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Abstract 
 

This paper describes a fast, simultaneous alignment 
method for a large number of range images. Generally the 
most time-consuming task in aligning range images is 
searching corresponding points. The fastest searching 
method is the “Inverse Calibration” method. However, 
this method requires pre-computed look-up tables and 
precise sensor parameters. We propose a fast searching 
method using “index images,” which work as look-up 
tables and are rapidly created without any sensor 
parameters by using graphics hardware. To accelerate the 
computation to estimate rigid transformations, we 
employed a linear error evaluation method. When the 
number of range images increases, the computation time 
for solving the linear equations becomes too long because 
of the large size of the coefficient matrix. On the other 
hand, the coefficient matrix has the characteristic to 
become sparser as the number of range images increases. 
Thus, we applied the Incomplete Cholesky Conjugate 
Gradient (ICCG) method to solve the equations and found 
that the ICCG greatly accelerates the matrix operation by 
pre-conditioning the coefficient matrix. Some 
experimental results in which a large number of range 
images are aligned demonstrate the effectiveness of our 
method. 
 

1. Introduction 
The modeling surface geometry of a real object is an 

important issue in the fields of computer vision and 
computer graphics. The theory of modeling from reality 
was proposed few years ago, and related technologies 
have been highly developed in recent years [1]. Preserving 
cultural heritage objects and art works in the world is one 
of the important applications of these technologies, as 

discussed in [2, 3]. In these projects, laser range sensors 
are utilized for digitizing the surface geometry of the 
objects because of the high accuracy of the sensors. 

While the modeling technologies have been greatly 
improved, there are still some problems in creating a 3D 
model from a large number of range images. Because a 
laser range sensor can measure only the visible surface, it 
is necessary to take range images from many different 
directions. Once the scanning has been completed, all 
range images have to be aligned into a common 
coordinate system. If an object is small enough to be put 
on a turntable, it is easy to obtain the relative positions of 
the range images. But in cases where an object is a large 
statue, for example, it is difficult to record the accurate 
position and direction of the laser range sensor. Therefore, 
computation to obtain the relative positions of the range 
images is required. 

Many methods of aligning range images have been 
proposed. These algorithms are based on the iterative 
closest point (ICP) proposed by Besl [4] and are adapted 
from the method proposed by Chen [5]. With ICP, 
corresponding points are searched for as the closest points 
between two range images, and a transformation matrix is 
computed so that the mean square error of the 
corresponding points is minimized. The computation is 
iterated until the mean square error falls below the 
threshold value. In Chen’s method, the relative positions 
of range images are calculated so that the distance 
between vertices and the corresponding patches is 
minimized. In addition, there is a method to search for 
correspondences by projecting the points along with the 
ray direction [6, 7]. Since the ICP algorithm tends to be 
affected by false matching and noise, Masuda et al. 
proposed a robust method that uses random sampling and 
the Least Median Squares Estimation method (LMedS) 
[8]. 



 

When the number of range images is very large, a 
method that simultaneously aligns range images is 
required. The algorithms described above align two range 
images; when using these algorithms, error accumulation 
increases as the number of range images increases. In such 
cases, a method that simultaneously aligns range images is 
useful. Neugebauer et al. proposed a simultaneous 
registration method that adopted projection search of 
correspondences and point-plane error metric [9]. 
Benjamaa et al. extended the method proposed by 
Bergevin et al. [10] and implemented a simultaneous 
alignment method while they accelerated the pair-wise 
alignment algorithm by using multi z-buffers [11]. 

Although various methods have been proposed, the 
problem for every method is the computation cost of 
correspondence search. If the number of vertices of two 
range images is equally assumed to be N by the original 
ICP, their complexity is O(N2) since correspondences are 
searched for in all vertices. In order to accelerate ICP, 
there are techniques [12, 13] that use Kd-trees and that 
narrow the search range by using data cache [14, 15, 16]. 
However, the complexity of Kd-tree search is O(NlogN). 
That is, sufficient acceleration cannot be achieved by 
these algorithms. The computational complexity of the 
inverse calibration method proposed by Blais is O(N) [6]. 
However, this method requires precise sensor parameters 
(intrinsic parameters of CCD camera, parameters of 
scanning mechanism) and pre-computed look-up tables. In 
addition, the creation of the look-up tables is very time 
consuming because Euclidian distances between each 
element of a table and every ray of sampled points have to 
be calculated. 

Another problem in aligning a large number of range 
images is the computation cost of matrix operations in 
which rigid transformations of range images are computed. 
To directly solve a non-linear least squares problem is 
very time consuming [13]. In this case, the linearized 
algorithm is effective in dealing with a large data set [7]. 
However, the computation time to solve the linear 
equations with conventional solvers (SVD, Cholesky 
decomposition, etc.) rapidly increases as the number of 
range images increases because the coefficient matrix 
becomes very large.  

We propose a fast method to align a large number of 
range images simultaneously. Our method has three 
characteristics. 1) The process of searching corresponding 
points is accelerated by using index images, which are 
rapidly created without sensor parameters. 2) The method 
employs the point-plane error metric and linearized error 
evaluation. 3) An iterative solver (incomplete Cholesky 
conjugate gradient method) is applied in order to 
accelerate the computation of the rigid transformations. In 
Section 2, the details of our algorithm are described. Some 
experimental results that demonstrate the effectiveness of 
our method are shown in Section 3. Our conclusions are 
described in Section 4. 
 
 

2. Alignment algorithm 
In this section, the details of our alignment algorithm 

are explained. We assume that all range images have been 
converted to mesh models. The algorithm is applied in the 
following steps: 

1. To compute, for all pairs of partial meshes, 
(a) to search all correspondence of vertices 
(b) to evaluate error terms of all correspondence pairs 

2. To compute transformation matrices of all pairs for 
immunizing all errors 

3. To iterate steps 1 and 2 until the termination 
condition is satisfied 

First, we explain the fast method to search corresponding 
points. Then, the details of error evaluation and the 
computation of rigid transformations are described. 
 
2.1. Correspondence search 
Our algorithm employs points and planes to evaluate 

relative distance as the Chen and Medioni method [5]. The 
corresponding pairs are searched along the line of sight 
(Fig. 1). Here, the line of sight is defined as the optical 
axis of a range sensor. Let us denote one mesh as the base 
mesh and its corresponding mesh as the target mesh. An 
extension of the line of sight, from a vertex of the base 
mesh, crosses a triangle patch of the target mesh and 
creates the intersecting point. In order to eliminate false 
correspondences, if the distance between the vertex and 
the corresponding point is larger than a certain threshold 
value, the correspondence is removed. This 
correspondence search is computed for all pairs of mesh 
models. 

Though the threshold distance is given empirically as 
lgiven, the smaller value is selected as lth compared with the 
average distance of all corresponding points r̂ . 
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N is the number of vertices included in the base mesh. 
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Figure 1. Searching corresponding points 

 



 

To search correspondences quickly, our method uses 
index images. Though the complexity of this process is 
O(N,), the same as that of the inverse calibration method, 
sensor parameters are not required. Furthermore, the 
searching process can be accelerated by graphics 
hardware. The details of correspondence search using 
index images are described below. 
 
2.1.1 Creation of index images 

An index image works as a look-up table to retrieve the 
index of corresponding patches. Here, we describe the 
procedures for creating an index image as follows: 

1. A unique index number is assigned to each triangle 
patch of a target mesh. 

2. Index numbers are converted to unique colors. 
3. Triangle patches of the target mesh are rendered on an 

image plane with the index colors. 
First, a unique integer value is assigned to each triangle 

patch. Since the assigned value can be any integer number, 
0 to n-1 are assigned sequentially, where n is the number 
of triangle patches.  

Next, the assigned index values are converted to unique 
colors. If the precision of index values is the same as that 
of rendering colors, the index values are converted 
directly. Assume that the precision of each color channel 
is expressed by q bits. [0 q-1] bits of an index value are 
assigned to Red, and [q 2q-1] bits to Green, and the next 
to Blue, and highest q bits are assigned to Alpha. If the 
precision is not the same, the indices have to be converted 
carefully. 

All triangle patches are rendered onto an image plane 
using the index colors (Fig. 2). The pixels in which the 
triangle patches are not rendered are filled with an 
exceptional color like white. The target mesh is assumed 
to be described in its measured coordinate system. 
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Figure 2. Rendering of index image 

 
Projection method 

Generally, perspective projection is used for rendering 
the index images. Perspective projection works well for 

the range images that are measured by sensors that adopt a 
method like light sectioning. On the other hand, in the 
case of range images taken by sensors with scanning 
mechanisms using mirrors, the spherical projection is 
better because the angles between sampled points are 
equal (or near) to each other. 

Zoom imageZoom image  
Figure 3. Example of index images 

 
View frustum 

To obtain a sufficient number of corresponding points, 
rendering areas have to be determined properly. All 
vertices of a target mesh are projected onto the index 
image plane. Then, the rectangular area (umin, vmin, umax, 
vmax) that involves all projected vertices is obtained. The 
view frustum is computed so that all vertices are rendered 
in this area. Minimum and maximum depths are also 
acquired at the projection process. 
Image resolution 

The resolution of an index image (Lu, Lv) has to be 
determined as the following conditions are fulfilled. 

min/2 wwLu Δ×≥      (4) 

min/2 hhLv Δ×≥      (5) 

minmax uuw −=      (6) 

minmax vvh −=      (7) 
Variables w and h represent the height and width of the 
rendering area respectively (Fig. 2). minwΔ  and minhΔ  
represent the minimum height and minimum width of all 
triangles projected onto the index image plane. 

The image resolution (Lu, Lv) can be roughly 
determined so that the conditions described in inequality 4 
and inequality 5 are satisfied. Although the parameters (w, 
h, minwΔ , minhΔ ) are different in each partial mesh, a 
unique resolution that satisfies the conditions of all mesh 
models works well for all index images.  
 

The rendering process is accelerated by using graphics 
hardware. The rendering time becomes small enough to 
ignore even if the images are rendered at each iterative 
step. A large memory space for storing look-up tables is 
not required. The memory space for only one index image 
can be shared by all mesh models. Figure 3 shows an 
example of index images. 
 



 

2.1.2 Acquisition of corresponding points 
By using the index image, corresponding points are 

rapidly searched. The procedure for this process is the 
reverse of that used to make an index image. Here, we 
assume that all vertices of the base mesh are previously 
converted to the local coordinate system of the target 
mesh. The following steps are applied to all vertices of the 
base mesh: 

1. A vertex is projected onto the index image plane by 
the same projection method as is used for the index 
image. 

2. A color is obtained from the projected pixel. 
3. The obtained color is converted to the index value 

of a patch of the target mesh. 
4. The vertex is projected onto the corresponding 

patch; a corresponding point is acquired. 
The procedures are depicted in Fig. 4. A vertex of the base 
image is projected onto the index image plane. Then, a 
color is acquired from the projected pixel and is converted 
to the index of a corresponding patch. Since a correct 
index value may not be obtained because of round-off 
errors, the vertex is re-projected onto a corresponding 
patch, and the crossing point is checked to see whether it 
is inside the patch or not. If the crossing point is inside the 
patch, the accurate corresponding point is computed. Until 
the correct corresponding point is obtained, steps 2-4 are 
applied to 3×3 pixels around the projected pixel. The 
computational complexity of this process is also O(N). 
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Figure 4. Searching a corresponding patch 

 
2.2 Error metric 

The error measure between corresponding points is the 
cosine distance between the point and the plane. Let the 
vertex of the base mesh and the corresponding crossing 
point in the target mesh be xr  and yr , respectively. The 
error measure of a pair k is written as 
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where xnr  and 
ynr  are the normal vectors of xr  and yr  

defined around the vertices respectively. Since normal 
vectors tend to be greatly influenced by measurement 

errors, we used the average normal vectors for error 
evaluation. 

The transformation matrices of the base and target mesh 
models are computed so that this error measure is 
minimized. The error evaluation function is rewritten as 

)}(){( BBTTB txtyn
rrrrr

+−+⋅= RRRε     (3) 
Here, the rotation matrix and the translation vector of 

the base and target mesh are
SM RR , , SM tt

rr
,  respectively. To 

make the function simple, the average normal nr  is 
assumed to be rotated by the matrix of base range image R
Ｂ. The distance between the base and the target mesh is 
expressed as 

( )∑ +−+⋅=
kji

iikijijkjikit
txtyn

,,

2

,
)}(){(min
rrrrr

r RRR
R

ε    (4) 

If it is assumed that the angles of rotation are minute, 
the rotation matrix R is written as 
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The translation vector is expressed as 
( )Tzyx tttt =

r      (6) 

After some algebraic manipulations [8], equation 4 is 
rewritten as 
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where the number of mesh models is n. By (7) δ
r

 is 
written as 
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2.3 Solving linear equations 
From Eq. 13, δ

r
 is computed as the solution of linear 

equations that include n×6 arguments. However, 
ambiguity remains in the equation. Then, the first mesh 
model is assumed not to be moved. That is, as shown in 
Fig. 5, the linear equations with ((n-1)×6) × ((n-1)×6) 
coefficient matrix are solved. If all mesh models are 
connected to the first mesh, the coefficient matrix is 
symmetric positive definite. Also, the matrix becomes 



 

larger and sparser as the number of mesh models increases 
and has 6×6 non-zero patterns as shown in Fig. 5. 
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Figure 5 Characteristics of coefficient matrix 

 
Since the computational complexity of direct solvers is 

too high, we applied an iterative solver to this problem. 
The computational complexity of Cholesky 
decomposition that is the most popular direct solver for a 
symmetric positive definite matrix is O(n3). Then, we 
employed the pre-conditioned conjugate gradient method 
(PCG). Though the complexity of PCG is O(n3), the same 
as Cholesky decomposition, the number of iterations can 
be drastically reduced by pre-conditioning. We employed 
incomplete Cholesky decomposition as the 
pre-conditioner. Since it is known that the coefficient 
matrix has 6×6 non-zero patterns, we implemented the 
incomplete Cholesky conjugate gradient method (ICCG) 
specialized for the matrix pattern.  

Assume that the matrix M is the ((n-1)×6) × ((n-1)×6) 
coefficient matrix shown in Fig. 5. β

r
 is the (n-1)×6 

vector that is a part of the right side of Eq. 13. β
r

 does 
not include the transformations of the first mesh model. 
Equation 13 is re-written as follows. 

βα
rr

=M     (14) 
T

11 )...( −= nmm rrr
α    (15) 

A matrix C is assumed to be a regular ((n-1)×6)×((n-1)×6) 
matrix. Equation 14 is written as follows: 

βα
rr 1T1T1 )( −−− = CCCMC   (16) 

To simplify the equation, we define the matrix M~  and 
the vector β

r
′  as follows. 

1T1 )(~ −−= CMCM    (17) 

ββ
rr

1−=′ C    (18) 
Equation 16 is redefined by using the variables above. 

βα
rr ′=′M~     (19) 

αα
rr ′=TC     (20) 

If the coefficient matrix M~  is near the identity matrix, 
solving Eq. 19 is drastically accelerated by the conjugate 
gradient method. That is, the CTC has to be nearly equal to 
the original coefficient matrix M. 

CCM T≅    (21) 

But the computation cost to decompose the matrix is very 
high. The matrix M is incompletely decomposed by the 
Cholesky decomposition. In this process, only non-zero 
areas are computed: Another element is filled with zero. 

UDM =     (22) 
Since the matrix M is sparse, the decomposition process is 
performed very quickly. Then, matrix C is given as 
follows: 

2/1UDC =    (23) 
Once matrix C has been computed, rigid transformations 
are calculated from Eq. 19 and Eq. 20 by the conventional 
conjugate gradient method.  
 

3. Experimental results 
 In this section, the effectiveness of our method is 

demonstrated by some experimental results. Two data 
sets are used for the experiments. Target objects are the 
face of Deva in Cambodia (Fig. 6(a)) and the Nara Great 
Buddha statue in Japan (Fig. 6(b)). The face of Deva was 
measured by VIVID900 [19]. The resolution of 
VIVID900 was fixed to 640×480, and the view angle 
depended on mounted lenses. We used a wide lens for 
scanning the face of Deva. The Great Buddha statue was 
measured by Cyrax2400 [20]. The resolution and view 
angle of the sensor were flexible: users could change 
them arbitrarily. In the scanning of Nara Great Buddha, 
we adjusted the parameters according to measurement 
environments. Generally, 800×800 was used as the 
measurement resolution. The details of these data sets 
are shown in Table 1 and Table 2 respectively. 

 
Table 1. Data set 1: The face of Deva 

Sensor VIVID900 
Images 45 
Vertices Max: 76612, Min: 38190, Ave: 67674 
Triangles Max: 150786, Min: 71526, Ave: 130437 

 
Table 2. Data set 2: The Nara Great Buddha 

Sensor Cyrax2500 
Images 114  
Vertices Max: 155434, Min: 11231, Ave: 81107 
Triangles Max: 300920, Min: 18927, Ave: 148281 

 
Vertices that measured outside the objects had been 

removed previously. Obtained point crowds had been 
converted into triangle mesh models. Since the original 
data sets were too large to deal with using one PC, the 
sizes of the data were reduced to 1 / 4. 

Our method is evaluated according to the following 
three criteria: 

1. Number of corresponding points with respect to the 
resolution of index images 

2. Computation time of matrix operations with 
respect to the number of mesh models 

3. Computation time of alignment with respect to the 



 

number of vertices 
The PC used for the experiments had Athlon MP 2400+ 

processor, 2Gbyte memory, and a GeForce4Ti4600 
graphics card. 

  
(a)                    (b) 

Figure 6. Target objects  
(a : the face of Deva, b : the Nara Great Buddha) 

 
3.1 Number of corresponding points with the 
resolution of the index image 

The number of corresponding points is evaluated with 
respect to the resolution of the index image. As described 
above, if enough resolution cannot be assigned to the 
index image, all triangle patches are not rendered: all the 
corresponding points cannot be acquired. Here, the 
relation between the resolution of index images and the 
number of corresponding points is verified. 

Corresponding points were searched for several pairs of 
mesh models by gradually changing the resolution of 
index images. We selected a set of mesh models that have 
minimum and maximum number of triangle patches from 
each data set as target meshes. Base meshes were 
arbitrarily selected. Experimental results are shown in Fig. 
7. The vertical axis represents the ratio of the number of 
corresponding points acquired by our method v’c to the 
ground truth vc. The resolutions of index images are 
represented in the horizontal axis as the square root of 
total pixels. 

As shown in Fig. 7, when the resolution of the index 
image becomes larger than a certain size (800×800), 
almost all of the corresponding points are obtained. 
Furthermore, the resolution required for obtaining enough 
corresponding points becomes larger as the number of 
triangle patches of target mesh increases. In fact, instead 
of the number of triangle patches, the measurement 
resolution is concerned with the required index image 
resolution. However, in this case, it can be said that the 
number of triangle patches has the similar characteristics 
with the measurement resolution because the sampled 
points are distributed densely and uniformly in both 
vertical and horizontal directions. 

It is not required to estimate the image resolution for 
each mesh model. Even if, due to any problems, for 
example the limitation of graphics memory space, a large 
enough resolution cannot be assigned to the index image, 
several corresponding points are acquired in compliance 

with the image resolution. 
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Figure 7. Number of corresponding points with 

resolution of index images 
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Figure 8. Time to solve linear equations 

 
3.2 Time to solve the linear equations 

The computation time to solve the linear equations is 
evaluated. As described above, the computation time to 
solve the linear system is greatly influenced by the 
number of mesh models. Thus, the relation between the 
computation time and the number of mesh models is 
evaluated here. Data set 2 is used for this experiment. The 
computation time of the matrix operations only is 
sequentially measured by changing the number of mesh 
models. 

The experimental results are shown in Fig. 8. The 
horizontal axis represents the number of mesh models, 
and the vertical axis represents the computation time. The 
results with usual Cholesky decomposition are also shown 
in this figure in comparison with our method. The 
threshold value of the ICCG was set to 1.0 × 10-6. 

In the case that the number of mesh models is lower 
than 60, Cholesky decomposition is faster than our 
method. On the other hand, the computation time of our 



 

method  increases at a slow rate and becomes smaller 
than that of Cholesky decomposition when the number of 
mesh models is higher than 70. Moreover, the differences 
between Cholesky decomposition and our method become 
larger as the number of mesh models increases. That is, it 
can be said that ICCG is effective for aligning a large 
number of mesh models simultaneously. 
 
3.3. Computation time with number of vertices 

The computation time is evaluated with respect to the 
number of vertices included in the mesh models. In this 
experiment, it is proven that the computational complexity 
of aligning a pair of mesh models is O(N), where N is the 
number of vertices. It can be also said that the complexity 
of searching corresponding points is O(N) because it can 
be assumed that the computation time of another task is  
small enough to ignore. 

Each mesh model was aligned to itself so that the 
number of vertices of base model and target model were 
equal to each other. Since the number of corresponding 
points also affects the computation time, all mesh models 
were not moved. That is, the amount of movement is 
infinitely zero; the number of corresponding points is 
nearly equal to the number of vertices. Index images were 
rendered at each iterative step. The image resolution was 
fixed to 800×800. The computation time was evaluated 
according to the average time taken for 20 iterations. 

Experimental results are shown in Fig. 9. The 
horizontal axis represents the number of vertices, and the 
vertical axis represents the computation time. It is clear 
that the computation time is increasing linearly with the 
number of vertices. Moreover, there are no differences 
between two data sets though these data were taken by 
different sensors. That is, the efficiency of our method 
does not depend on the sensors used for measurements. 
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Figure 9. Computation time with number of vertices 

 
3.4. Alignment results 

The alignment results of these data sets are shown in 
Fig. 10 and Fig. 11. Previously, we had aligned all mesh 
models one by one. Then we applied the simultaneous 

alignment method to these models. Figure 10 shows the 
alignment results of data set 1. The total computation time 
was 1738 seconds after 20 iterations. Figure 11 shows the 
results of data set 2. The number of iterations was 20, the 
same as for data set 1. Total computation time was 7832 
seconds. The figures show that all mesh models were 
correctly aligned. 

  
Figure 10. Alignment results (the face of Deva) 

 

 

  
Figure 11. Alignment results (Nara Great Buddha) 



 

4. Conclusion 
In this paper, we proposed a fast, simultaneous 

alignment method for a large number of range images. In 
order to accelerate the task of searching corresponding 
points, we utilized index images that are rapidly rendered 
using graphics hardware and are used as look-up tables. 
Instead of sensor parameters, only an approximate 
resolution of index images is required for this search. In 
order to accelerate the computation of rigid 
transformations, we employed a linearized error function. 
Since the computation time to solve the linear system 
becomes large as the number of range images increases, 
we applied the incomplete Cholesky conjugate gradient 
(ICCG) method. Experimental results showed the 
effectiveness of our method. One of our future works will 
be to improve the accuracy of alignment results. 
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