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Abstract

We present an alternative method for solving the motion
stereo problem for two views in a variational framework.
Instead of directly solving for the depth, we simultaneously
estimate the optical flow and the 3D structure by minimiz-
ing a joint energy function consisting of an optical flow con-
straint and a 3D constraint. Compared to stereo methods,
we impose the epipolar geometry as a soft constraint which
gives the search space more flexibility instead of naı̈vely
following the epipolar lines, resulting in a correspondence
that is more robust to small errors in pose estimation. This
approach also allows us to use fast dense matching meth-
ods for handling large displacement as well as shape-based
smoothness constraint on the 3D surface. We show in the
results that, in terms of accuracy, our method outperforms
the state-of-the-art method in two-frame variational depth
estimation and comparable results to existing optical flow
estimation methods. With our implementation, we are able
to achieve real-time performance using modern GPUs.

1. Introduction
In a single moving camera and static scene, the apparent

motion of the pixels is characterized by the (epipolar) opti-
cal flow. Compared to general optical flow, where there is
no assumption on the underlying scene structure and camera
motion, the flow field is constrained along the epipolar lines
which are defined by the relative camera poses. As a re-
sult, the optical flow can be used as a dense correspondence
needed for 3D reconstruction. Needless to say, this rela-
tionship is embedded in motion stereo estimation methods,
where the depth (or 3D structure) is solved by minimizing
the brightness constancy error while imposing the epipolar
geometry as a hard constraint.

In general, correspondences in stereo matching is solved
by performing a search along the epipolar lines. In a varia-
tional framework, the depth can be defined through the fo-
cal length and the baseline between two cameras, and is in-
versely proportional to the apparent pixel motion. Assum-
ing known intrinsic and extrinsic camera parameters, this

Figure 1. Robustness of applying epipolar geometry as a soft-
constraint vs. classical variational stereo methods (Graber [14]).
Varying the translation vector of the camera pose by 5◦ results in
significantly higher disparity error (percentage of erroneous pixels
> 3) in [14] compared to our method.

correspondence problem reduces to a 1-D search.
In a monocular setting, the baseline is solved using ego-

motion estimation methods such as sparse or dense SLAM
[9][10][17]. Then, the relative camera pose allows for the
explicit definition of the direction vectors of the search
space (i.e. epipolar lines, see [22]). In short, the resulting
depth (and disparity map) is highly dependent on the cor-
rect pose estimation. However, we argue that even though
the actual depth is inaccurate due to wrong pose estimation,
the disparity can still be accurately estimated (see Figure 1)

To address this issue, we propose to slightly decouple
the correspondence problem and the depth estimation by
imposing the epipolar geometry as a soft constraint. This
enables us optimize the direction vectors of the search space
by allowing the disparity (or optical flow) to have isotropy
while still depending on epipolar geometry (in contrast to
naı̈vely following the epipolar lines).

We do this by minimizing a joint energy function con-



sisting of an optical flow constraint and a 3D constraint.
The 3D constraint relates the flow vectors and the 3D points
through the relative camera matrices while implicitly im-
posing the epipolar geometry. This technique also results
in the explicit definition of the 3D points, instead of depth,
which allows us to use additional shape-based regulariza-
tion directly on the 3D structure, while still being able to
utilize existing improvements in optical flow estimation.

In this paper, we present a variational method in mini-
mizing the joint energy function embedded in an iterative
framework. Our approach results in a more accurate 3D
reconstruction compared to the classical variational stereo
method. We also present an implementation of our method
that achieves real-time performance.

1.1. Related Work

Depth estimation using stereo vision (binocular) had
been a subject of a lot of research. Using stereo methods,
the correspondence problem is simplified by a 1-D search
which makes them viable for real time applications. How-
ever, dense matching becomes difficult when the relative
position between the two cameras are not known which is
the case in single moving cameras (monocular).

Variational models address this by implicitly constrain-
ing the correspondence problem using camera egomotion.
The search is simplified by removing the need for construct-
ing expensive data structures for discrete search. Instead,
the search space is restricted along the epipolar lines by
defining the baseline through the constrained image deriva-
tives. Several methods have successfully used variational
models in solving the depth estimation problem [22][14].
Stuhmer et al. [22] uses the TV-L1 minimization frame-
work and extends the method to handling multiple frames.
Graber et al. [14] solves the smoothness problem of the TV-
L1 method by replacing the 2D total variation function with
a surface smoothness constraint.

Variational stereo problem is highly related to the optical
flow problem, where the flow vectors define the 2D dispar-
ity in stereo matching. Compared to stereo methods, optical
flow estimation is more expensive in that the search is not
limited along the epipolar lines. On one hand, optical flow
is more flexible but the a trade off between the cost and ro-
bustness has to be considered.

A lot of work has been dedicated in solving the varia-
tional optical flow problem [6][26][24][23]. Compared to
its discrete counterparts (data-driven [18][2][7] or patch-
based [3][11][15]), some variational models have been
known to work in real time applications. For example, in
[25] and [27], the optical flow is estimated by also using
the TV-L1 minimization problem which is highly desirable
because of its real-time implementation as well as accurate
results.

Large displacement is another issue in variational mod-

els. Most real-time methods use a coarse-to-fine strategy
(pyramid) to address this. However, using image pyramids
is not always reliable when it comes to solving large dis-
placements, especially for highly cluttered scenes and ob-
jects with small surface area. In [6], sparse correspondence
are used as an additional constraint that is easily incorpo-
rated within the variational framework. The authors used
a spatially varying mask that limits the effect of the sparse
correspondence only to pixels with existing matches which
results in successful estimation of large motion.

Accurate dense matching methods have also been pro-
posed [19][26]. However, these methods are time-
consuming are not desirable for real-time applications. Re-
cently though, deep learning methods that addresses both
large displacement and dense matching have been proposed
[8][16]. Fortunately, these methods achieves real-time per-
formance. However, as with all deep learning methods, the
network still needs to be trained on ground truth data based
on a very specific application or environment to be accurate.

Even though optical flow is assumed to be isotropic,
which is efficient only within dynamic scenes, epipolar con-
straints similar to stereo methods have been proposed for
the variational model. Valgaerts et al. [24] shows that the
optical flow direction can be constrained along the epipo-
lar lines by also estimating the fundamental matrix defin-
ing the relative pose between two cameras. Similar to our
approach, this method applies the epipolar geometry as a
soft constraint but our method also explicitly outputs the
3D points.

Structure-from-Motion (SfM) is a more direct estima-
tion of the 3D structure compared to stereo matching. Most
methods uses sparse correspondence between several cam-
eras and simultaneously solves the camera poses and the
3D points. However, SfM methods are useful only for of-
fline applications because of the multiple frame require-
ment. Nevertheless, Becker et al. [4] proposed to jointly
solve the camera pose and depth for two frames for high
speed cameras on moving vehicles. The authors use optical
flow as motion observation in jointly estimating the depth
and camera egomotion. Compared to our method, their ap-
proach does not refine the optical flow based on the epipolar
geometry. A related method, focused on variational cam-
era calibration was proposed by Aubry et al. [1]. In this
case, the joint photometric and geometric energy is mini-
mized resulting in camera extrinsics and dense correspon-
dence, which are then used for reconstruction. In contrast,
our method combines dense correspondence estimation and
reconstruction, assuming that the camera poses are known.
Moreover, our method allows for 3D surface regularization
to be applied directly during energy minimization, result-
ing in local 3D surface smoothness that is still conformant
with the dense correspondence (unlike when the regulariza-
tion is applied after dense matching, which breaks the 2D



regularization.)
In this work, we focus on solving the reconstruction

problem for two frames. Although there are a lot of multi-
view methods in existence which gives more accurate re-
construction results, we leave the extension and comparison
to the multi-view problem for future work.

1.2. Overview

We first present the variational framework in Section 2
where we introduce the joint estimation of the optical flow
and 3D structure. Then, we elaborate the real-time imple-
mentation in Section 3 and present the experiments, results
and comparison in Section 4. Finally, we conclude this pa-
per in Section 5.

2. Simultaneous 3D Reconstruction and Opti-
cal Flow Estimation

Our method relies on simultaneously minimizing the op-
tical flow constraints (brightness constancy error, 2D reg-
ularization, large displacement handling) and the 3D con-
straints (reprojection error and surface regularization). We
define our energy term for two views with known camera
poses, with the only assumption that the camera translation
is non-zero (not purely rotational motion).

Given two images of a static scene, I, I ′ : Ω → R+,
taken from a moving camera with known intrinsic matrix
K, we define the forward optical flow from I to I ′ of a pixel
x in the image domain Ω ∈ R2 as u; the 3D point of each x
as X ∈ S, where S ⊂ R3 is the reconstructed surface; and,
the camera matrix of I ′ (with respect to I) as P = K[R|t]
where [R|t] is the relative camera pose.

Our objective is to find u = (u, v) and X = (X,Y, Z)
for every x = (x, y) that minimizes the energy function:

arg min
u,X

F (x,u,X) +G(x,u) (1)

where F is the 3D constraint, consisting of a data term and
a surface smoothness term; and G is the optical flow con-
straint. For simplicity, we will drop the x in the notations
since all terms are spatially dependent on x. We will detail
the above function in the following sections.

2.1. Optical Flow Constraint

For the optical flow energy, we extended the TV-L1 op-
tical flow functional described in [25] and added the large
displacement constraint presented in [6]. We use this tech-
nique because of the existence of its minimizer that can be
implemented in real-time. The modified function is as fol-
lows.

Given I and I ′, we define the optical flow energy func-

tion as:

G(u) =λψI (I ′ (x + u)− I (x))

+ ψtv (utv) +
αtv
2
‖u− utv‖2

+
αsm

2
‖u− usm‖2 (2)

where ψI is the L1 penalty function and ψtv is the isotropic
total variation function. usm is the sparse optical flow value
which can be solved using sparse matching methods. λ,
αtv , αsm are weighting parameters that control the contri-
bution strength of each function in the energy minimization.
Specifically, αtv is the relaxation parameter of the total vari-
ation, which when set to a high value allows for the mini-
mum energy when u and utv are almost equal. On the other
hand, αsm is a sparse sampling mask that is set to zero for
pixels without usm values, and to a positive real number
otherwise.

2.2. 3D Constraint

The 3D constraint consists of a data term and a 3D
smoothness term. The data term implicitly imposes the
epipolar geometry and relates the 3D points and the opti-
cal flow through the camera matrices, while the smooth-
ness term serves as the regularizer. The 3D constraint is
expressed as:

F (u,X) = Fdata(u,X) + Fms(X) (3)

Given a set of correspondences between I and I ′ and the
camera matrix P , the underlying 3D structure can be solved
by minimizing the reprojection error. Using the optical flow
u, we can map a dense correspondence x→ x′ by assigning
x′ = x + u and redefine the error using u. With this in
mind, we define the data term as the sum of the reprojection
errors and is expressed as:

Fdata(u,X) = ‖d (x, P0X) ‖2 + ‖d (x + u, PX) ‖2 (4)

where d() is the reprojection error between the 3D point X
and x through the cameras P and P0. P0 = K[I|0] is the
camera matrix of image I also defined as the origin 0 with
identity matrix I as rotation.

For the 3D smoothness constraint, we use the proposed
minimal surface regularizer in [14]. Given the surface S,
parameterized by the image domain Ω, the tangential vec-
tors Xx,Xy of the infinitesimal surface dS at point X can
be solved by the partial differentiation of X with respect to
x and y. The infinitesimal area dA on the reconstructed sur-
face S at point X is then defined on the parametric domain
Ω as:

dA =
√
detIpdx (5)

where Ip is the metric tensor defined as:

Ip =

(
〈Xx, Xx〉 〈Xx, Xy〉
〈Xx, Xy〉 〈Xy, Xy〉

)
(6)



Figure 2. Minimal surface regularizer.

Our goal is to minimize the total area of the reconstructed
surface, which is achieved by integrating (5) across the
whole image. As in [14], the solution is equivalent to
minimizing the total length of the surface normals ‖n‖ =
‖Xx ×Xy‖. From here onwards, we deviate from [14] by
directly defining this cross product using the solved partial
derivatives of X. The minimal surface regularizer then be-
comes:

Fms(X) =

λms

√
(YxZy−ZxYy)2+(ZxXy−XxZy)2+(XxYy−YxXy)2 (7)

2.3. Optimization

Since the reprojection error is a function of u and X, it is
easier to minimize (1) if we decouple this u from the optical
flow constraint. To do this, we introduce a handler upj for
F and impose the constraint u = upj . Modifying our main
function, we get:

arg min
u,upj ,X

F (upj ,X) +G(u) +
αpj
2
‖u− upj + sk‖2 (8)

where sk is an iteration variable [13]. We then use Alternat-
ing Direction Method to minimize the above function.

Solve for u:

We first hold upj , X and sk constant and minimize the op-
tical flow constraint:

arg min
u

G(u) +
αpj
2
‖u− upj + sk‖2 (9)

The solution to (9) is a combination of thresholding and
primal-dual decomposition. Substituting (2) to (9), we first
solve for utv by minimizing:

arg min
utv

ψtv (utv) +
αtv
2
‖u− utv‖2 (10)

which is the ROF [20] denoising problem and solved by
following [25].

To solve for u, we minimize:

arg min
u

λψI (I ′ (x + u)− I (x))

+
αtv
2
‖u− utv‖2 +

αsm
2
‖u− usm‖2 (11)

The problem in (11) can be solved using the thresholding
scheme:

u =
αpj(upj − sk) + αtvutv + αsmusm

αpj + αtv + αsm
+ TH(utv)

(12)
The thresholding operation, TH(utv), is defined as:

TH(utv) =


−ρ(utv)

∇I′
|∇I′|2 , if |ρ(utv)| ≤ β

∇I′
αtv+αpj+αsm

, ifρ(utv) < β

− ∇I′
αtv+αpj+αsm

, ifρ(utv) > β

(13)

where ρ(utv) is the linearized residual of the brightness
constancy error (i.e. Ixutv + Iyvtv + It). Ix and Iy are
the image derivatives of I in the x and y directions, respec-
tively, while It = I ′ − I . The threshold limit is defined as

β =
λ|∇I′|2

αtv+αpj+αsm
.

Solve for upj:

Holding u, X, and sk constant, we then solve for upj . Since
the smoothness term is independent of upj , we get:

arg min
upj

λfFdata(upj) +
αpj
2
‖u− upj + sk‖2 (14)

To solve (14), we first assign a temporary variable uc
as the flow vector between x and the reprojected 3D points
PX on the image domain: uc = PX− x. We call uc as
the reprojected optical flow. F (upj) can then be expressed
as:

Fdata(upj) = ‖upj − uc‖2 (15)

The solution to (14) then becomes the weighted mean be-
tween u + sk and uc:

upj =
λfuc + αpj(u + sk)

λf + αpj
(16)

Solve for X:

Given u and upj , we then solve for X:

arg min
X

Fdata(X) + Fms(X) (17)



We rewrite the reprojection error as a linear function of
X which defines four least squares terms:

Fdata(X) =‖[xp3
0 − p1

0]T
[

X
1

]
‖2+

‖[yp3
0 − p2

0]T
[

X
1

]
‖2+

‖[(x+ u)p3 − p1]T
[

X
1

]
‖2+

‖[(y + v)p3 − p2]T
[

X
1

]
‖2 (18)

where P0 = [p1
0 p

2
0 p

3
0]T and P = [p1 p2 p3]T . By

doing so, (17) can be solved trivially using Euler-Lagrange.

Update sk:

The last step of the alternating direction method is to update
the iteration variable sk+1:

sk+1 = sk + u− upj (19)

3. Implementation
The optimization method in Section 2.3 is embedded in

a coarse-to-fine iterative framework. We initialize all opti-
mization variables to zero, except for hard constraints such
as the camera pose P and the sparse matching usm. To
solve these values, we opt for publicly available real-time
implementations that can be combined with our method.
Nevertheless, there are plenty of methods that can perform
a more accurate pose estimation or a cheaper sparse match-
ing. The techniques that we used here can be easily replaced
as our method is not restrictive.

3.1. Large Displacement Handling

For sparse matching, we use FlowNet2-CSS [16] imple-
mentation that is publicly available. We use the *CSS ver-
sion because we don’t need small displacement handling
as it is already considered in our method. Furthermore,
the *CSS version is much faster and allows us to perform
higher iterations of our method while still achieving real-
time results. To further decrease the processing time of the
FlowNet2-CSS, we first scale the input image down before
feeding to the network. Then, the output is scaled back up
to the actual size and sampled at constant intervals using a
sparse mask αsm. This allows the result to further fit our
proposed joint constraints.

3.2. Pose Estimation

To estimate the camera matrix P , we use the initial opti-
cal flow result of the FlowNet2-CSS as a dense correspon-
dence. We use this initial estimate as input to the fundamen-
tal matrix estimation using Least Median Squares (LMedS)

method [28], which also handles outlier rejection. With the
given intrinsic camera parameters K, we solve the essential
matrix and decompose it to get the relative pose. We then
set the first camera position as the world center. It is not
necessary to solve the actual scale of the 3D structure be-
cause the solved 3D points will be scaled back to the image
domain after reprojection (see next section).

3.3. Coarse-to-Fine Approach

We implement the coarse-to-fine technique by building
image pyramids with scaling factor α > 0.5. In this strat-
egy, the reconstruction part of the method needs to be ad-
justed for every level, l, of the pyramid. For a given camera
matrix P , scaling only affects its intrinsic parameterK. Us-
ing η = 1

α , we can express Kl+1 as:

Kl+1 =

 ηfxl 0 ηcxl
0 ηfyl ηcyl
0 0 1

 (20)

where (fxl, fyl) is the camera focal lengths and (cxl,cyl) is
the image center of Kl.

We handle the scaling of the 3D points through the re-
projected optical flow uc. Instead of directly increasing the
resolution of the 3D surface, we first reproject X to the im-
age domain and then solve for uc. Then, we scale uc in the
same manner as u.

For each level of the pyramid, we embed the solution in
Section 2.3 in an iterative framework until a tunable number
of iterations (see Algorithm 1).

As in [5], we use warping technique to improve the es-
timation efficiency. For every pyramid level, we perform
one warping of the input images using the initial u from the
coarser level and solve the iteration problem on the differ-
ential flow vector du. After each level, we add du back to
u and scale the vectors accordingly.

We implemented our method on two GTX 1080 GPUs.
One GPU handles the FlowNet2-CSS network and the other
performs the pose estimation and our iterative method. We
set the iteration at 100 which we used for the results shown
in the next section. For an image input size of 1024x512
our method outputs 3D points and optical flow frames at
41ms (using 100 iterations, including the pose estimation).
Adding the processing time of the FlowNet2-CSS, which is
at 51ms for the scaled image input, the entire estimation is
done at 10.8fps.

4. Results and Comparison
In this section, we will first show the robustness of our

method to small errors in pose estimation compared to vari-
ational stereo method. Then, we will detail the perfor-
mance and results of our method and compare with exist-
ing state-of-the art methods for both optical flow [26][16]



Figure 3. Reconstruction results (point cloud). (a) Reconstruction from the correspondences obtained from the optical flow estimation
without the 3D regularizer [1]. (b) Applying 3D regularization after reconstruction. (c) Reconstruction using our method.

Figure 4. Disparity error vs. pose change.

and variational depth estimation [14]. For this experiment,
we used the monocular pairs of images from KITTI2012
[12], which contains ground truth optical flow and depth
map. We also used the stereo pairs from ETH3D [21] which
contains ground truth pose and disparity map. ETH3D also

Algorithm 1 Algorithm for two-frame simultaneous 3D re-
construction and optical flow estimation.
Require: I, I ′

solve P
solve image pyramid
while l < max level do
k = 0
while iter > niters do

solve for utv (10)
solve for u (11)
solve for upj (16)
solve for X (17)
update sk (19)
k = k + 1

end while
solve uc
upsample u,uc
l = l + 1

end while

Method AEE

DeepFlow 4.48
FlowNet2-CSS 3.55
Ours 4.21

Table 1. AAE (Average endpoint error) on the KITTI2012
dataset comparison of the optical flow results among DeepFlow,
FlowNet2, and our method. Our method slightly degrades the re-
sult of the FlowNet2-CSS due to errors in pose estimation.

Graber Ours

τ > 1 τ > 3 τ > 1 τ > 3

K
IT

T
I2

01
2 000068 92.72 11.42

000081 54.59 16.13
000090 33.81 17.70
000109 19.18 13.51
000134 29.90 12.43

E
T

H
3D

delivery-area-1l 19.38 2.379 0.840 0.012
delivery-area-2l 38.310 2.132 2.210 0.0
electro-1l 72.813 48.894 6.859 0.0
facade-1s 16.805 0.738 1.310 0.191
forest-1s 32.308 25.325 10.151 4.956
playground-1l 69.499 55.122 15.622 1.154
terrace-1s 80.545 53.065 2.333 0.0
terrains-1s 96.039 90.844 3.954 0.0

Table 2. Comparison of depth results from [14] and our method on
selected KITTI2012 and ETH3D dataset showing Out-Noc metric
τ .

contains image pairs in challenging setup such as illumina-
tion changes.

4.1. Robustness to Pose Error

To test the robustness of our method to errors in pose
estimation, we vary the translation vector of the estimated
camera pose via a rotation around the y-axis (∆θ) from 0◦

to 15◦. We plot the resulting disparity error (percentage of
erroneous pixels > 3 units) for our method and compared
them with [14] in Figure 4. From here, we can say that
our method is able to achieve less error in disparity. More-



Figure 5. Optical flow and Out-Noc (percentage of erroneous pixels in non-occluded areas) results on the monocular training set of the
KITTI 2012 for DeepFlow[26], FlowNet2-CSS[16] and our method.

over, the dependency of the disparity matching can be tuned
through the weighting parameter, λf . A lower value means
that the disparity is ignoring the epipolar geometry and only
depending on the optical flow constraints. A sample visual-
ization of the error is shown in Figure 1.

4.2. Optical Flow

To evaluate the optical flow, we compare our results
with DeepFlow [26], which is a variational method that
uses dense matching prior from DeepMatching [19], and
FlowNet2 [16] which is a recent deep learning method. For
both methods, we used the publicly available implementa-
tion provided by the authors. For FlowNet2, we used the
*CSS version, which performed the best among many of its
variants in the KITTI2012 benchmark.

We show the estimation results in Figure 5 for sample
pairs with the error metric measuring the percentage of er-
roneous pixels (> 3) in non-occluded areas (Out-Noc). We
also present the average endpoint errors (AEE) of the three
methods in Table 1. From the results, our method performs
better than DeepFlow in both accuracy and efficiency. Our
method is also comparable to the FlowNet2-CSS results,
with slightly lower accuracy. This added error is a result of

errors in pose estimation which mostly affects pixels closest
to the epipoles.

4.3. Reconstruction

To evaluate the reconstruction, we simply converted the
3D points to depth and compared with [14]. For this com-
parison, we use the same error metric (Out-Noc) as with the
optical flow, considering the erroneous pixels τ > 1 and
τ > 3 units. We use ETH3D and KITTI2012 to compare
the depths and present a subset in Table 2. From the results,
we can see that our method significantly outperforms [14]
with estimated pose (KITTI2012) and with given ground
truth pose (ETH3D). The primary reason for the significant
gap in performance is due to the large displacement con-
straint embedded in our method. We show the actual recon-
struction results in Figure 3. We compare our method with
a modified version of [1] for two frames (Figure 3a). Our
method achieves better smoothness because the 3D regular-
ization is embedded in the iterative framework.

5. Conclusion and Future Work
We introduced an iterative optimization method for si-

multaneously estimating the optical flow and reconstruct-



Figure 6. Comparison of depth (normalized color) between Graber [14] and our method using similar estimated (KITTI2012) and ground
truth (ETH3D) pose. From top to bottom: KITTI2012 000068, 000081; ETH3D delivery-area-1l, delivery-area-2l.

ing the 3D surface. From the results, we showed that our
method outperforms state-of-the-art variational depth esti-
mation method in terms of accuracy. We also achieved com-
parable results with existing variational and learning-based
optical flow estimation methods for outdoor static environ-
ments.

For future work, our method can be easily extended to
multi-views. Since we explicitly defined the reprojection
error in our energy function, the camera extrinsics and 3D
structure can be separately optimized as was done in exist-

ing multi-view SfM methods, with the added advantage of
also simultaneously refining the dense correspondence. An-
other possible direction is to simultaneously solve the opti-
cal flow, 3D geometry and camera extrinsics, which would
combine our method, [1], and the classical bundle adjust-
ment.

Furthermore, since our method works in real-time, we
plan to extend this to applications such as outdoor aug-
mented reality for moving vehicles.
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