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Abstract 
This paper describes a method for parallel alignment of 

multiple range images. There are problems of 
computational time and memory space in aligning a large 
number of range images simultaneously. We developed a 
parallel method to address the problems. Searching for 
corresponding points between two range images is 
time-consuming and requires considerable memory space 
when performed independently. However, this process can 
be preformed in parallel, with each corresponding pair of 
range images assigned to a node. Because the 
computation time is approximately proportional to the 
number of vertices, by assigning the pairs so that the 
number of vertices computed is equal on each node, the 
load on each node is effectively distributed. In order to 
reduce the amount of memory required on each node, a 
hypergraph that represents the correspondences of range 
images is created, and heuristic graph partitioning 
algorithms are applied to determine the optimal 
assignment of the pairs. Moreover, by rejecting redundant 
dependencies, it becomes possible to accelerate 
computation time and reduce the amount of memory 
required on each node. The method was tested on a 
16-processor PC cluster, where it demonstrated high 
extendibility and improved performance. 
 

1. Introduction 
In recent years, the technology of modeling from reality 

using laser range sensors has been highly developed [1]. 
Using this technology has enabled the digital preservation 
of precious cultural heritage objects around the world [2, 
3]. Laser range sensors can measure 3D surface geometry 
with accuracy within a millimeter for a short distance. For 
a long distance (50m to 100m), a laser range sensor that 

applies a time of flight can obtain surface geometry with a 
1cm degree of accuracy.  

While the performance of laser range sensors has been 
greatly improved, there are still some problems in creating 
a 3D model from a large number of range images. 
Because a laser range sensor can measure only the visible 
surface, it is necessary to take range images from many 
different directions. Once the scanning has been 
completed, all range images have to be aligned into a 
common coordinate system. If an object is small enough 
to be put on a turntable, it is easy to obtain the relative 
positions of the range images. But in cases where an 
object is a large statue, for example, it is difficult to record 
the accurate position and direction of the laser range 
sensor. Therefore, computation to obtain the relative 
positions of the range images is required. 

Many methods of aligning range images have been 
proposed. These algorithms are based on the iterative 
closest point (ICP) proposed by Besl [8] and are adapted 
from the method proposed by Chen [9]. With ICP, 
corresponding points are searched for as the closest points 
between two range images, and a transformation matrix is 
computed so that the mean square error of the 
corresponding points is minimized. The computation is 
iterated until the mean square error falls below the 
threshold value. In Chen’s method, the relative positions 
of range images are calculated so that the distance 
between vertices and the corresponding patches is 
minimized. In addition, there is a method to search for 
correspondences by projecting the points along with the 
ray direction [10]. 

When the number of range images is very large, a 
method that simultaneously aligns range images is 
required. The algorithms described above align two range 
images; when using these algorithms, error accumulation 



increases as the number of range images increases. In such 
cases, a method that simultaneously aligns range images is 
useful. Neugebauer et al. proposed a simultaneous 
registration method that adopted projection search of 
correspondences and point-plane error metric [12]. (This 
is the fundamental algorithm used in this study.) 
Benjamaa et al. extended the method proposed by 
Bergevin et al. [13] and implemented a simultaneous 
alignment method while they accelerated the pair-wise 
alignment algorithm by using multi z-buffers [14]. 

Although various methods have been proposed, the 
problem for every method is the computation cost of 
correspondence search. If the number of vertices of two 
range images is equally assumed to be n by the original 
ICP, their complexity is O(n2) since correspondences are 
searched for in all vertices. In order to accelerate ICP, 
there are techniques [15] that use kd-trees and that narrow 
the search range by using data cache [16], as well as the 
parallel ICP algorithm proposed by Langis et al., which is 
implemented on a PC cluster [17].  

Despite the many alignment algorithms, it is difficult to 
align the large number of range images that our activities 
involve. The computation time for the pairs of range 
images increases, and it is necessary to read all range 
images into memory when such algorithms are used 
(Parallel ICP [17] does not consider the amount of 
memory used). It is thought, moreover, that the amount of 
data will increase along with the development of 
measurement technology. Therefore, we need a method in 
which the calculation time is short, the amount of memory 
used is small, and the extendibility is high.  

Thus, we propose a parallel simultaneous alignment 
method that is implemented on a PC cluster because this 
method is cheap and highly extendible. In Section 2, the 
fundamental alignment algorithm is described. In Section 
3, we present the algorithm of parallel computation. 
Sections 4 and 5 contain the evaluations of this algorithm 
and the alignment results of a large number of range 
images, respectively. Our conclusions are presented in 
Section 6. 
 

2. Simultaneous Alignment Algorithm 
In this section, the outline of the fundamental alignment 

algorithm is explained. We assume that all range images 
have been converted to mesh models. The algorithm is 
applied in the following steps: 

1. To compute, for all pairs of partial meshes, 
(a) to search all correspondence of vertices 
(b) to evaluate error terms of all correspondence pairs 

2. To compute transformation matrices of all pairs for 
immunizing all errors 

3. To iterate steps 1 and 2 until the termination 
condition is satisfied 

Our algorithm employs points and planes to evaluate 
relative distance as the Chen and Medioni method [9]. The 
corresponding pairs are searched along the line of sight. 
Here, the line of sight is defined as the optical axis of a 

range sensor. Let us denote one mesh as the base mesh 
and its corresponding mesh as the target mesh. An 
extension of the line of sight, from a vertex of the base 
mesh, crosses a triangle patch of the target mesh and 
creates the intersecting point. In order to eliminate false 
correspondences, if the distance between the vertex and 
the corresponding point is larger than a certain threshold 
value, the correspondence is removed. This 
correspondence search is computed for every pairs of 
mesh models. 

The error measure between corresponding points is the 
cosine distance between the point and the plane. Let the 
vertex of the base mesh and the corresponding crossing 
point in the target mesh be xr  and yr , respectively. The 
error measure between the pairs is written as 

)( xyn −⋅       (1) 
where nr  is the normal of xr  defined around the 

vertex.  
The transformation matrices of the base and target mesh 

models are computed so that this error measure is 
minimized. The error evaluation function is rewritten as 
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If it is assumed that the angles of rotation are minute, 
the rotation matrix R is written as 
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The translation vector is expressed as 
( )Tzyx tttt =

r      (5) 
After some algebraic manipulations [12], (3) is rewritten 
as 
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where the number of mesh models is n. By (6) δ
r

 is 
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3. Parallel alignment based on a PC cluster 
Among the simultaneous alignment operations 

described in Chapter 2, 1(a) correspondence search and 
1(b) error evaluation require a large amount of 
computational time. They also require data space to read 
in data of all vertices. On the other hand, these two 
operations can be conducted independently in each pair of 
partial mesh models. Computation of transformation in 
step 2 does not require much computational time or 
memory space. Thus, we designed correspondence search 
and error evaluation in step 1 to be conducted in slave PCs 
in a PC cluster, and computation of transformation in step 
2 to be conducted in a master PC. 
 
3.1. Graph simplification 

We remove redundant or weak data dependency 
relations of partial mesh models for the sake of efficiency 
in parallel computation. Figure 1 shows overlapping 
data-dependency relations. Each node in the graph 
represents one mesh model, and each arc represents an 
overlapping dependency relation among mesh models. 
The left graph shows the original state in which all the 
mesh models overlap each other. If we conduct alignment 
of one mesh as is, we would have to read into a PC’s 
memory all the remaining mesh models. By removing 
some of redundant overlapping dependencies, we can 
transform the original graph into a simpler one as shown 
in the right figure. By using this simpler relational graph, 
we only need adjacent data with respect to a vertex for 
alignment of a vertex, and we can reduce the necessary 
memory space. 
 

Range image

Slave0 Slave1

Slave2Pair
Range image

Slave0 Slave1

Slave2Pair

 
Figure 1. Data dependency relations 

 
We will remove the dependency relation between the 

two mesh models if any of the mesh pairs does not satisfy 
any one of the following four conditions: 
 
1. The bounding-boxes of two mesh models overlap 

each other. 
A sufficient overlapped region exists between two 

mesh models, provided that initial positions of two 

meshes are accurately estimated. 
 
2. The angle θ between ray directions of two mesh 

models is less than a threshold value. 
Two observation directions of the meshes are 

relatively near. This condition also reduces the 
possibility of false correspondences between front- 
and backside meshes, by setting the threshold, as 
θ=90º. We could use a more accurately estimated 
value for this threshold, but since this value is used as 
a constraint to reduce the possibility described above, 
we use this θ=90º for the sake of safety and 
simplicity. 

 
3. The overlapping area of two meshes is larger than 

a threshold value. 
Overlapping area is expressed as the ratio of the 

number of vertices included in one mesh model and 
the number of corresponding points between two 
meshes. Corresponding points are searched for a few 
vertices selected randomly. We used 10% of the 
vertices for this search. A pair whose overlapping area 
is less than threshold value will be removed as weak 
data dependency. We set the threshold value as 0.03 
to 0.05. Since the computation of overlapping areas 
can be performed independently and sequentially for 
each pair, the computations are performed easily in 
parallel without the problem of memory usage. 

 
4. Two range images are adjacent to each other. 

This condition removes non-adjacent relations 
sequentially. For example, as shown in Figure 2, if 
the length from I0 to I3 is larger than the length from 
I1 to I3 (l01 < l03), the arc between I0 and I3 is removed. 
Here, the distance is evaluated from the center of a 
mesh model. 
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Figure 2. Non-adjacency relation 

 
3.2. Parallelization by graph partitioning 
algorithms 

The problem of load balancing with a minimum amount 
of required memory is an NP-hard problem [18]. It is 
difficult to obtain an optimal solution in a reasonable time. 
Alternatively, we employ an approximation method to 
solve this problem by applying heuristic 
graph-partitioning algorithms. 



3.2.1 Pair-node hyper-graph 
  First, we define the pair-node hyper-graph. The left 
image of Figure 3 shows a graph that expresses the 
relations of partial meshes In. The graph is converted to 
the hyper-graph in which each node expresses pairs Pi,j of 
two partial meshes i and j, and networks represent meshes, 
as shown in the right figure of Figure 3. We refer to it as a 
“pair-node hyper-graph.”  

The weight of the network Wnet
i is defined as the 

number of vertices vi in the partial mesh, i; the weight 
Wnode

i,j of the node is defined as the sum of the number of 
vertices vi and vj. 

ii
net vW =      (13) 

jiji
node vvW +=,      (14) 

A pair-node hyper-graph is partitioned so that the sum of 
the node weights in each subset is roughly equal for 
computational load balance, and summation of all the 
net-weight in each subset is minimized for efficiency of 
memory usage. 
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Figure 3. Pair node hyper-graph 

 
It is necessary to consider both node weights and net 

weights in optimization, even though they are related to 
each other, and using them seems to be redundant. 
Reducing the computational load requires each sub-group 
to have equal values in the node-weights. On the other 
hand, even when a hyper-graph is portioned equally in 
terms of node-weight, depending on the method, each 
sub-group has different memory usage. Let us consider 
the example, shown in Figure 3, to divide the hyper-graph 
into two sub-graphs. For the sake of simplicity, we assume 
that all node-weights and net-weights are the same in all 
the nodes and all the networks. When the hyper-graph is 
divided into two groups, {P0,2, P1,3, P2,3} and {P0,1, P0,3}, 
the node balance is achieved in two sub-graphs. The first 
sub-graph needs to load in all the data {I0, I1, I2, I3}. The 
maximum value in sums of net-weights is four units. 
When the hyper-graph is divided into two groups, {P0,2, 
P0,3, P2,3} and {P1,3, P0,1}, each sub-group needs only to 
load in three data sets. The maximum value in the sum of 
net-weights is three units. In these two cases, both 
portioning methods have roughly equal load balance in 
terms of node-weights, but have different memory usage. 
When we divide the graph by considering only memory 
usage, it is not guaranteed that each sub-graph has equal 
load balance. Thus, we will consider both node-weights 
and net-weights in the optimization procedure. 

3.2.2 Initial partitioning 
  The pair-node hyper-graph is initially partitioned so that 
the sum of the node-weights in each subset is roughly 
equal. Spectral bisection methods [19, 20] that minimize 
the edge-cut by using second eigenvector are widely 
available, but it is difficult to apply the method to our 
problem. Intelligent graph growth algorithm [21] can 
obtain a fairly optimal solution in a small computation 
time. However, this method tends to be trapped in a poor 
partitioning [22]. We used the random seeded breadth first 
search method for initial partitioning. Since the sum of 
net-weight included in each subset is greatly influenced by 
the selection of the seed, we created initial partitions for 
multiple seeds and adopted the partition in which the sum 
of net-weight included is minimized. In order to obtain 
k-way partitions, the recursive bisection method is used. 
After logk phases, the hyper-graph is partitioned into k 
sub-graphs [23]. 
 
3.2.3 Refinement of the partition 
 The partitioned graphs are refined so that the sum of 
net-weights included in each subset graph is minimized. 
We improved the KLFM algorithm, which is an iterative 
refinement algorithm [24, 25]. The algorithm moves a 
node from one partition to another so that the operation 
causes the greatest improvement in the cut-size. While the 
original KLFM algorithm moves a node at one iteration, 
our method moves a net at one iteration. That is, all nodes 
connected to the net are moved at the same time. For 
k-way refinement, the subset graph of which the sum of 
net-weight is maximum weight is computed with all other 
subsets. The refinement process is reiterated until there is 
no more improvement.  

 The net gain is computed for all nets along the 
boundary of two subset graphs. Now, we consider the kth 
net at the boundary between the subset graphs, Gi and Gj. 
In the case the net N(i,j),k is moved to Gi, the gain gi,j,k is 
expressed using two values, Dint

i,j,k, the variation of the 
sum of net weight of Gi and Dext

i,j k, the variation of the 
sum of net-weight of Gj as 
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On the other hand, in the case where N(i,j),k is moved to 
Gj, the gain gj,i,k is expressed in the similar way as 
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The two lists, Li, Lj, consisting of all gains of the all 
nets at the boundary, are created. The list with the larger 
sum of the total node-weight (computational time) is 
selected for consideration of the movement, and the 
components, candidate nets in the list, are processed one 
by one in descending order of the gain. At each movement 
of one net, all nets and nodes concerned with the net are 
updated, and the moved net is locked in order to avoid 
thrashing. The sum of the net-weight (memory usage) and 
the moved net’s ID are also recorded at each movement. 
After all nets are moved, the minimum value of the sum of 
the net-weight (memory usage) is compared with the 



value at the starting stage. If the minimum value is smaller 
than that of the starting state, the corresponding 
movement-sequence is performed, and the next iteration 
begins. If not, the refinement process is terminated. See 
Figure 4 for the flow chart of the refinement process. 
 

Create two lists (Li, Lj) for gains (gi,j,k, gj,i,k)

Sort these lists in descending order by gains

Select one list by following condition
if(ΣWnode

i > ΣWnode
j ) : select Li

else : select Lj

Consider Graphs Gi and Gj

Move an unfixed net which contains minimum gain

Update the neighbors’ gains

Fix the moved net

Terminated?
No

Updated?
Yes Finish

Yes
No

Start

 
Figure 4. Flowchart of refinement process 

 
3.3. Implementation 
 We implemented our method as a master/slave system. 
The procedures of the computation is are as follows 
Algorithm Procedure of Parallel Alignment 
/* Check correspondence of all pairs of the partial meshes 
*/ 

Create-Pair-Table(); 
/* Create the lists of the files for each processor */ 
Create-File-Lists(): 
while(error > threshold){ 
   /* Slave Process*/ 
   for(i = 0; i < nmeshes; ++i) 
    for(j = 0; j < nmeshes; ++j) 
      Whether-i-and-j-overlap-each-other?{ 
        Correspondence-Search(i, j); 
        Calculation-Each-Matrix(i, j); 
      } 
  /* Master Process */ 
  CalculationMatrix(all); 
  /* Master & Slave process */ 

UpdatePosition(); 
} 

 
The master program holds bounding-boxes and 

transformation matrices from initial position to current 
position of all partial meshes, checks all pairs, and creates 
the list of computations for each node. The pairs list for 
each slave is computed at the beginning of the entire 
iteration process based on the relational table using the 
algorithm described above. The slave programs receive 
the lists and read the required partial meshes into memory. 
Then, each slave computes the matrices AT

ijkAijk and 

AT
ijksijk in (12) independently, and sends the matrices to 

the master program. The master program computes the 
transformation matrices of all range images from the 
matrices AT

ijkAijk and AT
ijksijk received from the slave 

programs. The results are applied to all master/slave data. 
Each iteration process is continued until the error falls 
below a certain threshold value. 
 

4. Performance evaluation 
This method was implemented on a PC cluster that 

consisted of 8 PCs. Each PC had dual AthlonMP2400+ 
processors and 4Gbytes of memory, and was connected by 
100Base-TX ethernet. The range images used for 
evaluation were 50 images created artificially from the 
complete 3D model of the Great Buddha of Kamakura.  
Figure 5 shows the original 3D model of the statue and the 
partial mesh models created artificially. These mesh 
models contain an average of 83,288 vertices and 158,376 
patches. 

In this section, our method is evaluated from the 
viewpoints of convergence and accuracy, computation 
time, and memory usage. 

 

    
 (a) Original model   (b) Created mesh models 
Figure 5. Partial mesh models for evaluations 

  
4.1. Convergence and accuracy 

Because our method rejects redundant dependencies, 
the influence of the rejection on convergence and 
accuracy has to be evaluated. In this case, the number of 
all pairs is 2,450, but it is reduced to 160 by the rejection 
process. We needed to verify whether accurate 
convergence is performed even when the number of pairs 
becomes very small. Virtually created mesh models have 
accurate positions of measured points, so convergence and 
accuracy can be evaluated by the distance between an 
accurately aligned mesh model and the target mesh model. 
The distance between two meshes is defined as an average 
of the Euclidean length of all vertices. Each mesh model 
added Gaussian noise along the line of sight at maximum 
length 10mm. All mesh models were moved at random in 
the maximum length of 100mm in the directions of x, y, 
and z, respectively, and rotated at random in the maximum 
angle of 0.05 radians to the x-axis, y-axis, and z-axis, 
respectively. 
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Figure 6. Convergence with original method 
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Figure 7. Convergence with our method 

  
The results of the original method and our method are 

shown in Figures 6 and 7, respectively. The threshold 
distance for rejecting outliers while searching for 
correspondences is changed gradually. Although both the 
original method and our method do not converge at the 
correct positions when the threshold distance is 5m, our 
method converges at a better position than the position of 
the original method. Although the convergence speed of 
our method is slower than that of the original method, our 
method tends to converge at a better position than the 
position of the original method. It is thought that this is 
because the rejection of redundant pairs reduces false 
correspondence of mesh models. A feature of the 
alignment algorithm that we used is that it tends to be 
influenced by false correspondence and noise. Therefore, 
by rejecting redundant pairs, transformations are 
accurately estimated. When the threshold values are 0.1m 
and 0.5m, the error converges at approximately 0. So we 
see that accurate estimation is acquired by our method. 
4.2. Computational efficiency 

Here, the computation time is evaluated. Computation 
time is defined as the time taken for one iteration, and an 
average of time of all iterations is used for the evaluation. 
Figure 8 shows the time ratio with the number of 

processors. Computation time Tn is expressed as the ratio 
to the computation time with one processor T0. This figure 
shows that the computation time is linearly improved as 
the number of processors increases. Moreover, our method 
improves computation time in a predictable way unlike 
the sequential method in which the mesh models are 
assigned in arbitrary selected order. The actual 
computation time with one processor averages 20560ms, 
and the computation time with 16 processors averages 
1784ms. Thus, the computation time with 16 processors is 
approximately 11.5 times faster than that with 1 processor. 
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Figure 8. Computational Efficiency 

 
4.3 Amount of required memory 

Next, the evaluation of memory performance is shown. 
The amount of memory usage is shown in Figure 9 with 
the number of processors. Each value shows the ratio with 
the amount of memory used with a single processor. It 
appears that the amount of required memory decreases as 
the number of processors increases. Compared with the 
sequential method, the performance is highly improved by 
our method. An actual maximum size of required memory 
with a single processor is 269Mbytes and that with 16 
processors is 48Mbytes. Therefore, our method could 
reduce the amount of memory used by approximately 17% 
for these mesh models. 
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Figure 9. Required memory 



    
Figure 10. Alignment result (Nara Buddha)    Figure 11. Alignment result (Bayon)
 

5. Experimental results 
In this section, we will show the result of parallel 

alignment of a large number of range images that could 
not be aligned by one PC because of limitation of memory 
space. We used the following two sets of partial mesh 
models. 
  

Model-1. 114 mesh models that measured the Great 
Buddha of Nara by Cyrax2400 [18]. These models 
contain an average of 327,470 vertices and 606,072 
meshes. 

Model-2. 210 mesh models that measured the Bayon 
Temple in Cambodia by Cyrax2500. These models 
contain an average of 433,785 vertices and 
798,890 meshes. 

  
Due to the limitation of memory space, the minimum 
numbers of processors required for aligning these data sets 
were 2 and 4 for Model-1 and Model-2, respectively.The 
alignment results computed by the minimum and 
maximum numbers of processors are shown in Table 1 
and Table 2. These tables show the average computation 
time, the maximum amount of memory usage, and the 
minimum amount of memory usage. 
  

Table 1. Total performance (Nara) 
Processors Ave. Time(s) Max. Mem(MB) Min. Mem(MB)

2 76 1287 1275 
16 13.2 292 254 

 
Table 2. Total performance (Bayon) 

 
Processors Ave. Time(s) Max. Mem(MB) Min. Mem(MB)

4 103.9 1608 1456 
16 40.2 559 472 

 
In the case of Model-1, the computation time with 16 
processors is 5.75 times faster than that with 2 processors, 
and the amount of required memory is reduced 22.6%. For 
Model-2, the computation time with 16 processors is 2.58 
times faster than that with 4 processors, and required 
memory is reduced 34.8%. As for the size of required 
memory, these results show an improvement better than 
that described in the previous section (30% for 2-16 and 
47 % for 4-16). On the other hand, in the case of Model-2, 
although the number of processors is increased 4 times, 
the reason the computation time is not greatly improved 
(2.58 times) is that the time taken for calculation of the 
transformation matrix, which is not parallelized and is 
performed on the server program, is lengthened. An actual 
computation time taken by the server program is an 
average of 14 seconds, and is 35% of the total time taken 
for one iteration. 
 Figures 10 and 11 show the alignment results of the 
Great Buddha of Nara and the Bayon Temple in Cambodia, 
respectively. Alignment takes approximately 5 minutes for 
20 iterations for Model-1 and approximately 15 minutes 
for Model-2. 

6. Conclusion 
In this paper, we have proposed the parallel method for 

simultaneous alignment of multiple range images. In 
considering time performance and memory performance, 
we parallelized the alignment algorithm. Then, we 
implemented this method on a PC cluster, and showed its 
validity by aligning a large number of range images 
simultaneously. Future work will deal with accelerating 
the computation of transformation matrices. 
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