
Occlusion Handling using Semantic Segmentation and
Visibility-Based Rendering for Mixed Reality

Menandro Roxas
The University of Tokyo

Tokyo, Japan
roxas@cvl.iis.u-tokyo.ac.jp

Tomoki Hori
The University of Tokyo

Tokyo, Japan
hori@cvl.iis.u-tokyo.ac.jp

Taiki Fukiage
NTT Communication Science

Laboratories
Tokyo, Japan

Yasuhide Okamoto
The University of Tokyo

Tokyo, Japan
okamoto@cvl.iis.u-tokyo.ac.jp

Takeshi Oishi
The University of Tokyo

Tokyo, Japan
oishi@cvl.iis.u-tokyo.ac.jp

ABSTRACT
Real-time occlusion handling is a major problem in outdoor mixed
reality system because it requires great computational cost mainly
due to the complexity of the scene. Using only segmentation, it is
difficult to accurately render a virtual object occluded by complex
objects such as vegetation. In this paper, we propose a novel occlu-
sion handling method for real-time mixed reality given a monocular
image and an inaccurate depth map. We modify the intensity of the
overlayed CG object based on the texture of the underlying real
scene using visibility-based rendering. To determine the appropri-
ate level of visibility, we use CNN-based semantic segmentation
and assign labels to the real scene based on the complexity of object
boundary and texture. Then we combine the segmentation results
and the foreground probability map from the depth image to solve
the appropriate blending parameter for visibility-based rendering.
Our results show improvement in handling occlusions for inaccu-
rate foreground segmentation compared to existing blending-based
methods.

CCS CONCEPTS
• Human-centered computing → Mixed / augmented real-
ity; • Computing methodologies → Image-based rendering;
Mixed / augmented reality;

KEYWORDS
ACM proceedings, LATEX, text tagging
ACM Reference Format:
Menandro Roxas, TomokiHori, Taiki Fukiage, YasuhideOkamoto, and Takeshi
Oishi. 2018. OcclusionHandling using Semantic Segmentation and Visibility-
Based Rendering for Mixed Reality. In VRST 2018: 24th ACM Symposium on
Virtual Reality Software and Technology (VRST ’18), November 28-December
1, 2018, Tokyo, Japan. ACM, New York, NY, USA, 8 pages. https://doi.org/10.
1145/3281505.3281546

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
VRST ’18, November 28-December 1, 2018, Tokyo, Japan
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6086-9/18/11. . . $15.00
https://doi.org/10.1145/3281505.3281546

Figure 1: Overview of the proposed method.

1 INTRODUCTION
In mixed reality, contradictory occlusion problem happens when a
foreground real object is partially or completely covered by a back-
ground virtual object. There are many ways to solve this problem
that have been presented in previous work. The most straight-
forward solution is to create an accurate foreground mask of the
real scene. In practice, foreground extraction is either an ill-posed
problem (using only RGB images) or a sparse one (using RGBD
images).

Several methods have been proposed that handles foreground
extraction in a monocular camera. Methods presented in [23] and
[17] can extract an accurate foreground region from still images.
However, extending the method to videos is inherently difficult
due to computational cost of the segmentation technique used. In
[28] and [6], contours are cut by using alpha matting [23], however
an accurate prior foreground estimation is still required and the
method fails even for small inaccuracy in the estimation especially
for complex scenes such as tree branches and vegetation.

Background subtraction methods [6][27] achieve real-time pro-
cessing and can be applied for monocular cameras. In [11][16], the
background subtraction technique are modified and applied on an
arbitrary outdoor environment taking advantage of multipile cues

https://doi.org/10.1145/3281505.3281546
https://doi.org/10.1145/3281505.3281546
https://doi.org/10.1145/3281505.3281546

VRST ’18, November 28-December 1, 2018, Tokyo, JapanMenandro Roxas, Tomoki Hori, Taiki Fukiage, Yasuhide Okamoto, and Takeshi Oishi

Figure 2: Results of alpha blending, transparency blending [8] and our method. In [8], the CG object becomes too transparent
when the background and foreground real scene has very similar intensity levels. Our method achieves a better result by
reasoning on the semantic information and setting different visibility levels for different scenes.

such as color, motion, and luminance change. However, these meth-
ods are constrained on a fixed camera and extension to moving
camera applications is difficult.

Other methods use depth information [33][12][13][14] to effec-
tively reason on the foreground-background relationship of the
virtual and real objects. By adding additional hardware such as
multiple cameras for stereo vision, time-of-flight cameras, and laser
range sensors, depth estimation is a straightforward foreground
detection method that can be done in real-time. However, exist-
ing hardwares have inherent problems such as limited range, de-
pendency on lighting conditions and sparsity of data points. For
example, sensors such as Microsoft Kinect and other devices that
project light patterns have very limited range. To solve the range
problem using these sensors, a tradeoff between real time sensing
and accuracy is done by mapping a prior mesh model of the real
scene, which can later be used in occlusion handling [2][20]. The
sparsified depth map loses the information along object boundaries
especially for complex objects such as trees. Lidar sensors, while
having long range capabilities, still give sparse data and require
interpolation to be useful in accurate foreground extraction.

Combining the depth and color images can bridge the short-
comings of the two modes. In [10] [7] RGBD images are used for
accurate foreground estimation. In these methods, the RGB images
are used to improve the appearance and accuracy of the sparse
depth map. However, the method only solves the parts of the image
where depth is not available, hence it still requires an already accu-
rate foreground segmentation. On the other hand, in [34], sparse
3D model data from a GIS were used to infer a dense depth map
of the real scene. However, these prior 3D models are not easily
available in most cases.

In this work, we focus on improving occlusion handling when an
inaccurate depth map of the current scene is given. The depth map
can be created in real-time through different means such as mesh
models [20][2], motion stereo [24] or sparse depth map through
Lidars.

Several work have been proposed that also address the inaccu-
racy of the depth map. Alpha blending can improve the appearance

of the occluded regions by gradually decreasing the visibility of the
CG object along the boundary of the foreground object. However,
this often results in non-realistic scene especially when the fore-
ground region have complex edges. In [8], a transparency blending
method which uses visibility predictor based on human vision sys-
tem, was used to predict the transparency level of the CG object.
The method has an advantage over alpha blending methods (Figure
2) because it does not require accurate estimation of complex bound-
aries. The method predicts the visibility of the CG object based on
the intensity of the real scene and the foreground probability map
inside a blending window. However, the method fails when the
intensity of the foreground and background objects within the win-
dow are very similar, in which case the virtual object becomes too
transparent.

In this paper, we propose to use semantic segmentation and
a given depth map for handling occlusions. We assign different
attributes (i.e. amount of visibility, or transparency) depending
on the class of an object. The reasoning is straightforward: for
outdoor augmented reality, the sky and ground are background,
and therefore should be hidden behind the CG object. The rest
could either be background or foreground. For objects that can be
classified as both, we assign an experimentally determined visibility
levels depending on the complexity of appearance of the object. For
example, vegetation are considered complex and plane textures are
not.

We use the given depth map to create a foreground probability
map. By combining this and the semantic segmentation, we overlay
the CG object onto the real scene by adapting a visibility-based
rendering method from [9]. Instead of using a fixed visibility level
for all objects as in [9], we use our proposed semantic classes to
choose the amount of visibility for different type of objects. This
allows us to control the appearance of the rendered object based
on the type of the scene.

To summarize, this work has two main contributions (see Figure
1). First, we present a category scheme that uses semantics for
assigning visibility values. We achieve this by first classifying the
scene into specific categories using a real-time convolutional neural

Occlusion Handling using Semantic Segmentation and Visibility-Based Rendering for Mixed RealityVRST ’18, November 28-December 1, 2018, Tokyo, Japan

Figure 3: Our proposed semantic scheme and the uncertainty of class prediction.

network-based semantic segmentation method [31][32]. We then
use our proposed scheme to group the segments into more usable
categories for in visibility blending. Second, we present a visibility
blending scheme that uses the foreground probability map and the
semantic segmentation to create a visually pleasing augmented
reality scene.

This paper is organized as follows. In Section 2, we propose
a category scheme for foreground prediction using semantic seg-
mentation. In Section 3, we introduce our visibility-based blending
method which uses semantic classsification and the foreground
probability map. In Section 4, we show our implementation, results,
and comparison with existing methods. Finally, we conclude this
work in Section 5.

2 SEMANTIC SCHEME FOR OCCLUSION
HANDLING

Given an image of the real scene, we need to categorize each objects
in it as either foreground or background. The overlayed CG object
must be invisible if the real scene is foreground and highly visible
otherwise. Instead of directly using these two labels, we classify
the object into three main categories: Background, Complex and
Simple. Objects that belong to the Background category are those
that are always in the background such as the ground or the sky,
therefore the CG object is visible when overlayed in these regions.
On the other hand, objects that are classified as Complex or Simple
can either be foreground or background, depending on the actual
depth order of the CG object and the real scene. The visibility of the
CG object is controlled differently for Complex and Simple objects
using the method we will describe in the following sections.

In order to implement the above scheme, we first segment the
scene into more specific categories. Based on this specific classi-
fication, we group the resulting classes into our proposed main
categories (see Figure 3). We use these three categories but addi-
tional classes can be added depending on the type of the scene
where the mixed reality system is deployed.

This choice of implementation (two stage) is done to avoid mis-
classification which is possible when the class size is very small.
For example, roads and grass are visually different but they belong
to the same Background category. Moreover, grass, which is often
in the background, is visually closer to a tree, which can either be
in the foreground or background region. Therefore, we opt to use

the more refined classes first instead of immediately combining
them into one semantic class.

We use the result of the semantic segmentation in two ways.
First, the labeled segments are used for setting a visibility value of
the CG object. Complex objects are usually highly textured objects
and have complicated boundaries. Assuming the real scene is in the
foreground, some sections of it (trees, vegetation etc.) especially
along the object boundaries are see-through which means that the
CG object must be slightly visible to create the effect of the scene
being see-through. On the other hand, Simple objects are usually
planar textures and the boundaries can be accurately estimated.
In this case, if the real scene is in the foreground, the CG object
behind it must be completely invisible.

We also use the uncertainty of prediction in setting the visibility
of the CG object along the boundary of occlusion. In the classifi-
cation stage, thesholding is applied to the the predicted values to
fit the specified classes. We use the prediction values before this
thresholding step in generating the uncertainty of prediction. This
uncertainty allows us to gradually shift between two different cat-
egories without creating visual artifacts which can happen if the
object boundaries are very sharp. In short, the uncertainty values
allows for a smoothing effect for the visibility transition along the
occlusion boundary for different categories.

Second, based on the class of the object, we either increase or
decrease the width of transition between the visibility values from
foreground to background. For example, the width of transition
for Complex objects is higher than that of Simple objects because
Complex objects have more complicated object boundaries. This
allows us to handle the edges that cannot be accurately predicted
by the segmentation method or the depth map. We further detail
this approach in the next section.

3 VISIBILITY-BASED RENDERING
We extend a visibility-based blending method [9] to further utilize
the semantic classification. This blending technique allows us to
locally optimize the visibility of each region of the virtual object that
can achieve arbitrarily targeted level. In [9], a visibility predictor
based on human vision system is used in blending the virtual object.
We extend this technique and use the semantic class and uncertainty
of prediction in order to determine the desired visibility value.

VRST ’18, November 28-December 1, 2018, Tokyo, JapanMenandro Roxas, Tomoki Hori, Taiki Fukiage, Yasuhide Okamoto, and Takeshi Oishi

We first define the overall intensity of the combined CG and real
objects as:

Iscene = α Icд + (1 − α)Ir eal (1)

where α is the blending parameter and Icд and Ir eal are the
intensities of the CG object and the real scene. The blending param-
eter handles the transition between two different visibility levels.
From the above equation, if α is zero, the CG is completely invisible.
This is true if the CG object is in the background. If α >> 0, the
scene has a blended intensity that is based on the desired visibility
of the CG object.

In our proposed method, the blending parameter is dependent
on several properties: the desired visibility of the CG object, the
texture of the overlapping scene, and the semantic class of the
foreground real object. The texture of the real scene affects the
perceived visibility of the CG object. For example, a highly textured
surface is capable of conceiling the features of the blended CG
object, thus makes it more invisible. On the other hand, if the
real scene has planar texture, the CG is much more visibile. To
address this issue, the intensity of the CG object is increased or
decreased through the blending parameter α . We deteremine the
texture of the real scene through our semantic segmentation scheme.
Since we are only interested in the occluding regions, we only
set a varying visibility value for the Complex and Simple scenes.
Complex class characterizes the highly textured objects and Simple
class characterizes the planar textured ones.

We set two levels of visibility for each of the semantic categories,
Vf if the CG object is in the foreground and Vb if it is in the back-
ground. For the background class, these two values are the same.
We calculate these values based on the uncertainty д and semantic
class:

Vf =
1
2
Vf 1 +

1
2
{(1 − д)Vf 1 + дVf 2} (2)

Vb =
1
2
Vb1 +

1
2
{(1 − д)Vb1 + дVb2}

where Vf 1, Vf 2, Vb1, and Vb2 are arbitrary values based on the
desired appearance of the augmented scene depending on the class
of the segment and the texture of the real scene.

Vf 1 and Vb1 are the desired maximum visibility and Vf 2 and Vb2
are the fallback minimum visibility. For the Background class, Vf 1
andVb1 are set to a high value such that the foreground probability
map will be ignored. This is due to the fact that background object
should not be visible.

For the Simple class, Vf 1 is set to a very low value (almost zero),
where as Vb1 is set to high value. In contrast, the Complex class
has Vf 1 also set to a high value, which should mean that when the
Complex object is in the foreground the CG object will still be visible.
This is not the case. In our observation, the Complex class tend
to always appear in the foreground due to its texture complexity.
Hence, when we solve Iscene within the square window containing
a Complex object, the CG object appears more transparent. We
avoid this case by setting a high value for Vf 1.

Equation 2 allows gradual shifting from different categories and
visibility levels through the uncertainty value. This scheme is par-
ticularly effective along object boundaries. For example, if the un-
certainty is very low (i.e. д = 0.01) for a background object in the
Simple category (i.e. Tree trunk), the visibility Vf and Vb is almost

equavalent of the maximum visibility. In this case, if the foreground
probibility map is high (i.e. Pf = 0.95), the total visibility of the
CG object Vcд approaches the maximum visibility for foreground
Vf . On the other hand, if the uncertainty is high, (i.e. g = 0.85)
which usually happens along boundaries, then Vf and Vb become
weighted averages of the maximum visibility Vb1 and the fallback
minimium visibility Vb2.

Using the visiblity valuesVf andVb , we then define the blending
parameter as:

α = Vf −
Vf −Vb

1 + e−k (ω−ω0)
(3)

which is a logistic function with maximum value of Vf and
minimum value of Vb . The parameter k handles the steepness of
the sigmoid curve and ω0 gives the midpoint. The parameters k
and ω0 are solved based on the semantic class.

The value ω is dependent on the foreground probability map, Pf .
Given the depth map of the real scene and the CG object, we define
Pf (probability that the real scene is a foreground) as:

Pf =
1

1 + e−(dcд−dr eal)
(4)

where dcд is the depth of the CG object and dr eal is the depth of
the real scene. Equation 4 is a straightforward computation of the
foreground probability map. The value is high if the depth of the
real scene is smaller than that of the virtual object, which means
that the real scene is closer to the camera. As the depth difference
becomes smaller, however, the probability only decreases gradually
so as not to suffer from inconsistency in depth estimation.

To solve for omega, the map is accumulated and normalized
within a square window centered at the solved pixel with a total
size ofw :

ω =
1
w

w∑
i
Pfi (5)

The transition between two levels of visibility needs to be smooth
in order to avoid artifacts. While the probability map can handle
this, we further utilize the semantic information to adapt the tran-
sition depending on the predicted class. For Complex objects, the
transition width should be inceased such that the switch between
two visibility levels is more gradual that extends further into the
foreground region (see Figure 4) compared to that of Simple objects.
This technique allows us to handle regions of the foreground where
the probability map is inaccurate.

The transition width can be adjusted by setting the steepness of
the sigmoid curve and the value at the midpoint ω0 of the blend-
ing parameter α . For Simple class, the curve should be steep and

Figure 4: Blending boundary dilation and skew for Complex
and Simple objects.

Occlusion Handling using Semantic Segmentation and Visibility-Based Rendering for Mixed RealityVRST ’18, November 28-December 1, 2018, Tokyo, Japan

Figure 5: Re-classification of the Cityscape labels into our proposed categories and uncertainty of prediction.

Figure 6: Labels used for specific classes.

midpoint should be skewed towards the center of the occluding ob-
ject. For Complex, the curve should be smoother and the midpoint
should lie along the natural boundary of the occlusion.

To set the steepness and the midpoint that is dependent on the
classes, we define two control points in the curve αd = α (ω ≈ 0.5)
and αm = α (ω ≈ 1.0). We set αd to high when the class is Simple
and low when the class is Complex. On the other hand, αm is set
to low (αm < αd) when the class is Simple and high when the class
is Complex.

The steepness of the curve k is then solved by:

k =
loд(αm

1−αm) − loд(αd
1−αd)

ωd − ωm
(6)

The value ω0 is then given by:

ω0 =
loд(αm

1−αm)

k + ωm
(7)

4 IMPLEMENTATION AND RESULTS
4.1 Semantic Segmentation
Semantic segmentation methods have been ubiquitous in both in-
door and outdoor applications. Specifically, convolutional neural
network-based methods achieves high accuracy and real time re-
sults [31] [32]. To implement our own semantic scheme, we utilize
a publicly available implementation [1] using the method described
in [31] for outdoor applications trained on the Cityscapes dataset
[5].

The specific classes are: Road, Sidewalk, Building, Wall, Fence,
Pole, Traffic Light, Traffic Sign, Vegetation, Terrain, Sky, Person,
Rider, Car, Truck, Bus, Train, Motorcycle, and Bicycle. We then
regroup these classes to fit our semantic scheme as: Background
(Road, Sidewalk, Terrain, and Sky), Complex (Vegetation, Person,
Rider, Motorcycle, and Bicycle) and Simple (Building, Wall, Fence,
Pole, Traffic Light, Traffic Sign, Car, Truck, Bus, and Train). Figure
5 shows the recategorized classes using this scheme.

The semantic segmentation method is implemented in Python
using Tensorflow and run on an NVIDIA GTX 1060 GPU with 6GB
of video RAM. The input frames are fed through an input stream
and processed per frame. We achieved a 10ms (10fps) processing
time for an image size of 634x360 which is sufficient for real time
applications.

VRST ’18, November 28-December 1, 2018, Tokyo, JapanMenandro Roxas, Tomoki Hori, Taiki Fukiage, Yasuhide Okamoto, and Takeshi Oishi

Category Vf [8] Vb [8] Vf 1 Vf 2 Vb1 Vb2
Background 1.0 1.0 1.0 1.0 1.0 1.0
Simple 0.0005 0.5 0.0005 0.001 0.5 0.4
Complex 0.15 0.4 0.15 0.1 0.4 0.25

Table 1: Visibility parameters setting for [8] and ourmethod.

4.2 Comparison with existing methods
We compare the results of our method with simple alpha blending
and transparency blending [8] methods. For all three methods, we
use the same depth map to solve the foreground probability map.
For the alpha blending method we solve the color of the pixel as:

RGB = RealRGB × Pf +CдRGB × (1 − Pf) (8)

For [8], we set the Vf and Vb as fixed based on the region class
(see Table 1), and solve the visiblity as in Equation 2.

We show the comparison of the output from the three methods
in Figure 8. The first column correspond to the frame seen by
the HMD. The second, third and fourth column are the output of
the alpha blending, transparency blending and our method. In all
cases, the alpha blending method achieves the highest visibility
value. However, it is apparent along the more complex contours of
vegetation that the alpha blending fails. The method results in an
insufficient segmentation of the foreground region.

In contrast, the transparency blending achieves more visually
pleasing blending along the complex contours. However, the visibil-
ity of the virtual object suffers when the background and foreground
are of the same brightness or intensity. This results in the virtual
object being almost invisible.

Our method achieves the best tradeoff between visibility and
accurate segmentation. Along the regions of the complex contours
of the foreground, our method outperforms the simple alpha blend-
ing. When the background is flat, our method outperforms the
transparency blending.

Our rendering pipeline is implemented using shader language
(HLSL) and can run on a PC (Intel Core i7-6700HQ at 2.60GHz and
NVIDIA GTX 1060 GPU) at more than 60fps.

4.3 Implementation for Optical See-Through
HMD

Our method can be used in both video see-through and optical
see-through devices. The difference between the two devices is
that for optical see-through devices, the real scene cannot be modi-
fied. Therefore, we need to slightly change our visibility blending
equation:

Iscene = α Icд (9)
The above equation is modified because the visibility of the real-

scene is always 1.0. An input camera is also needed in order to
properly sense the texture of the environment since the blending
parameter α is still dependent on the visibility values based on the
texture of the real scene. To handle the parallax between the eye
view and the camera view, the position of the camera needs to be
calibrated to the relative position of the see-through display and
the eyes. Since there is only one camera, we re-position the optical
center of the camera image in between the eyes. Then, we reproject

Figure 7: Results of our method on an optical see-through
device (Microsoft Hololens)

the image by changing the focal length of the projection matrix to
match that of the see-through display. We show the result of our
implemenation in Figure 7 and our supplementary video.

We tested our implementation on aMicrosoft Hololens [2] device
and achieved a frame rate of 60fps for rendering. However, the
overall processing is bottlenecked by the 15fps video stream input
from the built-in camera.

4.4 User Evaluation
Using the same settings for the three methods as in the previous
section, we conducted an experiment with users (6 male and female,
ages 23-48). Five scenes of 10-second video each were randomly
shown to the users. The scene consist of a combination of Back-
ground, Complex and Simple objects from a moving camera and a
static CG object.

We performed a pairwise comparison (total of 6 combinations)
among the three methods. We showed one sequence first and then
another and asked the users to compare the two sequence based on
three categories: 1)Visibility of virtual object (Is it easy to see the
virtual object?), 2)Realistic occlusion of the virtual object (Does the
virtual object appear to be realistically occluded?) and 3) Realistic
appearance of the rendered scene (Does the scene look realistic?).
Each of the sequence is graded from -3 to +3 (+3 if the second
video has maximum preferrence, -3 if the first video has maximum
preference). We also randomly show each video pairs in reverse
order, resulting in 30 pairs of evaluation dataset.

Based on the evaluation, we plot the total preference scores for
each scene and questions in Figures 9. In all the tests, our method
achieved highest preferential scores compared to the other two
methods.

5 CONCLUSION AND FUTUREWORK
In this work, we demonstrated how to use visibility-based blending
method and semantic segmentation in handling occlusion problem
in mixed reality. We incorporated a foreground probability map
solved from a given inaccurate depth map together with semantic
classsification using convolutional neural network. Our results

Occlusion Handling using Semantic Segmentation and Visibility-Based Rendering for Mixed RealityVRST ’18, November 28-December 1, 2018, Tokyo, Japan

Figure 8: Comparison of rendering results from alpha blending, transparency blending, and our method.

VRST ’18, November 28-December 1, 2018, Tokyo, JapanMenandro Roxas, Tomoki Hori, Taiki Fukiage, Yasuhide Okamoto, and Takeshi Oishi

Figure 9: Comparison of preference scores for Question 1 (visibility of virtual object), Question 2 (realistic occlusion of the
virtual object) and Question 3 (realistic appearance of the rendered scene).

shows that compared to existing alpha blending and transparency
blending based techniques, our method achieves better visibility in
flat background areas and better occlusion handling along complex
foreground objects. Our implementation is achieved in real time
using modern GPUs.

However, there are limitations in our implementation that can
be improved in the future. First, the semantic segmentation is per-
formed on a per frame basis, which is time consuming and naive.
Since a continuous stream of input images are used in augmented
reality, the semantic segmentation can be modified to utilize tem-
poral information. Second, our semantic classification is narrow
such that a bunch of object appearances and textures exists that
can either be considered Simple or Complex. For example, some
vegetation are dense enough that they can be considered as SImple
objects. However, in our current implementation, all vegetation are
considered Complex. By using additional classes and more ground
truth data for training the semantic segmentation network, we can
further control the blending parameter to handle more specific
situations and extended to more complex scenes. Finally, to make
the method complete, a real time depth estimation method can be
added.

REFERENCES
[1] [n. d.]. An implementation of ICNet (Real-time image segmentation) in tensorflow.

https://github.com/hellochick/ICNet-tensorflow. Accessed: 2018-08-15.
[2] [n. d.]. Microsoft Hololens. https://www.microsoft.com/en-us/hololens. Accessed:

2018-08-15.
[3] S. Uchiyama andK. Takemoto, K. Sato, H. Yamamoto, and H. Tamura. 2002. MR

Platform: A basic body on which mixed reality applications are built. In ISMAR.
[4] Vijay Badrinarayanan, Ankur Handa, and Roberto Cipolla. 2015. SegNet: A

Deep convolutional encoder-decoder architecture for robust semantic pixel-wise
labelling. In CVPR.

[5] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus En-
zweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. 2016.
The Cityscapes Dataset for Semantic Urban Scene Understanding. In Proc. of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[6] A. Criminisi, G. Cross, A. Blake, and V. Kolmogorov. 2006. Bilayer segmentation
of live video. In Computer Vision and Pattern Recognition. 53–60.

[7] C. Du, Y. Chen, M. Ye, , and L. Ren. 2016. Edge snapping-based depth enhancement
for dynamic occlusion handling in augmented reality. In ISMAR.

[8] Taiki Fukiage, Takeshi Oishi, and Katsushi Ikeuchi. 2012. Reduction of contradic-
tory partial occlusion in mixed reality by using characteristics of transparency
perception. In ISMAR. 129–139.

[9] Taiki Fukiage, Takeshi Oishi, and Katsushi Ikeuchi. 2014. Visibility-based blending
for real-time applications. In ISMAR. 63–72.

[10] A. Hebborn, N. Hohner, and S. Muller. 2017. Occlusion Matting: Realistic Occlu-
sion Handling for Augmented Reality Applications. In ISMAR.

[11] T. Kakuta, L.B.Vinh, R. Kawakami, T.Oishi, and K.Ikeuchi. 2008. Detection of
moving objects and cast shadows using spherical vision camera for outdoor

mixed reality. In VRST. 219–222.
[12] Masayuki Kanbara, Takashi Okuma, Haruo Takemura, and Naokazu Yokoya. 1999.

Real-time composition of stereo images for video see-through augmented reality.
In International Conference on Multimedia Computing and Systems. 213–219.

[13] Hansung Kim, Seung jun Yang, and Kwanghoon Sohn. 2005. 3D reconstruction of
stereo images for interaction between real and virtual objects. In Signal Processing
and Image Communication. 61–75.

[14] Tae Hoon Kim, Hoyub Jung, Kyoung Mu Lee, and Sang Uk Lee. 2008. Segmenta-
tion based foreground object disparity estimation using Zcam and multiple-view
stereo. In International Conference on Intelligent Information Hiding and Multime-
dia Signal Processing. 1251–1254.

[15] LabelMe. [n. d.]. LabelMe. The Open Annotation Tool.
http://labelme.csail.mit.edu.

[16] L.B.Vinh, Tetsuya Kakuta, Rei Kawakami, Takeshi Oishi, and Katsushi Ikeuchi.
2010. Foreground and shadow occlusion handling for outdoor augmented reality.
In ISMAR. 13–16.

[17] Yin Li, Jian Sun, Chi-Keung Tang, and Heung-Yeung Shum. 2006. Lazy Snapping.
In ACM Transaction on Graphics, Vol. 23. 22–32.

[18] B. Liu and X. He. 2015. Multiclass Semantic video segmentation with object-level
active inference. In CVPR.

[19] J. Long, E. Shelhamer, and T. Darrell. 2015. Fully convolutional networks for
semantic segmentation. In CVPR.

[20] R. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. Davison, P. Kohli,
J. Shotton, S. Hodges, and A. Fitzgibbon. 2011. KinectFusion: Real-Time Dense
Surface Mapping and Tracking. In ISMAR.

[21] George Papagiannakis and Sebastien Schertenleib. 2005. Mixing virutal and
real scenes in the site of ancient Poppeii. In Journal of Computer Animation and
Virtual Worlds. 11–24.

[22] Point Grey Research. [n. d.]. Lady Bug Technical Reference.
https://www.ptgrey.com/ladybug5-360-degree-usb3-spherical-camera-systems.

[23] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. 2004. Grab-cut -
Interactive foreground extraction using iterated graph cuts. In ACM, SIGGRAPH
’04. 309–314.

[24] M. Roxas and T. Oishi. 2017. Real-Time Simultaneous 3D Reconstruction and
Optical Flow Estimation. In WACV.

[25] SegNet. [n. d.]. SegNet: A Deep convolutional encoder-decoder architecture for
robust semantic pixel-wise labelling. http://mi.eng.cam.ac.uk/projects/segnet.

[26] A. Sharma, O. Tuzel, and D. Jacobs. 2015. Deep Hierarchical parsing for semantic
segmentation. In CVPR.

[27] J. Sun, W. Zhang, X. Tang, and H.Y.Shum. 2006. Background Cut. In ECCV.
628–641.

[28] S.W.Hasinoff, S.B. Kang, and R.Szeliski. 2006. Boundary Matting for View Syn-
thesis. In Computer Vision and Image Understanding. 53–60.

[29] D. Varas, M. Alfaro, and F. Marques. 2015. Mutiresolution hierarchy co-clustering
for semantic segmentation in sequences with small variations. In ICCV.

[30] C. Zach, T. Pock, and H. Bishof. 2007. A duality based approach for real-time
TV-L1 optical flow. In Lecture Notes in Computer Science: Pattern Recognition.

[31] Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping Shi, and Jiaya Jia. 2017.
ICNet for Real-Time Semantic Segmentation on High-Resolution Images. arXiv
preprint arXiv:1704.08545 (2017).

[32] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio
Torralba. 2017. Scene Parsing through ADE20K Dataset. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition.

[33] Jiejie Zhu, Liang Wang, Ruigang Yang, and James Davis. 2008. Fusion of time-of-
flight depth and stereo for high accuracy depth maps. In CVPR. 23–28.

[34] S. Zollmann and G. Reitmayr. 2012. Dense Depth Maps from Sparse Models and
Image Coherence for Augmented Reality. In VRST ’12.

	Abstract
	1 Introduction
	2 Semantic Scheme for Occlusion Handling
	3 Visibility-Based Rendering
	4 Implementation and Results
	4.1 Semantic Segmentation
	4.2 Comparison with existing methods
	4.3 Implementation for Optical See-Through HMD
	4.4 User Evaluation

	5 Conclusion and Future Work
	References

