 and n frames are shown in figure), pose of n + 1 frame is

firstly computed by Perspective 3 Point algorithm [8] using red and

green points. Then pose is optimized by non-linear optimization

with 2D-3D correspondences of red, green and blue points.

n-th laser scanner 
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positon

Scanned Object

Point

n-th camera 

positon
tracking
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Expected 3D point from 
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Figure 5. Mismatch of 3D point and 2D image are caused by sen-

sor position gap. Error accumulates in the red arrow direction.

scanned 3D point and depth of corresponded pixel. On the

other hand, translated 3D point from n to n + 1-th cam-

era coordinates must be located on extension line of tracked

pixel direction at depth d and observation error in 3D co-

ordinates become large. Therefore, we instead use d sin θ
(See Fig. 5) as error metric for outlier rejection. This for-

mula indicates an approximate distance of red line in Fig. 5

due to small angle θ.

3.5. Bundle adjustment

Bundle adjustment is implemented to refine motion esti-

mation. An energy function is based on reprojection error

when 3D points onto all of the 2D frames. The energy func-

tion is defined as:

{R0 . . .RN ,T0 . . .TN}

= arg min
R0...RN ,T0...TN

∑

i

∑

j

∑

k

δi,j ||Proj(RT
k ((RiX

L
(i,j) +Ti)−Tk))− x

j
k||

2(4)

δj,k =

{

1 (if XW
j is detected on frame k)

0 (else)
. (5)



All of camera poses are optimized by minimizing the repro-

jection errors with Levenberg-Marquard Method.

4. Registration by using MI

Local motion estimation method using 2D-3D corre-

spondence and tracking can obtain good result. However,

accumulation of error is inevitable because of the tracking

error. To refine estimation results, 2D-3D registration of an

entire region between panoramic image and point clouds is

introduced.

Although we can extract color information of 3D point

clouds using sensor calibration, 3D points to 2D frame pro-

jection error is inevitable because of low resolution or fps

of omni-directional camera. Therefore, the color of 3D

point extracted from 2D frame is not guaranteed. On the

other hand, reflectance of laser surely indicates information

of surface material of laser footprint. There are no error be-

tween scanned 3D point coordinates and reflectance. There-

fore, it is valuable to utilize reflectance information for mo-

tion estimation. Kurazume, et al. conducts multi modal reg-

istration using reflectance and RGB image using edges [14].

Our motion estimation method using reflectance is based

on multi-modality 2D-3D registration by maximizing mu-

tual information (MI). Multi-modality registration method

using MI is proposed by Viola et al. [27], and mainly de-

veloped in the field of medical science. Pandey, et al. con-

duct sensor calibration between camera and LiDAR using

MI [23].

4.1. Motion deformation model

First, we describe the deformation model of the sensor

motion line in the optimization phase with MI. Note that

W = (rx, ry, rz, x, y, z) indicates 6-DoF parameters. Ini-

tial position at time t calculated by method in Sec. 3 is

W (t). First, we choose two camera frames at t1 and t2
(t1 < t2). Motion of the section between t1 and t2 is

then optimized. Let W (t) as the original position at t and

W ′(t) as the translated position at t. The translated mo-

tion W (t) is determined by changing six parameters of fi-

nal sensor position W ′(t2). Let P (t) as the vector of pa-

rameters (rx, ry, rz)T or (x, y, z)T . The translated motion

P ′(t)(t1 < t < t2) is calculated as:

P ′(t) =
|P (t)− P (t1)|

|P (t2)− P (t1)|
(P (t2)− P ′(t2)) + P (t). (6)

Motion of the entire segment between t1 and t2 is rescaled

by final position W ′(t2) (See Fig. 6). MI is calculated with

the deformed motion W ′(t).
The entire scan period is divided to this short segments.

Although high resolution motion refinement can be pro-

ceeded in the case of increasing the number of segments,

there could be insufficient information to register with max-

imizing MI. We determine the number of segments (the

P(t)

P'(t)

P(t )1

P(t )2

P'(t )2

Figure 6. Deformation model of motion. P (t) indicates (x, y, z)
or (rx, ry, rz) in 6-DoF parameters. Motion entire the segment

between t1 and t2 is rescaled by final position P ′(t2)

length of the one segment) experimentally by considering

this trade-off.

4.2. Mutual information

To optimize motion, MI between gray scale images con-

verted from 2D RGB images and reflectance is used. To

compute MI, a technique based on the proposed method by

Maes et al. [16] using joint histogram is used . The joint

image reflectance histogram H = {hrf} with reflectance r

of 3D points and pixel value f of gray scale image is cal-

culated by projecting 3D point cloud onto 2D image frame.

MI is calculated with H as following,

I =
1

N

∑

f,r

hrf log
Nhrf

hfhr

(7)

where hf =
∑

r hrf , hr =
∑

f hrf are histogram value of

h and r and N =
∑

r,f hrf .

4.3. Joint histogram construction

Now the problem is how to construct the joint histogram.

Let x
j
i = Proj(RT (XW

j − T)) be the 2D coordinates

of projected 3D point j onto frame i. q(i,j),0 is a pixel

point where 0 < dj,x < 1, 0 < dj,y < 1:(dj,x, dj,y)
T =

x
j
i − q(i,j),0, and let q(i,j),1 = (1, 0)T + q(i,j),0, q(i,j),2 =

(0, 1)T + q(i,j),0, q(i,j),3 = (1, 1)T + q(i,j),0.

The joint histogram hrf is defined as:

hrf =
∑

j

3
∑

m=0

wj,m · δ(r − rk, f − fk,m), (8)

where wj,0 = (1 − dj,x)(1 − dj,y), wj,1 = dj,x(1 − dj,y),
wj,2 = (1 − dj,x)dj,y , wj,3 = dj,xdj,y , and δ is discrete

unit pulse.



Figure 7. An example of area separation on a panoramic image.

4.4. Area separation

Constructing joint histogram with entire image has the

possibility not to capture enough interrelation between re-

flectance and pixel value because of shade or including ex-

cessive kinds of material. To avoid this problem, several

rectangle windows the height of which is same as the height

of panoramic image are placed in one row on the panoramic

image as Fig. 7 shows. In the case of our scanning sys-

tem, the projected scan line traverses the panoramic image

from left to right. Therefore the small windows are located

to guarantee that sufficient 3D points for computing MI is

projected onto each window. MI is computed in each win-

dow and the sum of computed MI values is used for opti-

mization. Finally, the 6-DoF parameters are optimized by

maximizing the sum of MI using Powell method.

5. Experimental results

In this paper, we address local motion estimation prob-

lem and refinement of estimated motion with multi modal

registration and demonstrate validation of our method. We

use Z+F imager 5010 [30] as the 3D laser scanner and La-

dybug 3 [24] as the omnidirectional camera. The laser scan-

ner works in profiler mode and field of view is 320◦ at one

round scan resolution: 10000points. Head rotates at 50Hz.

The 2D image resolution from panoramic camera is cap-

tured in resolution 5400× 2700.

The scanned 3D data and 2D image sequence are stored

online in the internal memory of laser scanner and laptop

PC connected to camera, respectively. The obtained data is

rectified offline with a modern PC: Intel Core i7 @ 3.4G,

64GB memory. The motion estimation program is imple-

mented in C++.

5.1. Motion Estimation

To evaluate the accuracy of our motion estimation

method with triangulation, static scans in a same scene are

used. An error for evaluation is defined as the distance be-

tween rectified 3D point and its closest point. Our method

is compared to the method proposed by Zheng et al. [33].

Figure. 8 shows the estimated motion, Fig. 9 shows error

0.01 0.02 0.03 0.04 0.05 (m)

Figure 9. Error visualized images and a color bar. From the top:

Error visualized image reconstructed by Zheng et al.’s method;

Error visualized image reconstructed by our method; Color bar in-

dicating error value. Note that scanning scene is the same location

but at different time.
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Figure 10. Frequency distribution of error. (blue) Zheng’s

method [33]. (red) Our method.

visualized image and the frequency distribution of error in

each method is shown in Fig. 10. From Fig. 9 and Fig. 10,

our results shows larger number of small error points than

Zheng’s method (small error points are indicated as blue

points in Fig. 9). Top image of Fig. 8 shows estimated tra-

jectory of sensor on xy-plane by each method. The blue line

in the top image of Fig. 8 is biased in the +y direction. It

is likely that the bias is caused by the 2D-3D mismatches at

the right side of the sensors (and front side in Fig. 9) due to

the complex structure, whereas there is only relief in the left
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Figure 8. Estimated motion. (top) trajectory on xy-plane, (bottom) trajectory on xz-plane, blue line is sensor trajectory estimated by

Zheng’s method [33] and red line is estimated by our method.

Figure 12. Occluded 3D points. Several 3D points scanned by

laser scanner are not observed by omni-directional camera due to

occlusion by the pillar

side. Our method obtain better accuracy results compared

to Zheng’s method based on these factors without bias on

the left side due to the mismatches.

Figure. 11 shows two other reconstructed results in re-

flectance. Our method can reconstruct 3D model even in the

case of curving course. In the right scene in Fig. 11, 2D-3D

mismatches is made due to occlusion by the pillar as shown

in Fig. 12. Our method can estimate motion without the ef-

fect of the mismatches by the outlier rejection using depth

based error metric.

5.2. MI registration

To compute MI, we construct joint histogram with 3D

points the normalized reflectance of which is 0.05 to 0.55
and gray scale pixels the value of which is 0.1 to 0.7 (Upper

and lower limit of gray scale value are 0.0 and 1.0). The

numbers of classes in the joint histogram are 30, respec-

tively. Therefore class intervals of normalized reflectance

and gray scale value are 1.66×10−2 and 2.0×10−2, respec-

tively. We define length of one segment is approximately

14.5 sec. These values are experimentally determined.

Figure. 13 shows the images upon which the 3D points

are projected. These pixels are colored by the reflectance

value of the 3D points and the projected area is represented

as stripes to easily compare the edge of the reflectance im-

age and the 2D image. Figure. 13 shows that the motion is

optimized as the edges of the reflectance image converges

with the edges of 2D image with good consistency, espe-

cially the areas surrounded by red windows.

Although our registration method achieve good consis-

tency on 2D images, this optimization has small effect on

reconstructed 3D images. This could be attributed to the er-

ror of 2D-3D camera calibration or low resolution motion

deformation model.

6. Conclusion

This paper presented 3D reconstruction method in sensor

fusion system. Our method is designed for profiler 3D laser

scanner and camera fusion system, selects good projection



Figure 11. Other results. Reconstructed results are shown as reflectance image.

Figure 13. Images that pixels on where 3D points are projected

are colored by reflectance. (left) before registration, (right) after

registration. Areas surrounded red windows show that reflectance

image are well registered by our method.

points for tracking to estimate motion stably and consid-

ers the effects of mismatches from the difference of sensor

positions between laser scanner and camera. Our scanning

system can obtain 3D model of a bas-relief with good fi-

delity and high density. Although global pose refinement

by maximizing MI can be improved, we demonstrate that

3D reflectance image can be registered to 2D RGB image

using motion optimization.

Our method will help other laser scanner and camera fu-

sion systems (even those using cheap 1-axis LiDAR). Ob-

tained high density and accuracy 3D data is valuable for

preservation, restoration and analysis of cultural heritages.

Also it is worthwhile and challenging to recover global op-

timization using multi modal information for refinement of

motion estimation.

Acknowledgment

This work was, in part, supported by JSPS KAK-

ENHI Grant Number 16H05864, 16H02851, 25257303,

16J09277.

References

[1] A. Banno, T. Masuda, T. Oishi, and K. Ikeuchi. Flying Laser

Range Sensor for Large-Scale Site-Modeling and Its Ap-

plications in Bayon Digital Archival Project. International

Journal of Computer Vision, 78(2-3):207–222, 2008. 2

[2] Y. Bok, Y. Jeong, D. Choi, and I. Kweon. Capturing Village-

level Heritages with a Hand-held Camera-Laser Fusion Sen-

sor. International Journal of Computer Vision, 94:36–53,

2011. 2, 3

[3] M. Bosse, R. Zlot, and P. Flick. Zebedee: Design of a

Spring-Mounted 3-D Range Sensor with Application to Mo-

bile Mapping. IEEE Transactions on Robotics, 28:1104–

1119, 2012. 2, 3

[4] N. Engelhard, F. Endres, J. Hess, J. Sturm, and W. Burgard.

Real-time 3D visual SLAM with a hand-held RGB-D cam-

era. In RGB-D Workshop on 3D Perception in Robotics at

the European Robotics Forum, 2011. 2

[5] M. A. Fischler and R. C. Bolles. Random Sample Consensus:

A Paradigm for Model Fitting with Applications to Image

Analysis and Automated Cartography. Communications of

the ACM, 24(6):381–395, 1981. 4

[6] C. Forster, M. Pizzoli, and D. Scaramuzza. SVO: Fast semi-

direct monocular visual odometry. In International Confer-

ence on Robotics and Automation, 2014. 2



[7] Y. Furukawa and J. Ponce. Accurate, Dense, and Robust

Multiview Stereopsis. IEEE Transactions on Pattern Analy-

sis and Machine Intelligence, 32(8):1362–1376, 2010. 2

[8] R. M. Haralick, C.-n. Lee, K. Ottenburg, and M. Nölle. Anal-

ysis and solutions of the three point perspective pose esti-

mation problem. In Computer Vision and Pattern Recogni-

tion, IEEE Computer Society Conference on, pages 592–598.

IEEE, 1991. 4

[9] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. RGB-

D mapping: Using Kinect-style depth cameras for dense 3D

modeling of indoor environments. International Journal of

Robotics Research, 31(5):647–663, 2012. 2

[10] A. Huang, A. Bachrach, P. Henry, M. Krainin, D. Maturana,

D. Fox, and N. Roy. Visual Odometry and Mapping for Au-

tonomous Flight Using an RGB-D Camera. In International

Symposium on Robotics Research, 2011. 2

[11] C. Kerl, J. Sturm, and D. Cremers. Robust odometry esti-

mation for RGB-D cameras. In International Conference on

Robotics and Automation, 2013. 2

[12] G. Klein and D. Murray. Parallel Tracking and Mapping

for Small AR Workspaces. In International Symposium on

Mixed and Augmented Reality, 2015. 2

[13] B. Klingner, D. Martin, and J. Roseborough. Street View

Motion-from-Structure-from-Motion. In International Con-

ference on Computer Vision, 2013. 2

[14] R. Kurazume, K. Nishino, Z. Zhang, and K. Ikeuchi. Simul-

taneous 2D images and 3D geometric model registration for

texture mapping utilizing reflectance attribute. In Asian Con-

ference on Computer Vision, pages 99–106. Citeseer, 2002.

5

[15] B. D. Lucas and T. Kanade. An Iterative Image Registra-

tion Technique with an Application to Stereo Vision. In In-

ternational Joint Conference on Artificial Intelligence, pages

674–679, 1981. 3

[16] F. Maes, D. Vandermeulen, and P. Suetens. Comparative

evaluation of multiresolution optimization strategies for mul-

timodality image registration by maximization of mutual in-

formation. Medical Image Analysis, 3(4):373 – 386, 1999.

5

[17] M. Maimone, Y. Cheng, and L. Matthies. Two years of Vi-

sual Odometry on the Mars Exploration Rovers. Journal of

Field Robotics, 24(2):169–186, 2007. 2

[18] N. Matsuda, O. Cossairt, and M. Gupta. MC3D: Motion

Contrast 3D Scanning. In International Conference on Com-

putational Photography, 2015. 2

[19] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, A. D.

D. Kim, P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon.

KinectFusion: Real-time dense surface mapping and track-

ing. In International Symposium on Mixed and Augmented

Reality, 2011. 2

[20] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison.

DTAM: Dense tracking and mapping in real-time. In Inter-

national Conference on Conputer Vision, 2011. 2

[21] D. Nister, O. Naroditsky, and J. Bergen. Visual odometry

for ground vehicle applications. Journal of Field Robotics,

23(1):3–20, 2006. 2

[22] G. Pandey, J. R. McBride, and R. M. Eustice. Ford Campus

vision and lidar data set. International Journal of Robotics

Research, 30(13):1543–1552, 2011. 2, 3

[23] G. Pandey, J. R. McBride, S. Savarese, and R. Eustice. Au-

tomatic Targetless Extrinsic Calibration of a 3D Lidar and

Camera by Maximizing Mutual Information. In The Associ-

ation for Advancement of Artificial Intelligence, 2012. 5

[24] Point Gray Research. http://www.ptgrey.com/. 6

[25] S. Scherer, J. Rehder, S. Achar, H. Cover, A. Chambers,

S. Nuske, and S. Singh. River mapping from a flying robot:

state estimation, river detection, and obstacle mapping. Au-

tonomous Robots, 32(5):189–214, 2012. 2, 3

[26] C. H. Tong, S. Anderson, H. Dong, and T. Barfoot. Pose

Interpolation for Laser-based Visual Odometry. Journal of

Field Robotics, 31(5):731–757, 2014. 1, 3

[27] P. Viola and W. Wells III. Alignment by Maximization of

Mutual Information. International Journal of Computer Vi-

sion, 24(2):137–154, 1997. 5

[28] T. Whelan, H. Johannsson, M. Kaess, J. Leonard, and J. Mc-

Donald. Robust real-time visual odometry for dense RGB-

D mapping. In International Conference on Robotics and

Automation, 2013. 2

[29] J. Xiao, A. Owens, and A. Torralba. SUN3D: A Database of

Big Spaces Reconstructed Using SfM and Object Labels. In

International Conference on Conputer Vision, 2013. 2
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