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Abstract— We propose an extrinsic calibration method for
LiDAR-camera fusion systems using variations in intensities
projected from camera images to the LiDAR point cloud. As
the input, the proposed method uses a sequence of LiDAR
data and camera images captured while moving the system.
Once the camera motion is calculated, camera images are
projected onto the point cloud. The variations in the projected
intensities at each point are large in the presence of errors in
the estimated motion or calibration parameters. Consequently,
the extrinsic parameters are optimized for cost minimization
based on the intensity variance. In addition, a suitable geometry
is proposed for the calibration and verified using simulations.
Our experimental results showed that the proposed method
accurately performed calibrations using a camera and a sparse
multi-beam LiDAR or one-dimensional LiDAR.

I. INTRODUCTION

Multimodal sensing is essential to realize various ap-
plications in robotics and computer vision. Using various
types of sensors enables the collection of rich informa-
tion to understand the surrounding environment. Especially,
the fusion of cameras and LiDARs is one of the popular
multisensor configurations. The camera collects dense color
information, whereas the LiDAR collects sparse but accurate
depth information. LiDAR-camera fusion systems are widely
utilized in SLAM [1], three-dimensional (3D) scanning [2],
object detection [3], and depth completion [4].

Precise extrinsic calibration between sensors is necessary
in LiDAR-camera fusion systems for stable performance.
Since the optical centers of the sensors are different, the
relative pose between them must be known to process the
data in the same coordinate system. A point measured by
both sensors must be from exactly the same surface point.
Various approaches have been proposed for calibrating these
sensors using the appearance [5], [6], motion [7], [8], and
geometric information [9] from LiDAR and camera data.

However, calibration between the camera and sparse Li-
DAR or one-dimensional (1D) LiDAR has remained chal-
lenging. Sparse LiDAR is commonly used in systems that
require real-time performance. Profiler-type systems in which
1D LiDAR scans the sides of the robot while moving forward
provide dense and uniform 3D sampling (Fig. 1). Despite
these advantages, the data collected using these LiDARs do
not provide enough overlap regions to align the surfaces or
rich texture information, even when using the reflectance of
the laser. Moreover, the movement of mobile platforms is
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Fig. 1. Our goal is to achieve targetless LiDAR-Camera calibration of
sparse LiDAR-based systems like profilers (left) or multibeam LiDARs
with a small number of lasers (right) on a moving vehicle with restricted
movements.

usually restricted, hindering the employment of motion-based
approaches for LiDAR systems.

This paper presents a LiDAR-camera calibration method
that can be applied to sparse LiDAR, 1D LiDAR, and
motion-restricted systems. The key idea is using the in-
tensity variance of camera images projected onto LiDAR
points inspired from direct SLAM techniques [10], [11]. The
proposed method assumes that the input is a sequence of
LiDAR–camera scans captured while moving the system.
When we project the pixel colors of camera images onto
LiDAR points, the colors will be inconsistent and blurred
if there are errors in the motion or calibration parameters.
Therefore, we use the intensity variance as the cost, and
the calibration parameters and the motion are simultaneously
refined to minimize the cost.

The contributions of this paper are summarized as follows:
1) We propose a targetless LiDAR-camera calibration

method applicable even to 1D LiDAR, using a cost
function based on intensity variance.

2) We introduce a simultaneous LiDAR-camera calibra-
tion and motion refinement method.

3) We clarify the relationship between the calibration
parameters and the geometry of the target scene.

The proposed method aims to perform offline calibration of a
3D scanning system with a moving platform. The proposed
method assumes that there is no significant change in the
lighting environment because the input data is measured for
a short period of time (< 40sec).

II. RELATED WORK

A. Appearance-based method

The appearance-based method is a multimodal alignment
approach that finds common points between images and 3D
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Fig. 2. Overview of cost computation. We first calculate pixel coordinates of LiDAR points projection. Then, we compute intensity variance cost using
the sampled intensities of pixels.

point clouds using a target such as a checkerboard [12],
circular object [13], or spherical object [14]. Methods of
calibrating 1D LiDAR and a camera using targets with edges
or right-angled structures have also been proposed [15]–[17].
Nontargeted methods for 2D LiDAR have been proposed as
well to find commonalities in multimodal images using mu-
tual information (MI) between (2D) grayscale-(3D) surface
normal [18], MI between (2D) grayscale and (3D) reflectance
[6], [19], edges [5], [20]–[22], semantic information [23], or
gradients [24]. Recently, Neural network-based methods have
been developed [25], [26].

B. Motion-based method

The motion-based method measures motion for each sen-
sor and solves their relative positional posture using the
differences in motion based on a method known as hand-
eye calibration [27], [28]. Calibration methods for various
sensor combinations have been proposed, such as the cam-
era–inertial measurement unit (IMU) sensor system using the
extended Kalman filter (EKF) method and multiple cameras
[29], have been proposed. The motion-based LiDAR–camera
calibration estimates LiDAR motion via LiDAR SLAM
and camera motion via visual [7] or fusion SLAM [8].
The motion-based method avoids multimodal processing and
is less dependent on LiDAR and camera characteristics.
Conversely, the motion-based method requires LiDAR to
estimate motion by itself, which may cause instability in
LiDAR with a sparse scan and may not be applicable to 1D
LiDAR.

C. Geometry-based method

The geometry-based method derives 3D geometrical in-
formation from camera stereo images taken at multiple sites.
The 3D structure is then reconstructed from the images and
aligned with a 3D point cloud [9], [30], [31]. A method
that computes the extrinsic parameter between the LiDAR
and the camera for texturing a dense 3D scan has been
developed [30]. Chien et al. proposed a calibration method
that iterates ego-motion estimation and extrinsic calibration
by minimizing the reprojection error [9].

Although the existing geometry-based LiDAR–camera cal-
ibration methods are indirect approaches based on feature
point tracking, in this work, we propose a direct geometry-
based approach using consistency between motion-stereo and
LiDAR scans. Instead of using intensity differences as a
direct LiDAR–camera SLAM [32], we use the variance of
the intensity, which allows the simultaneous correction of
calibration and motion. Moreover, the proposed method does
not require strong constraints on the target to be captured
(target, right-angled structure, etc.), as is the case with other
2D LiDAR calibration methods [15]–[17].

III. FRAMEWORK

A. Problem formulation

We assume that the inputs are sequential LiDAR points
Lpj ∈ R3(j = 1, 2, .., np) and camera images {Ik ∈
Rnc×W×H}(k = 1, 2, .., nf), where np, nf , and nc are
the numbers of LiDAR points, camera images, and color
channels, respectively. Generally, nc is 1 or 3 (grayscale
or RGB). The LiDAR points and camera images have time
records τj and τk, respectively. lpj is described in the local
coordinate system of the LiDAR at time τj . The initial values
of the extrinsic matrix cT l ∈ SE(3) and the camera motion
wM0

c are also assumed to be given. The LiDAR motion
wM l is expressed as: wM l = wM c

cT l.
wM c(τ) indicates the camera pose at time τ in the world

coordinates. We assume that the camera poses between ob-
served frames are interpolated by parametric curves or other
techniques. Due to recent advancements in photogrammetry
methods, we can assume that the initial camera motion wM0

c

is accurate, except for the scaling information. Therefore,
we introduce a single parameter s ∈ R to refine the camera
motion as follows:

wM c =

(
I3×3 s13×1

01×3 1

)
· wM0

c , (1)

where I is an identity matrix.
As shown in Fig. 2, the proposed method estimates the

optimal extrinsic parameter cT̂ l and the camera motion



parameter ŝ by minimizing the intensity variance cost C:
cT̂ l, ŝ = arg min

cT l,s
C. (2)

The remainder of this section describes the procedures for
calculating cost C.

B. Intensity variance cost computation
When projecting images onto LiDAR points (Fig. 2), the

uv coordinates of each LiDAR point on the image plane must
be determined in subpixels. These coordinates are obtained
by projecting the LiDAR point onto the image plane.

1) Calculation of pixel coordinates: To obtain the image
coordinates on camera images, we first locate the LiDAR
points into the world coordinates with the LiDAR motion.
The LiDAR point pj in the world coordinates is

wp̃j = wM l(τj)
lp̃j , (3)

where τj is the time when pj is scanned. p̃ =
[
p>, 1

]>
is the

operator to add element 1 to the end of a vector. Then, wpj

is projected onto kth camera image by the camera pose at
time τk, and pixel coordinates uj,k are obtained as follows:

uj,k = π(ckpj), (4)

ck p̃j = wM c(τk)−1 wp̃j , (5)

where π(·) is the projection function derived from the camera
intrinsics. The pixel coordinates of all LiDAR points for all
camera images are calculated here.

2) Intensity variance computation: We assume I(u) re-
turns the intensity value at pixel u in the sub-pixel. The
intensity variance for the LiDAR point pj in the color
channel m is obtained from the nf intensity values as
follows:

cm(pj) =
1

nf

nf∑
k=1

αk(pj) |Ik,m(uj,k)− µj,m|2 , (6)

µj,m =
1

nf

nf∑
k=1

Ik,m(uj,k), (7)

where µj,m is the average of the intensity component. The
weight function αk is used to eliminate the influence of
geometric or photometric problems for robust estimation
(details are provided in Section IV).

Considering the color channels, the entire cost for a point
is

c(pj) =

nc∑
m=1

cm(pj). (8)

3) Cost computation: The entire cost is the summation of
the intensity variances of all LiDAR points. We introduce a
weight function β(pj) to improve optimization performance,
which is also described in Section IV. Accordingly, the entire
cost is as follows:

C =
1∑np

j=1 β(pj)

np∑
j=1

β(pj)c(pj), (9)

In the remainder of the discussion, we omit the index of
the color channel m in the notation for clarity.

Fig. 3. Average color mapping without (left) and with (right) occlusion
handling. The occlusion handling avoids the mapping of the leaf color onto
the wall points.

IV. ROBUST OPTIMIZATION

In occluded areas, I(u) may acquire the intensity of the
surface of the occluding object rather than the correct surface
behind it, as shown in Fig. 3 (left). Moreover, intensity
variations tend to be unreliable in and around the saturated
regions.

Therefore, we introduce weighting schemes to reduce
these effects for robust optimization. In this section, we
define the weight functions α and β used in Eqs. 6 and 9.

A. Occlusion handling

We need to verify if a LiDAR point is occluded when
viewed from a certain camera image. For this verification, the
proposed method renders a depth map using a mesh model
generated from a point cloud and determines if each point
is on the mesh or occluded by comparing the depth to each
point and the mesh surface.

First, we localize LiDAR points in the camera coordinate
system using the initial camera motion and calibration pa-
rameters. Next, we generate a mesh for the point cloud [33],
[34] and render a depth map from each camera position.
Finally, we fill holes by updating pixel values with the
smallest value in the neighboring pixels and obtain the depth
map Dk for the camera frame k.

Once the depth maps are generated, we compare the depth
of the LiDAR point in the camera coordinate system ||ckpj ||2
and the depth on the depth map Dk(π(ckpj)). The weight
dwk,j is 0 when the depth difference ∆d is larger than zf

and it is 1 when ∆d is smaller than zn and is interpolated
between them in other cases:

dwk,j =


1 (∆d ≤ zn)

1− ∆d−zn
zf−zn (zn < ∆d ≤ zf)

0 (zf < ∆d),

(10)

∆d = ||ckpj ||2 −Dk(π(ckpj)). (11)

Here, zn and zf are the heuristic parameters for tolerance
determined by the LiDAR depth accuracy. Using occlusion
handling, we can eliminate the effects of incorrect color
mapping, as shown in Fig. 3 (right). Note that we initially
assign dwk,j and fix it during optimization.



Fig. 4. Example of a weight mask. The mask image (right) is applied to
the left image.

B. Masking unreliable regions

We use image masks to avoid the use of unreliable areas
for variance computation. Fig. 4 shows an example of a mask
image. We eliminate the saturated regions in the sky and on
highly reflective surfaces. We also eliminate the static region
that observes the sensors, including the mobile platform.

Given a mask image for the kth frame Wk, the intensity
value Ik(u) in subpixel is represented as

Îk(u) =
(Ik �Wk)(u)

Wk(u)
, (12)

where I � W is the image to take the Hadamard product
of the image I and the mask W . Wk(u) returns the mask
value at pixel u in the sub-pixel.

C. Optimization

We incorporate the weight dwk,j and the mask Wk into
the cost calculation in Eq. 6:

αk(pj) = dwk,jWk(uj,k). (13)

Since the points close to the sensor are more informative
for translation estimation, we set large weights to the close
points for translation optimization. Accordingly, we alter-
nately optimize translation and rotation and assign different
weights rw to them. Moreover, a bright area makes a large
amount of intensity change prone to noise, and the weight
takes the inverse of intensity average µm (Eq. 7).

Consequently the weight β in Eq. 9 is defined as:

β(pj) =
1

rw(pj)
√∑nc

m=1 µm(pj)
2 + ε

, (14)

rw(pj) =

{√
||lpj ||2 (translation optimization)

1 (others)
, (15)

where ε is a constant value for avoiding zero division. Finally,
the parameters are obtained by alternatively optimizing mo-
tion, rotation, and movement in this order. The motion error
tends to be large and affects extrinsic parameter optimization,
whereas the motion scale is easy to converge.

V. VALIDATION OF COST FUNCTION

In this section, we discuss the validity of the cost function
and how the target scene affects the estimation of the
parameters.

n
e=n

p k=n×p

n e=n

p

k=n×p

(a) (b)

Fig. 5. Direction in which LiDAR points contribute to calibration. (a)
Plane (b) Edge.

A. Relation between surface geometry and calibration pa-
rameters

The intensity variance cost becomes large when a LiDAR
point is away from the 3D surface in the camera coordinate
system. That is, if modifying a calibration parameter causes
moving point p in Fig. 5 in the surface normal direction
n, p contributes to the calibration of that parameter. First,
consider the case of translation parameter displacement. If
the LiDAR moves by e, as shown in Fig. 5 (a), p also
moves by e. Therefore, p contributes to the translation
parameters in the normal direction n. Next, consider the case
of rotation. Considering that the LiDAR rotates at a slight
angle ∆θ around the axis k, the displacement of the point p
is ∆θ (k × p), and the displacement from the object surface
is ∆θn (k × p). Therefore, the point p contributes to the
rotation parameter in the axial direction k = (n× p). This
contribution increases as the incident angle to the surface
becomes shallower.

The occlusion edge also contributes to the calibration.
The edge is the area where the local surface normals are
perpendicular to the surface edge, as shown in Fig. 5 (b).
An inconsistency appears only when the inner product of p
displacement and n is positive.

B. Evaluation condition

We simulated a fusion system of a multibeam LiDAR with
16 laser units and a fisheye camera. The optical center of
two sensors was at the same position, and the rotation axis
of the LiDAR was set parallel to the x-axis of the camera.
The target objects were a plane, corner, and sphere, as shown
in Fig. 6. Only the sphere case has an occlusion edge. The
sensor was moved in the direction of the red arrow in a
constant velocity.

C. Evaluation

Fig. 7 shows the graphs of the errors and costs of each
calibration parameter for the plane, corner, and sphere,
respectively. As discussed in Section V-A, the plane mainly
contributed to the x-axis rotation and z-axis translation (Top
of Fig. 7). The minima in the y-axis rotation of the plane
object scene also appeared slightly. The results obtained
using the corner showed that the slope of the peak was larger
for all parameters, as shown in the center of Fig. 7. For the



Fig. 6. Shapes used for simulation (left to right: plane, corner, and sphere)
and camera and LiDAR movement. The x, y ,z axes correspond to red,
blue, and green, respectively.
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Fig. 7. Parameter error vs cost using a plane, corner, and sphere object.
Left: Rotation (quaternion), Right: Translation (m).

sphere, sharp peaks due to the occlusion edges are shown in
the bottom of Fig. 7.

VI. EXPERIMENT OF SPARSE LIDAR SYSTEM

A. Sensor system and data acquisition

We evaluate our method with sparse multibeam LiDAR
Velodyne VLP16 [35] and the panoramic camera insta360
One X [36] . We mounted the sensor system on a rover with
the rotation axis of the LiDAR oriented to coincide with the
travel direction, as shown in Fig. 1. The rover slowly moved
straight while the LiDAR measured scenes on its sides.

Fig. 8 shows the target scenes for the experiments. We
synchronized the camera and LiDAR by timestamps. We uni-
formly subsampled 30 camera frames to reduce calculation
costs, and we also used subsampled LiDAR points at equal

SCENE 1 SCENE 2

SCENE 3 SCENE 4

Fig. 8. Scenes for sparse LiDAR-camera calibration

intervals and filtered out weak intensity points as unreliable
points in advance.

B. Implementation

We manually set the initial extrinsic parameters, and the
initial rotation and translation error in SCENE 1 and 2 was
above (0.024, 0.063m) and it was above (0.073, 0.048m) in
SCENES 3 and 4. We estimated an initial camera motion
by using a feature-based camera tracking method and the
initial absolute scale with LiDAR points corresponding to
landmarks and the initial extrinsic parameters.

The optimization method was the line-search implemented
in dlib [37], and the method approximated the direction of
the gradient using a finite-difference method. The iteration
times of the alternative parameter optimization was set to 6.
We empirically set the depth values for occlusion detection
(Section IV-A) as zn = 0.1(m), zf = 0.2(m) and ε =
1/255.0.

C. Evaluation

We computed a reliable reference for evaluation using the
high-resolution and colored scans taken by the Z+F Imager
5010C [38]. We aligned the sparse LiDAR points with the
reference scans using an ICP algorithm. We also estimated
the pose between the reference scan and the camera by using
manually selected corresponding points. The high-resolution
and colored scans help in identifying stable corresponding
points for 2D-3D alignment.

The error metric for rotation estimation is the quaternion
difference between the reference rotation qref and the esti-
mated rotation qest: ||qref − qest||2. The error metric for
translation estimation is the L2 distance of the reference
translation tref and the estimated translation test: ||tref −
test||2 in meters. For comparison, we used MI-based [6], an
edge-based [5], and a motion-based [8] methods. Note that
we also tried to apply [22], but it did not work for our sparse
LiDAR dataset.

D. Results

Table I shows the error obtained using each method from
the reference. The motion-based method [8] failed in any
case because of the lack of rotational movements. The MI
method [6] provided low accuracy due to the sparse ray



TABLE I
TRANSLATION AND ROTATION IN THE QUATERNION ERROR OF SPARSE LIDAR-CAMERA CALIBRATION

SCENE 1 SCENE 2 SCENE 3 SCENE 4
Tran.(m) Rot. Tran.(m) Rot. Tran.(m) Rot. Tran.(m) Rot.

Ours 0.047 0.0085 0.042 0.0041 0.041 0.0024 0.029 0.0049
Edge [5] 0.048 0.0023 0.153 0.2785 0.043 0.0511 0.043 0.0147
MI [6] 0.060 0.1216 0.130 0.0263 0.229 0.0285 0.117 0.0983
Motion-Based [8] 128.558 0.8614 10.877 1.0807 16.281 0.2616 12.817 0.3255

Fig. 9. Average color texturing of the building in SCENE 4 before (left)
and after (right) optimization.

SCENE 5 SCENE 6 SCENE 7

Fig. 10. Scenes of profiler-camera calibration experiments

sampling and the low precision of the laser reflectance.
The intensive outdoor sunlight also interfered with the laser
reflection. The edge-based method [6] relatively worked well,
but its performance was limited because the edges were not
distinctive because of the small number of laser lines. The
performance of the edge-based method also depends highly
on the scene. The method did not work well in SCENE 2,
where tree branches generated many unstable jump edges.

On the other hand, our method offered high accuracy,
especially in rotation estimation. In addition, it provided high
accuracy in translation in the scenes (e.g. in the SCENE 4),
where the location was surrounded by static objects and had
shape features. Fig. 9 shows the aligned LiDAR scans with
texturing from multiple views before and after optimization
in SCENE 4. After the optimization, we can see that the RGB
of the camera image and the 3D scan data were aligned.

VII. EXPERIMENT OF PROFILER SYSTEM

A. Sensor system and data acquisition

We constructed a profiler (1D LiDAR) scanning system
comprising Z+F imager 5010C and Ladybug 3 [39], and the
rover, as shown in Fig. 1 left. Fig. 10 shows the target scenes.
Capturing started simultaneously using a trigger from the im-
ager 5010C to Ladybug 3 for temporal synchronization. For

TABLE II
ROTATION AND TRANSLATION CALIBRATION ERRORS OF

PROFILER-CAMERA CALIBRATION

Rot. error (×10−2) Tran. error (×10−2 m)
SCENE 5 0.0049±0.0015 0.0617±0.0154
SCENE 6 0.0083±0.0015 0.0303±0.0063
SCENE 7 0.0121±0.0105 0.0359±0.0124

each scene, we used a 600-frame sequence with uniformly
subsampled 30 frames for color variance computation.

The reference was computed from the manual correspon-
dence selection between the panorama 3D data and image
and the encoder angle given by the imager 5010C after
fixing the sensor body rotation. We set the initial extrinsic
parameters by adding random noises to the reference in
rotation with magnitude of 0.02 and a translation error of
0.05 m. We performed the experiment five times.

B. Results

Table II shows the calibration results. Our method
removed the rotational calibration error well. Comparing
SCENE 5 and 6, we found that the rotation estimation
worked well in SCENE 5, whereas translation error is small
in SCENE 6. This may be because edges on structures in
SCENE 5 contributed to the rotation estimation whereas, in
SCENE6, the wall close to the sensors may have contributed
to the translation estimation. In SCENE 7, while various
objects contribute to the accuracy, the featureless walls and
ceiling may be the cause of calibration failure.

VIII. CONCLUSION

In this paper, we proposed an extrinsic calibration method
for a sparse LiDAR-camera system, including a profiler-
camera system, on a mobile platform using the intensity vari-
ance cost. We introduced masking and occlusion handling
for robust estimation and discussed the shapes contributing
to the calibration. The experimental results showed that the
proposed method accurately calibrates in real scenes. For
future work, we will enhance the robustness of the method
by considering the suitable directions according to the ob-
served structure or combining learning-based approaches to
eliminate unreliable regions.
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