

Fast Simultaneous Alignment of Multiple Range Images

Using Index Images

Takeshi Oishi
Institute of Industrial Science,

The University of Tokyo
oishi@cvl.iis.u-tokyo.ac.jp

Atsushi Nakazawa
Osaka University

nakazawa@ime.cmc.osaka-u.ac.jp

Ryo Kurazume

Kyushu University
kurazume@is.kyushu-u.ac.jp

Katsushi Ikeuchi

Institute of Industrial Science,
The University of Tokyo
ki@cvl.iis.u-tokyo.ac.jp

Abstract

This paper describes a fast, simultaneous alignment
method for a large number of range images. Generally the
most time-consuming task in aligning range images is
searching corresponding points. The fastest searching
method is the “Inverse Calibration” method. However,
this method requires pre-computed look-up tables and
precise sensor parameters. We propose a fast searching
method using “index images,” which work as look-up
tables and are rapidly created without any sensor
parameters by using graphics hardware. To accelerate the
computation to estimate rigid transformations, we
employed a linear error evaluation method. When the
number of range images increases, the computation time
for solving the linear equations becomes too long because
of the large size of the coefficient matrix. On the other
hand, the coefficient matrix has the characteristic to
become sparser as the number of range images increases.
Thus, we applied the Incomplete Cholesky Conjugate
Gradient (ICCG) method to solve the equations and found
that the ICCG greatly accelerates the matrix operation by
pre-conditioning the coefficient matrix. Some
experimental results in which a large number of range
images are aligned demonstrate the effectiveness of our
method.

1. Introduction
The modeling surface geometry of a real object is an

important issue in the fields of computer vision and
computer graphics. The theory of modeling from reality
was proposed few years ago, and related technologies
have been highly developed in recent years [1]. Preserving
cultural heritage objects and art works in the world is one
of the important applications of these technologies, as

discussed in [2, 3]. In these projects, laser range sensors
are utilized for digitizing the surface geometry of the
objects because of the high accuracy of the sensors.

While the modeling technologies have been greatly
improved, there are still some problems in creating a 3D
model from a large number of range images. Because a
laser range sensor can measure only the visible surface, it
is necessary to take range images from many different
directions. Once the scanning has been completed, all
range images have to be aligned into a common
coordinate system. If an object is small enough to be put
on a turntable, it is easy to obtain the relative positions of
the range images. But in cases where an object is a large
statue, for example, it is difficult to record the accurate
position and direction of the laser range sensor. Therefore,
computation to obtain the relative positions of the range
images is required.

Many methods of aligning range images have been
proposed. These algorithms are based on the iterative
closest point (ICP) proposed by Besl [4] and are adapted
from the method proposed by Chen [5]. With ICP,
corresponding points are searched for as the closest points
between two range images, and a transformation matrix is
computed so that the mean square error of the
corresponding points is minimized. The computation is
iterated until the mean square error falls below the
threshold value. In Chen’s method, the relative positions
of range images are calculated so that the distance
between vertices and the corresponding patches is
minimized. In addition, there is a method to search for
correspondences by projecting the points along with the
ray direction [6, 7]. Since the ICP algorithm tends to be
affected by false matching and noise, Masuda et al.
proposed a robust method that uses random sampling and
the Least Median Squares Estimation method (LMedS)
[8].

When the number of range images is very large, a
method that simultaneously aligns range images is
required. The algorithms described above align two range
images; when using these algorithms, error accumulation
increases as the number of range images increases. In such
cases, a method that simultaneously aligns range images is
useful. Neugebauer et al. proposed a simultaneous
registration method that adopted projection search of
correspondences and point-plane error metric [9].
Benjamaa et al. extended the method proposed by
Bergevin et al. [10] and implemented a simultaneous
alignment method while they accelerated the pair-wise
alignment algorithm by using multi z-buffers [11].

Although various methods have been proposed, the
problem for every method is the computation cost of
correspondence search. If the number of vertices of two
range images is equally assumed to be N by the original
ICP, their complexity is O(N2) since correspondences are
searched for in all vertices. In order to accelerate ICP,
there are techniques [12, 13] that use Kd-trees and that
narrow the search range by using data cache [14, 15, 16].
However, the complexity of Kd-tree search is O(NlogN).
That is, sufficient acceleration cannot be achieved by
these algorithms. The computational complexity of the
inverse calibration method proposed by Blais is O(N) [6].
However, this method requires precise sensor parameters
(intrinsic parameters of CCD camera, parameters of
scanning mechanism) and pre-computed look-up tables. In
addition, the creation of the look-up tables is very time
consuming because Euclidian distances between each
element of a table and every ray of sampled points have to
be calculated.

Another problem in aligning a large number of range
images is the computation cost of matrix operations in
which rigid transformations of range images are computed.
To directly solve a non-linear least squares problem is
very time consuming [13]. In this case, the linearized
algorithm is effective in dealing with a large data set [7].
However, the computation time to solve the linear
equations with conventional solvers (SVD, Cholesky
decomposition, etc.) rapidly increases as the number of
range images increases because the coefficient matrix
becomes very large.

We propose a fast method to align a large number of
range images simultaneously. Our method has three
characteristics. 1) The process of searching corresponding
points is accelerated by using index images, which are
rapidly created without sensor parameters. 2) The method
employs the point-plane error metric and linearized error
evaluation. 3) An iterative solver (incomplete Cholesky
conjugate gradient method) is applied in order to
accelerate the computation of the rigid transformations. In
Section 2, the details of our algorithm are described. Some
experimental results that demonstrate the effectiveness of
our method are shown in Section 3. Our conclusions are
described in Section 4.

2. Alignment algorithm
In this section, the details of our alignment algorithm

are explained. We assume that all range images have been
converted to mesh models. The algorithm is applied in the
following steps:

1. To compute, for all pairs of partial meshes,
(a) to search all correspondence of vertices
(b) to evaluate error terms of all correspondence pairs

2. To compute transformation matrices of all pairs for
immunizing all errors

3. To iterate steps 1 and 2 until the termination
condition is satisfied

First, we explain the fast method to search corresponding
points. Then, the details of error evaluation and the
computation of rigid transformations are described.

2.1. Correspondence search
Our algorithm employs points and planes to evaluate

relative distance as the Chen and Medioni method [5]. The
corresponding pairs are searched along the line of sight
(Fig. 1). Here, the line of sight is defined as the optical
axis of a range sensor. Let us denote one mesh as the base
mesh and its corresponding mesh as the target mesh. An
extension of the line of sight, from a vertex of the base
mesh, crosses a triangle patch of the target mesh and
creates the intersecting point. In order to eliminate false
correspondences, if the distance between the vertex and
the corresponding point is larger than a certain threshold
value, the correspondence is removed. This
correspondence search is computed for all pairs of mesh
models.

Though the threshold distance is given empirically as
lgiven, the smaller value is selected as lth compared with the
average distance of all corresponding points r̂ .

⎩
⎨
⎧ <

=
)(
)ˆ:(

ˆ otherwize
rlif

r
l

l givengiven
th (2)

∑ −=
N

i
iiN

r xy1ˆ (3)

N is the number of vertices included in the base mesh.

Ray direction ofRay direction of
scene imagescene image

Target imageTarget image

Base imageBase image

x

yCorrespondenceCorrespondence

Range finder

xn

yn
Ray direction ofRay direction of
scene imagescene image

Target imageTarget image

Base imageBase image

x

yCorrespondenceCorrespondenceCorrespondenceCorrespondence

Range finder

xn

yn

Figure 1. Searching corresponding points

To search correspondences quickly, our method uses
index images. Though the complexity of this process is
O(N,), the same as that of the inverse calibration method,
sensor parameters are not required. Furthermore, the
searching process can be accelerated by graphics
hardware. The details of correspondence search using
index images are described below.

2.1.1 Creation of index images

An index image works as a look-up table to retrieve the
index of corresponding patches. Here, we describe the
procedures for creating an index image as follows:

1. A unique index number is assigned to each triangle
patch of a target mesh.

2. Index numbers are converted to unique colors.
3. Triangle patches of the target mesh are rendered on an

image plane with the index colors.
First, a unique integer value is assigned to each triangle

patch. Since the assigned value can be any integer number,
0 to n-1 are assigned sequentially, where n is the number
of triangle patches.

Next, the assigned index values are converted to unique
colors. If the precision of index values is the same as that
of rendering colors, the index values are converted
directly. Assume that the precision of each color channel
is expressed by q bits. [0 q-1] bits of an index value are
assigned to Red, and [q 2q-1] bits to Green, and the next
to Blue, and highest q bits are assigned to Alpha. If the
precision is not the same, the indices have to be converted
carefully.

All triangle patches are rendered onto an image plane
using the index colors (Fig. 2). The pixels in which the
triangle patches are not rendered are filled with an
exceptional color like white. The target mesh is assumed
to be described in its measured coordinate system.

w

h

x

y

z

Target range image

Index image

w

h

x

y

z

Target range image

Index image

Figure 2. Rendering of index image

Projection method

Generally, perspective projection is used for rendering
the index images. Perspective projection works well for

the range images that are measured by sensors that adopt a
method like light sectioning. On the other hand, in the
case of range images taken by sensors with scanning
mechanisms using mirrors, the spherical projection is
better because the angles between sampled points are
equal (or near) to each other.

Zoom imageZoom image
Figure 3. Example of index images

View frustum

To obtain a sufficient number of corresponding points,
rendering areas have to be determined properly. All
vertices of a target mesh are projected onto the index
image plane. Then, the rectangular area (umin, vmin, umax,
vmax) that involves all projected vertices is obtained. The
view frustum is computed so that all vertices are rendered
in this area. Minimum and maximum depths are also
acquired at the projection process.
Image resolution

The resolution of an index image (Lu, Lv) has to be
determined as the following conditions are fulfilled.

min/2 wwLu Δ×≥ (4)

min/2 hhLv Δ×≥ (5)

minmax uuw −= (6)

minmax vvh −= (7)
Variables w and h represent the height and width of the
rendering area respectively (Fig. 2). minwΔ and minhΔ
represent the minimum height and minimum width of all
triangles projected onto the index image plane.

The image resolution (Lu, Lv) can be roughly
determined so that the conditions described in inequality 4
and inequality 5 are satisfied. Although the parameters (w,
h, minwΔ , minhΔ) are different in each partial mesh, a
unique resolution that satisfies the conditions of all mesh
models works well for all index images.

The rendering process is accelerated by using graphics
hardware. The rendering time becomes small enough to
ignore even if the images are rendered at each iterative
step. A large memory space for storing look-up tables is
not required. The memory space for only one index image
can be shared by all mesh models. Figure 3 shows an
example of index images.

2.1.2 Acquisition of corresponding points
By using the index image, corresponding points are

rapidly searched. The procedure for this process is the
reverse of that used to make an index image. Here, we
assume that all vertices of the base mesh are previously
converted to the local coordinate system of the target
mesh. The following steps are applied to all vertices of the
base mesh:

1. A vertex is projected onto the index image plane by
the same projection method as is used for the index
image.

2. A color is obtained from the projected pixel.
3. The obtained color is converted to the index value

of a patch of the target mesh.
4. The vertex is projected onto the corresponding

patch; a corresponding point is acquired.
The procedures are depicted in Fig. 4. A vertex of the base
image is projected onto the index image plane. Then, a
color is acquired from the projected pixel and is converted
to the index of a corresponding patch. Since a correct
index value may not be obtained because of round-off
errors, the vertex is re-projected onto a corresponding
patch, and the crossing point is checked to see whether it
is inside the patch or not. If the crossing point is inside the
patch, the accurate corresponding point is computed. Until
the correct corresponding point is obtained, steps 2-4 are
applied to 3×3 pixels around the projected pixel. The
computational complexity of this process is also O(N).

Base image

Color＝0x0000ff Patch Index＝255

1. Projection to
image plane

Patch index image

Ray direction
(Target image)

2. Pick color

3. Convert to
index value

Base image

Color＝0x0000ff Patch Index＝255

1. Projection to
image plane

Patch index image

Ray direction
(Target image)

2. Pick color

3. Convert to
index value

Figure 4. Searching a corresponding patch

2.2 Error metric

The error measure between corresponding points is the
cosine distance between the point and the plane. Let the
vertex of the base mesh and the corresponding crossing
point in the target mesh be xr and yr , respectively. The
error measure of a pair k is written as

)(xynek
rrr

−⋅= (1)

yx

yx

nn
nn

n rr

rr
r

+

+
= , (2)

where xnr and
ynr are the normal vectors of xr and yr

defined around the vertices respectively. Since normal
vectors tend to be greatly influenced by measurement

errors, we used the average normal vectors for error
evaluation.

The transformation matrices of the base and target mesh
models are computed so that this error measure is
minimized. The error evaluation function is rewritten as

)}(){(BBTTB txtyn
rrrrr

+−+⋅= RRRε (3)
Here, the rotation matrix and the translation vector of

the base and target mesh are
SM RR , , SM tt

rr
, respectively. To

make the function simple, the average normal nr is
assumed to be rotated by the matrix of base range image R
Ｂ. The distance between the base and the target mesh is
expressed as

()∑ +−+⋅=
kji

iikijijkjikit
txtyn

,,

2

,
)}(){(min
rrrrr

r RRR
R

ε (4)

If it is assumed that the angles of rotation are minute,
the rotation matrix R is written as

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

−
=

1
1

1

12

13

23

cc
cc

cc
R (5)

The translation vector is expressed as
()Tzyx tttt =

r (6)

After some algebraic manipulations [8], equation 4 is
rewritten as

2
min∑

≠

−⋅=
ji

ijkijk sA δε
δ

rr
r

 (7)

)(ijkikikijk yxns rrr
−⋅= (8)

{ { { {

T

1)1(6

T

161)1(6

T

16

0...0 0...00...0 0...0
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

×−−××−−× jl
ijk

jil
ijk

i
ijk CCA

rrr (9)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
×

=
ik

ijkik
ijk n

yn
C r

rr
r (10)

T
10)...(−= nmm rrr

δ (11)

()T321 ziyixiiiii tttcccm =
r , (12)

where the number of mesh models is n. By (7) δ
r

 is
written as

∑∑
≠≠

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ji
ijkijk

ji
ijkijk sAδAA TT

rrrr (13)

2.3 Solving linear equations
From Eq. 13, δ

r
 is computed as the solution of linear

equations that include n×6 arguments. However,
ambiguity remains in the equation. Then, the first mesh
model is assumed not to be moved. That is, as shown in
Fig. 5, the linear equations with ((n-1)×6) × ((n-1)×6)
coefficient matrix are solved. If all mesh models are
connected to the first mesh, the coefficient matrix is
symmetric positive definite. Also, the matrix becomes

larger and sparser as the number of mesh models increases
and has 6×6 non-zero patterns as shown in Fig. 5.

6×6 Non-Zero Area

(n-1)×6

(n
-1

)×
6

n×6

n×
6

Positive Definite
Symmetry Matrix

∑
≠ kji

ijkijk
T

,
AA

6×6 Non-Zero Area

(n-1)×6

(n
-1

)×
6

n×6

n×
6

Positive Definite
Symmetry Matrix

∑
≠ kji

ijkijk
T

,
AA

Figure 5 Characteristics of coefficient matrix

Since the computational complexity of direct solvers is

too high, we applied an iterative solver to this problem.
The computational complexity of Cholesky
decomposition that is the most popular direct solver for a
symmetric positive definite matrix is O(n3). Then, we
employed the pre-conditioned conjugate gradient method
(PCG). Though the complexity of PCG is O(n3), the same
as Cholesky decomposition, the number of iterations can
be drastically reduced by pre-conditioning. We employed
incomplete Cholesky decomposition as the
pre-conditioner. Since it is known that the coefficient
matrix has 6×6 non-zero patterns, we implemented the
incomplete Cholesky conjugate gradient method (ICCG)
specialized for the matrix pattern.

Assume that the matrix M is the ((n-1)×6) × ((n-1)×6)
coefficient matrix shown in Fig. 5. β

r
 is the (n-1)×6

vector that is a part of the right side of Eq. 13. β
r

 does
not include the transformations of the first mesh model.
Equation 13 is re-written as follows.

βα
rr

=M (14)
T

11)...(−= nmm rrr
α (15)

A matrix C is assumed to be a regular ((n-1)×6)×((n-1)×6)
matrix. Equation 14 is written as follows:

βα
rr 1T1T1)(−−− = CCCMC (16)

To simplify the equation, we define the matrix M~ and
the vector β

r
′ as follows.

1T1)(~ −−= CMCM (17)

ββ
rr

1−=′ C (18)
Equation 16 is redefined by using the variables above.

βα
rr ′=′M~ (19)

αα
rr ′=TC (20)

If the coefficient matrix M~ is near the identity matrix,
solving Eq. 19 is drastically accelerated by the conjugate
gradient method. That is, the CTC has to be nearly equal to
the original coefficient matrix M.

CCM T≅ (21)

But the computation cost to decompose the matrix is very
high. The matrix M is incompletely decomposed by the
Cholesky decomposition. In this process, only non-zero
areas are computed: Another element is filled with zero.

UDM = (22)
Since the matrix M is sparse, the decomposition process is
performed very quickly. Then, matrix C is given as
follows:

2/1UDC = (23)
Once matrix C has been computed, rigid transformations
are calculated from Eq. 19 and Eq. 20 by the conventional
conjugate gradient method.

3. Experimental results
 In this section, the effectiveness of our method is

demonstrated by some experimental results. Two data
sets are used for the experiments. Target objects are the
face of Deva in Cambodia (Fig. 6(a)) and the Nara Great
Buddha statue in Japan (Fig. 6(b)). The face of Deva was
measured by VIVID900 [19]. The resolution of
VIVID900 was fixed to 640×480, and the view angle
depended on mounted lenses. We used a wide lens for
scanning the face of Deva. The Great Buddha statue was
measured by Cyrax2400 [20]. The resolution and view
angle of the sensor were flexible: users could change
them arbitrarily. In the scanning of Nara Great Buddha,
we adjusted the parameters according to measurement
environments. Generally, 800×800 was used as the
measurement resolution. The details of these data sets
are shown in Table 1 and Table 2 respectively.

Table 1. Data set 1: The face of Deva

Sensor VIVID900
Images 45
Vertices Max: 76612, Min: 38190, Ave: 67674
Triangles Max: 150786, Min: 71526, Ave: 130437

Table 2. Data set 2: The Nara Great Buddha

Sensor Cyrax2500
Images 114
Vertices Max: 155434, Min: 11231, Ave: 81107
Triangles Max: 300920, Min: 18927, Ave: 148281

Vertices that measured outside the objects had been

removed previously. Obtained point crowds had been
converted into triangle mesh models. Since the original
data sets were too large to deal with using one PC, the
sizes of the data were reduced to 1 / 4.

Our method is evaluated according to the following
three criteria:

1. Number of corresponding points with respect to the
resolution of index images

2. Computation time of matrix operations with
respect to the number of mesh models

3. Computation time of alignment with respect to the

number of vertices
The PC used for the experiments had Athlon MP 2400+

processor, 2Gbyte memory, and a GeForce4Ti4600
graphics card.

(a) (b)

Figure 6. Target objects
(a : the face of Deva, b : the Nara Great Buddha)

3.1 Number of corresponding points with the
resolution of the index image

The number of corresponding points is evaluated with
respect to the resolution of the index image. As described
above, if enough resolution cannot be assigned to the
index image, all triangle patches are not rendered: all the
corresponding points cannot be acquired. Here, the
relation between the resolution of index images and the
number of corresponding points is verified.

Corresponding points were searched for several pairs of
mesh models by gradually changing the resolution of
index images. We selected a set of mesh models that have
minimum and maximum number of triangle patches from
each data set as target meshes. Base meshes were
arbitrarily selected. Experimental results are shown in Fig.
7. The vertical axis represents the ratio of the number of
corresponding points acquired by our method v’c to the
ground truth vc. The resolutions of index images are
represented in the horizontal axis as the square root of
total pixels.

As shown in Fig. 7, when the resolution of the index
image becomes larger than a certain size (800×800),
almost all of the corresponding points are obtained.
Furthermore, the resolution required for obtaining enough
corresponding points becomes larger as the number of
triangle patches of target mesh increases. In fact, instead
of the number of triangle patches, the measurement
resolution is concerned with the required index image
resolution. However, in this case, it can be said that the
number of triangle patches has the similar characteristics
with the measurement resolution because the sampled
points are distributed densely and uniformly in both
vertical and horizontal directions.

It is not required to estimate the image resolution for
each mesh model. Even if, due to any problems, for
example the limitation of graphics memory space, a large
enough resolution cannot be assigned to the index image,
several corresponding points are acquired in compliance

with the image resolution.

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000
Resolution of index images(pixel1/2)

N
um

be
r o

f c
or

re
sp

on
de

nc
es

 (v
' c/

v c
)

Minimum(Model1)
Maximum(Model1)
Minimum(Model2)
Maximum(Model2)

Figure 7. Number of corresponding points with

resolution of index images

0

200

400

600

800

1000

1200

0 25000 50000 75000 100000 125000 150000
Number of vertices

Ti
m

e(
m

s)

Face of Deva
Nara Great Buddha

Figure 8. Time to solve linear equations

3.2 Time to solve the linear equations

The computation time to solve the linear equations is
evaluated. As described above, the computation time to
solve the linear system is greatly influenced by the
number of mesh models. Thus, the relation between the
computation time and the number of mesh models is
evaluated here. Data set 2 is used for this experiment. The
computation time of the matrix operations only is
sequentially measured by changing the number of mesh
models.

The experimental results are shown in Fig. 8. The
horizontal axis represents the number of mesh models,
and the vertical axis represents the computation time. The
results with usual Cholesky decomposition are also shown
in this figure in comparison with our method. The
threshold value of the ICCG was set to 1.0 × 10-6.

In the case that the number of mesh models is lower
than 60, Cholesky decomposition is faster than our
method. On the other hand, the computation time of our

method increases at a slow rate and becomes smaller
than that of Cholesky decomposition when the number of
mesh models is higher than 70. Moreover, the differences
between Cholesky decomposition and our method become
larger as the number of mesh models increases. That is, it
can be said that ICCG is effective for aligning a large
number of mesh models simultaneously.

3.3. Computation time with number of vertices

The computation time is evaluated with respect to the
number of vertices included in the mesh models. In this
experiment, it is proven that the computational complexity
of aligning a pair of mesh models is O(N), where N is the
number of vertices. It can be also said that the complexity
of searching corresponding points is O(N) because it can
be assumed that the computation time of another task is
small enough to ignore.

Each mesh model was aligned to itself so that the
number of vertices of base model and target model were
equal to each other. Since the number of corresponding
points also affects the computation time, all mesh models
were not moved. That is, the amount of movement is
infinitely zero; the number of corresponding points is
nearly equal to the number of vertices. Index images were
rendered at each iterative step. The image resolution was
fixed to 800×800. The computation time was evaluated
according to the average time taken for 20 iterations.

Experimental results are shown in Fig. 9. The
horizontal axis represents the number of vertices, and the
vertical axis represents the computation time. It is clear
that the computation time is increasing linearly with the
number of vertices. Moreover, there are no differences
between two data sets though these data were taken by
different sensors. That is, the efficiency of our method
does not depend on the sensors used for measurements.

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100
Number of range images

Ti
m

e
(m

s)

Cholesky decomposition
6x6 ICCG

Figure 9. Computation time with number of vertices

3.4. Alignment results

The alignment results of these data sets are shown in
Fig. 10 and Fig. 11. Previously, we had aligned all mesh
models one by one. Then we applied the simultaneous

alignment method to these models. Figure 10 shows the
alignment results of data set 1. The total computation time
was 1738 seconds after 20 iterations. Figure 11 shows the
results of data set 2. The number of iterations was 20, the
same as for data set 1. Total computation time was 7832
seconds. The figures show that all mesh models were
correctly aligned.

Figure 10. Alignment results (the face of Deva)

Figure 11. Alignment results (Nara Great Buddha)

4. Conclusion
In this paper, we proposed a fast, simultaneous

alignment method for a large number of range images. In
order to accelerate the task of searching corresponding
points, we utilized index images that are rapidly rendered
using graphics hardware and are used as look-up tables.
Instead of sensor parameters, only an approximate
resolution of index images is required for this search. In
order to accelerate the computation of rigid
transformations, we employed a linearized error function.
Since the computation time to solve the linear system
becomes large as the number of range images increases,
we applied the incomplete Cholesky conjugate gradient
(ICCG) method. Experimental results showed the
effectiveness of our method. One of our future works will
be to improve the accuracy of alignment results.

Acknowledgment

This work is supported by Leading Project (Digital
archive of cultural properties) of the Ministry of
Education, Culture, Sports, Science and Technology of the
Japanese Government. The author would like to thank the
staffs of the Todaiji Temple in Nara, Japan. The Bayon
temple in Cambodia was digitized with the cooperation of
JSA (Japanese Government Team for Safeguarding
Angkor).

References
[1] K. Ikeuchi and Y. Sato, Modeling from Reality, Kluwer

Academic Press, 2001.

[2] K. Ikeuchi, A. Nakazawa, K. Hasegawa and T. Oishi, “The
Great Buddha Project: Modeling Cultural Heritage for VR
Systems through Observation,” IEEE ISMAR’03, Tokyo,
Japan. Nov., 2003.

[3] M. Levoy et al. “The Digital Michelangelo Project,” Proc.
SIGGRAPH 2000, pp. 131-144, 2000.

[4] P. J. Besl and N. D. McKay, “A method for registration of
3-D shapes,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 14(2), 239-256, 1992.

[5] Y. Chen and G. Medioni, “Object modeling by registration
of multiple range images,” Image and Vision Computing,
10(3), 145-155, 1992.

[6] G. Blais and M. Levine, “Registering Multiview Range
Data to Create 3D Computer Objects,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, Vol. 17, No.
8, 1995.

[7] S. Rusinkiewicz, O. Hall-Holt and M. Levoy, “Real-Time
3D Model Acquisition,” ACM Transactions on Graphics.
21(3): 438-446, July 2002.

[8] T. Masuda, K. Sakaue and N. Yokoya, “Registration and
Integration of Multiple Range Images for 3-D Model
Construction,” Proc. Computer Society Conference on
Computer Vision and Pattern Recognition, 1996.

[9] P. J. Neugebauer. “Reconstruction of Real-World Objects

via Simultaneous Registration and Robust Combination of
Multiple Range Images.” International Journal of Shape
Modeling, 3(1&2):71-90, 1997.

[10] R. Bergevin, M. Soucy, H. Gagnon, and D. Laurendeau.
To-wards a general multi-view registration technique. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
18(5):540–547, May 1996.

[11] R. Benjemaa and F. Schmitt. “Fast global registration of 3d
sampled surfaces using a multi-z-buffer technique,” Proc.
Int. Conf. on Recent Advances in 3-D Digital Imaging and
Modeling, pages 113–120, May 1997.

[12] Z. Zhang, “Iterative point matching for registration of
free-form curves and surfaces,” International Journal of
Computer Vision, 13(2):119–152, 1994.

[13] K. Nishino and K. Ikeuchi, “Robust Simultaneous
Registration of Multiple Range Images,” Proc. Fifth Asian
Conference on Computer Vision, pp454-461, Jan., 2002.

[14] David A. Simon, Martial Hebert, and Takeo Kanade,
“Realtime 3-D pose estimation using a high-speed range
sensor,” Proc. IEEE Intl. Conf. Robotics and Automation,
pages 2235-2241,San Diego, California, May 8-13 1994.

[15] M. Greenspan and G. Godin, “A Nearest Neighbor Method
for Efficient ICP,” Proc. International Conference on 3D
Digital Imaging and Modeling (3DIM), pp.161-168, 2001.

[16] R. Sagawa, T. Masuda and K. Ikeuchi, “Effective Nearest
Neighbor Search for Aligning and Merging Range Images,”
Proc. the Fourth International Conference on 3-D Digital
Imaging and Modeling (3DIM-03), pp.79-86, 2003.

[17] http://www.minoltausa.com/vivid/

[18] http://www.cyra.com.

