
Image-based Network Rendering System for Large Sized Meshes

Yasuhide Okamoto, Takeshi Oishi, and Katsushi Ikeuchi
University of Tokyo

Institute of Industrial Science 3rd Dept., Ikeuchi Laboratory,
4–6–1 Komaba, Meguro-ku, Tokyo, 153–8505, JAPAN

{okamoto, oishi, ki}@cvl.iis.u-tokyo.ac.jp

Abstract

Recent advancement in sensing and software technolo-
gies enables us to obtain large scale, yet fine 3D mesh mod-
els of cultural assets. However, such large-scale models
cannot be displayed interactively on consumer computers
because of the performance limitation of the hardware. We
propose an interactive rendering system for large scale 3D
mesh models, stored on a remote machine through relatively
small capacity of networks. Our system uses both model
and image based rendering methods for efficient load bal-
ance between a server and clients. On the server, the 3D
models are rendered by the model-based method using a
hierarchical data structure with multi-resolution. On the
client, it reconstructs an arbitrary view by using a novel
image-based method, referred to as the Grid-Lumigraph,
with blending image colors from sampling images received
from the server. The resulting rendering system can effi-
ciently render any image in real-time.

1. Introduction

Sensing and modeling technologies have advanced dras-
tically. One of the most important applications of these
techniques is digitization of heritage assets, referred to as
e-Heritage. These can be used for preservation, planning
restoration, and PR and education. Some of the representa-
tive projects include: [8, 13].

Typically, e-Heritage consists of billions of triangles
with high complexities. So far, it has still been difficult
to view such e-Heritage in real-time on current consumer
computers. First of all, current internet does not have the
capability to download such mesh models in real-time. Sec-
ondly, usual PC at the client side cannot render such e-
Heritage in real-time.

This paper proposes an efficient rendering system by
both model and image based rendering as shown in Figure
1. Our system locates original mesh models of e-Heritage

on a remote server, in order to avoid the channel limitation
between the server and the client. The server pre-renders
the mesh models from various viewing positions, and stores
these images in a repository. In run time, the client sends a
request of displaying of the mesh model, at a certain view
position, with the viewpoint parameters. The server sends
back the pre-rendered images, necessary to calculate the
view as well as the sparse mesh model. The client calcu-
lates and displays the new view, by using the image-based
rendering with the set of images and the sparse mesh model
from the server.

This paper has the following outline. Section 2 surveys
the related work and discusses the benefits and drawbacks
of the methods. In section 3, we describe the construction
of a repository composed of sampling images by model-
based LOD rendering. Moreover in section 4 we describe
Grid-Lumigraph, which is the image based method for re-
construction of arbitrary views from sampling images. We
explain the detail of our proposed server-client rendering
system in section 5, perform and evaluate the system in sec-
tion 6, and we conclude in section 7.

2. Related works

The Level of Detail (LOD) method is proposed for dis-
playing large scale mesh models in [14]. LOD methods
represent 3D objects with mesh models in multi-resolution.
The Progressive Mesh presented in [7] records the sequence
of the reduction that merges smaller triangles to form larger
ones in the mesh structure. The Adaptive Tetrapuzzles pro-
posed in [1] converts the input mesh into a hierarchy struc-
ture composed of nodes, containing smaller meshes, re-
ferred to as patches with multi-resolution. Sending mesh
data over the network is very expensive, though.

The LOD methods are also used in point-based represen-
tations. QSplat [15] and Layered Point Cloud [4] are point-
based rendering systems, which use points as the rendering
primitive with a hierarchical data structure. Far Voxels pro-
posed in [5] uses points and voxels with view-dependent

The sampling images repository
LOD Geometric data

Server Client
Sampling Viewpoint’sparameters

Sampling imagesand sparse 3D mesh patches
A view reconstructed by Image based method

Figure 1. The overview of proposed rendering system. The server has geometric data recorded in format of LOD hierarchy, and the
repository of sampling images of the input 3D model. The client system displays arbitrary views reconstructed by using received images
and sparse 3D mesh patches.

color as the rendering primitives in the LOD hierarchy.
Those methods can be extended to server-client rendering
system as proposed in [1, 4, 5, 7, 16]. Although this point-
based representation is much more compact than the mesh-
based, depending on the complexity of the input model, the
communication traffic can still be high.

In contrast to those geometry based methods using such
as mesh or point as described above, the image based meth-
ods are also extended those in the server-client method in
[11]. In this approach, the server has the geometric model,
and renders then sends images corresponding to the requests
from clients. Although the server only needs to send an im-
age in real-time, rendering at the server is a costly operation,
and, if too many requests occur, the server may break down.

Impostor, presented in [2, 9, 17] is the rendering method
on the network using geometric and image information.
This system is mainly designed for walkthrough’s environ-
ments such as urban scenes. It assumes that a 3D model is
already established on the client, which is not the case in
our paradigm.

3. Generating sampling images

Our rendering system generates and stores the pre-
rendered image, to be sent to clients, in the repository on
a server machine. The Level of Detailed (LOD) rendering
method extended from the Adaptive Tetrapuzzles [1] is em-
ployed for rapid construction of the image repository.

3.1. Constructing LOD hierarchy

Our method to construct LOD is different from the
Adaptive Tetrapuzzles. The Adaptive Tetrapuzzles recur-
sively divide the space and construct a hierarchical struc-
ture. The approach of this method is very simple to im-
plement but very efficient to process. However, the num-
ber of triangles of our target 3D models is very huge, so
the recursive splitting process is very time-consuming. To
solve it, we perform the splitting process not by triangles
but by small meshes. Our method defines a voxel space of
pre-determined resolution and generates a group of small
meshes (Step 1), forms a graph of divided meshes for con-
structing a tree structure from them (Step 2), and then sim-
plifies the tree structure (Step 3). We prefer this method for
space efficiency adapted to the object shape in hand.

Step 1: Decomposition into voxel space We define the
voxel space at the finest level. Then, we decompose an input
mesh model into smaller meshes using the voxel space. We
sort each triangle to a single voxel which contains at least
one of its vertices. If the vertices of a triangle belong to
multiple voxels, it is sorted to the voxel which contains the
most vertices of the triangle. Finally, we assign a group of
meshes to the corresponding voxel. We control granularity
of the voxel space so that each voxel contains less number
of triangles than the pre-defined value Nv .

(a) (b)

Figure 2. Construction of Level-of-Detail hierarchy. (a): Recur-
sive splitting of mesh by graph-partitioning of voxel space. (b):
Results of partitioning into small mesh patches.

Step2: Recursive graph partitioning We convert a
group of meshes, defined in the Step 1, into a graph rep-
resentation, G(V, E), for the construction of a LOD struc-
ture in the next step. One vertex in the vertex set, V , of the
graph corresponds to one voxel and one edge in the edge set,
E, corresponds to the adjacent relation between two voxels.
Thus, in this graph, at most, one vertex has six edges corre-
sponding to six adjacent voxels.

For splitting the graph evenly, and adaptively for shapes,
we assign a weight to each vertex and each edge. Here, a
vertex weight is defined as the number of belonging trian-
gles. To define edge weight, first, we calculate the mean
surface normal vector at each vertex. Then, an edge weight
is defined as the inner product of two averaged vectors of
the two vertices on the edge.

We recursively split the graph into a pair of sub-graphs,
shown in Figure 2. This splitting procedure is continued
until the size of each sub-graph, defined as the number of
the belonging triangles, is less than a pre-defined number
Nl. This graph partitioning procedure is implemented by
using the Metis library [10].

After this procedure, we can obtain a hierarchy structure,
whose each leaf node has a small sub-graphs of the size Nl.
Non-leaf nodes also contain larger sub-graph. At each node
in the graph structure, we connect all meshes of that node
into a continuous mesh patch.

Step 3: Simplification at non-leaf nodes We simplify a
mesh patch at each non-leaf node in the constructed hierar-
chy. The number of triangles at each node is reduced to
a pre-defined number Nn. We implemented this simpli-
fication method by using a quadric error metric [3]. This

method iteratively collapses edges from the lowest edge, in
ascending order of quadric errors, until the number of tri-
angles becomes the desired number. Here the quadric error
represents a rough approximation of the distance between
original and simplified mesh patches.

Each node holds the node parameters and the geometric
data of a simplified mesh patch. The node parameters, given
by a mesh patch, are eight corner positions of the bounding
box, the range of surface normal and the minimum quadric
error in simplification. The geometric data consists of posi-
tions and connectivity relations of polygonal vertices in the
mesh patch. Node parameters will be used for traversing the
hierarchical structure, while the geometric data is used for
rendering the mesh patch.

Simplification procedure ensures consistency of bound-
aries between mesh patches. Inconsistency between mesh
patches causes holes and artifacts along the patch bound-
ary on rendering. Simplification is not conducted on edges
either along boundaries or directly connected to boundaries.

3.2. Efficient LOD rendering

In order to generate a set of pre-rendered images our
system uses the LOD structure. Rendering process tra-
verses the constructed hierarchy from the root node along
the tree structure following the depth-first search strategy.
If the process successfully finds a mesh patch which satis-
fies necessary resolution, the process tracks back following
the depth-first search strategy, while it adds the node to a list
of rendering nodes. The necessary resolution is given by the
projected quadric error ϵ

r , where ϵ and r are the quadric er-
ror at the node, and the distance between a viewpoint and
the center of the mesh patch. If the procedure reaches a leaf
node, it is also added to the list. After traversing the entire
tree structure, the resulting list of rendering nodes is given
to the rendering pipeline.

Some exceptional cases occur in the tree traverse, which
are out of screen and back-face. An out of screen case is
given by a node, of which bounding box is projected outside
of the screen. In a back-face case, a traversed node con-
tains triangles, in the mesh patch, which turn away from the
viewing direction. If one of these cases occurs, the traverse
operation immediately backtracks along the tree structure
following the depth-first strategy.

3.3. Building a sampling repository

The previous section described the method to traverse
the LOD structure. In this section, we construct a set of
pre-rendered images, referred to as a sampling repository.
Later, a group of images from this repository will be sent to
a client for image-based rendering.

We sample the viewing space, twice larger than the in-
put 3D model in our implementation, into regularly located

x
y
z

+ -Viewpoint ID (4,5,5)
x
y
z

+ -Viewpoint ID (3,5,5)
Empty

Image Repository・・・

・・・
・・・・・・

Sampling in six directions

Figure 3. Viewpoints for sampling are located on each grid points
of the voxel space surrounding the input 3D model, and the view
directions are set along axes x, y, and z. The image repository
manages those sampling images in a hash table.

sampling view points. The granularity of sampling is man-
ually decided depending on the density and complexity of
the input model. At each viewpoint, we generate an im-
age of the object using the LOD structure, in six directions
along the axes, positive and negative directions of x, y, and
z described in Figure 3. To capture all rays in the space,
the viewpoint is covered by six cubic faces. Each face is an
image plane, whose aspect ratio and the angle of the field
of view, are 1 and 90 degree, respectively. If there are no
mesh patches to be rendered in a sampling image, we can
skip recording the image and set the empty flag instead of it.
Sampling images are stored as JPEGs in the image reposi-
tory. Those images are retrieved using a hash table with the
combination of grid point id and direction key.

4. Grid-Lumigraph for image reconstruction

A client machine in our system can display any arbitrary
view of the input 3D model, from the direction that a user
chooses, using a new image-based method, referred to as
the Grid-Lumigraph. Our Grid-Lumigraph reconstructs a
view, with only sampling images near current viewpoints
and a rough 3D mesh model.

Focal Plane Object

Camera plane
Focal Plane Object

Camera plane Target ray

Target rays1 s2
u1 u2

s1 s2
u’11 u’21u’12 u’22

(a)

(c)

(b)

(d)

Figure 4. Correct sampling with geometric information. (a): Ex-
traction colors from sampled colors without geometric informa-
tion. (b): The result without correction. (c): Extraction with geo-
metric information. (d): The result with correction.

4.1. GridLumigraph

Our Grid-Lumigraph has the same basic idea as the Light
Field Rendering [12], which reconstructs a view from color
values of all rays going through the view. The collection of
all rays for this operation is referred to as Light Field.

Constructing a view using the Light Field method is de-
picted in Figure 4(a). The dotted line indicates one of the
new rays necessary for rendering a updated image. The
color values on the nearest rays s1−u1, s1−u2, s2−u1 and
s2 − u2 are blended into the new color value along the dot-
ted ray. This Light Field method requires dense sampling of
s-u pairs, otherwise, the reconstructed image may have the
blurs and ghosting, as shown in Figure 4(b).

The Lumigraph [6], shown in Figure 4(c), utilizes ge-
ometric information to remedy this issue. The dotted line
also indicates a necessary ray which need to be generated.
The geometric information provides the intersection posi-
tion between the ray and the object surface, which help use
more appropriate rays. This correction does not need pre-
cise 3D model. Since our case has a coarse-level 3D mesh
model, we prefer this Lumigraph type operation.

Our Grid-Lumigraph texture maps the sampling images
on the 3D mesh model. The image repository stores sam-
pling images at each viewpoint in 3D space. Once a view-
point is selected by a user, the Grid-Lumigraph chooses
the nearest sampling images around viewpoints and then
projects those images onto the 3D mesh model. The Lu-
migraph and our Grid-Lumigraph have the same principle
to use the image-based rendering with a rough 3D mesh
model. The Lumigraph calculates the nearest rays from the

Light Field, while our Grid-Lumigraph determines the near-
est images from the image repository. Our Grid-Lumigraph
only needs texture mapping capabilities and is very efficient
for rendering.

4.2. GridLumigraph on GPU

The Grid-Lumigraph can be easily implemented on a
GPU. For generation of a new image, the Grid-Lumigraph
uses sampling images, typically four to twelve, around the
view point selected by a user. Then, the Grid-Lumigraph
projects each sampling image, one by one, using the pro-
jected texture mapping method onto the 3D mesh model.
This procedure can be efficiently done by GPU’s texture
mapping capability, shown in Figure 5. In this projection,
shadow mapping of the GPU is also utilized to avoid map-
ping rays to back faces of the 3D mesh from the sampling
view point. These mapping results are projected and nor-
malized on the current viewing image plane of the user, us-
ing the built-in GPU capability.

5. Rendering system through the network
Our system has a server for image repository and some

clients for view generation. This section describes the detail
of data exchange between the server and the clients over the
network.

5.1. Protocol for rendering

The protocol between a server and clients for rendering
is described in Figure 6.

Step 1: When a user requests to display the 3D mesh
model from one particular viewpoint, the client system
sends the parameters of the current viewpoint to the server
system. Those parameters include the current view position,
the current viewing direction and the rotation angle around
the viewing direction.

Step 2: On receiving the current viewpoint, the server de-
termines the set of the nearest sampling points. Then it
retrieves those images, from the image repository, using a
hash key as a grid point’s ID.

Step 3: The server sends sampling images to the clients.
Before sending images, the server checks whether the client
has already had the same image in the cache or not. The
server sends it, only if the client does not. In addition to it,
the server sends extra images to the client. In one process
to send images, the server sends not only images nearest
to viewing directions at nearest sampling point (say the x
direction at a point), but also images in other directions at
the points (say the y and z direction at the point).

LOD model on Server
Viewer on Client

Sparse 3D mesh patches
Viewpoint

Server-sideClient-side

Figure 7. Communication of the geometric data. The server pro-
vides very sparse mesh patches depending on the client’s view-
point. The sparse mesh patches are chosen from the LOD hierar-
chy structure.

The client saves received images as cache in the local
memory. The stored sampling images in the cache are man-
aged in the manner of least recent used (LRU).

Step 4: The server sends the sparse 3D model to the
clients. The server has the sparse 3D mesh model in the
multi-resolution hierarchy. In the initial request, the server
sends the entire model which is composed of coarse mesh
patches extracted from hierarchy data structure. In the later
requests, it sends the corresponding mesh patches, visible
from the current viewpoints, described in Figure 7. The
clients request new mesh patches, if necessary. In particu-
lar, when zooming in toward the object, the number of ver-
tices displayed is reduced. The client requests new mesh
patches in a finer resolution, if the number of vertices is less
than a predefined value Rv .

5.2. Additional capabilities for better performance

Under a rapid change in viewpoints, the server and the
client work asynchronously to avoid stall. The client contin-
ues to send viewpoint’s parameters, while it renders a new
image using other images whatever available in the cache.
It updates the rendered results whenever new data is avail-
able from the server. The server continues to send sampling
images corresponding to the received requests.

Some holes may occur in reconstructed images from
sampling images. The main reason is that sampling gran-
ularity is lower than complexity of the input object’s shape.
If the holes are small, we cover them by calculating shading
effect using the surface orientation of the triangles and the
light source direction. In the case the size of a hole is larger
than a threshold, the client requests the server to generate
the current view from the current viewpoint.

User’s view

3D Mesh Data

Nearest Sampling view

View1 View2
View3 View4

Projected Sampling Images Final Image

Projection of Sampling Images Accumulation of Projected Images
Figure 5. The reconstruction of images by projective texture mapping using the GPU capability. We can efficiently extract each pixel’s
correct color, from sampling images, by texture projections. Each nearest sampling image is project from the sampling point to the
geometric data. By accumulating the results on the final buffer, we can obtain the reconstructed image.Client Cache memoryMain ThreadCOMThread Renderer

Update viewSend current viewpointSend images Update cache
Update view

ServerCOM ThreadMainThreadImage repositoryGeometric data Changing a viewpointCheck cacheExtraction of needed images
Extraction of sparse 3D mesh Send 3D mesh Update cache

Update view
Step 1Step 2
Step 4Step 3
Request 3D dataStep 4Step 4 Sequence of request images

Sequence of Request 3D meshes

Sequence of without requests

Figure 6. The sequence chart for rendering pipeline on our system. If the client’s cache has enough data to reconstruct the current view, the
client’s thread can display the view without requests to the server. Otherwise, the client make requests for images and 3D meshes to the
server. The data communication is managed by COM threads, and it is asynchronously done. The renderer updates the view whenever the
data communication is finished.

6. Implementation and results

We implemented and performed the server and client on
2.4GHz AMD Athlon64 X2 PCs with 4GB RAM, which
has GeForce 8800GTS with 512MB of video memory. Our
system runs on Windows XP. We used 1GBit LAN between
the server and a client. We use NVIDIA Cg Toolkit for

implementation of details in GPU processing on the server
and clients.

We constructed the LOD structure on the server, set-
ting Nv to 500, Nl to 4000, and Nn to 2000. The size of
cache on clients is 40MB for images and 10MB for sparse
meshes. The minimum number of rendered meshes’ ver-
tices on clients, Rv , is set to 10000. The dimension of sam-

ModelInput TrianglesSampling GridAverage fps Bayon Face5,922,7901648.1

ModelInput TrianglesSampling GridAverage fps 10,388,1203233.7 ModelInput TrianglesSampling GridAverage fps Bayon 3 towers18,132,8933238.5Menandro’s house

ModelInput TrianglesSampling GridAverage fps Thinker1,742,1221659.5

Figure 8. The parameters of input 3D models and rendering results on clients’ renderer.

pling images is set to 512 pixels.

The rendering results on clients are shown in Figure 8.
The input models have large numbers of triangles from one
million to twenty million. We constructed the image reposi-
tories for those models, whose sampling number per dimen-
sion is 16 or 32, described as Sampling grid in Figure 8. In
the experiment, all models were efficiently rendered in real-
time, over 30 fps, on clients, even if the input model is very

large. Additionally, we also evaluated the size of received
data from the server in rendering process for the model of
”Bayon 3 towers”, shown in Figure 9. The size of received
data is almost always less than 500kB while the rendering
process.

01020
304050
6070

Frame numberFrame numberFrame numberFrame numberRendering speed
(frames/sec)
Rendering speed
(frames/sec)
Rendering speed
(frames/sec)
Rendering speed
(frames/sec)

0500100015002000250030003500

RRRReeeecccceeeeiiiivvvveeeedddd ddddaaaattttaaaa ssssiiii
zzzzeeee ((((KKKKiiiilllloooo BBBByyyytttteeeessss////sssseeee
cccc))))

Rendering SpeedRendering SpeedRendering SpeedRendering Speed Received Data SizeReceived Data SizeReceived Data SizeReceived Data Size
Figure 9. Rendering speed (frames per second) and received data
size (kilo bytes per second).

7. Conclusion
We proposed the view-dependent rendering system for

large-scale 3D models located on the remote server. In
our approach, we use a model-based rendering method for
repository generation at the server and a novel image-based
method, referred to as the Grid-Lumigraph, for view gener-
ation on the client. A model-based rendering system, on the
server, generates rendering images from various view po-
sitions using the LOD structure and stores these sampling
images in the image repository.

The rendering system, on the client, displays a requested
view by using the Grid-Lumigraph using a sparse 3D mesh
model and sampling images nearest to the viewpoint. The
Grid-Lumigraph, a variation of light-field method, projects
blended sampling images using the projective texture map-
ping method. The Grid-Lumigraph can be implemented ef-
fectively on the GPU.

Our system can display huge 3D models, which have a
huge number of triangles, in real-time with efficient data
communication.

References
[1] P. Cignoni, F. Ganovelli, E. Gobetti, F. Marton, F. Pon-

chio, and R. Scopigno. Adaptive TetraPuzzles - efficient
out-of-core construction and visualization of gigantic polyg-
onal models. ACM Transactions on Graphics (Proceedings
of ACM SIGGRAPH 2004), 23(3):796–803, 2004. 1, 2

[2] S. Dobbyn, J. Hamill, K. O’Conor, and C. O’Sullivan. Geo-
postors: A real-time geometry/impostor crowd rendering
system. ACM Transaction on Graphics (Proceedings of ACM
SIGGRAPH 2005), 24(3):933–933, 2005. 2

[3] M. Garland and P. S. Heckbert. Surface simplification using
quadric error metrics. In Proceedings of ACM SIGGRAPH
97, pages 209–216, 1997. 3

[4] E. Gobbetti and F. Marton. Layered point clouds: A sim-
ple and efficient multiresolution structure for distributing and
rendering gigantic point-sampled models. Computers and
Graphics, 28(6):2004, 2004. 1, 2

[5] E. Gobbetti and F. Marton. Far voxels: a multiresolution
framework for interactive rendering of huge complex 3d
models on commodity graphics platforms. ACM Transaction
on Graphics, 24(3):878–885, 2005. 1, 2

[6] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen.
The lumigraph. In Proceedings of ACM SIGGRAPH 96,
pages 43–54, 1996. 4

[7] H. Hoppe. Progressive meshes. In Proceedings of ACM SIG-
GRAPH 96, Computer Graphics, pages 99–108, 1996. 1, 2

[8] K. Ikeuchi, K. Hasegawa, A. Nakazawa, J. Takamatsu,
T. Oishi, and T. Masuda. Bayon digital archival project. In
Proceedings of Virtual Systems and Multimedia 2004, pages
334–343, 11 2004. 1

[9] S. Jeschke, M. Wimmer, H. Schumann, and W. Purgathofer.
Automatic impostor placement for guaranteed frame rates
and low memory requirements. In Proceedings of the 2005
Symposium on Interactive 3D Graphics and Games, pages
103–110, 2005. 2

[10] G. Karypis and V. Kumar. Multilevel k-way partitioning
scheme for irregular graphs. Journal of Parallel and Dis-
tributed Computing, 48(1):96–129, 1998. 3

[11] D. Koller, M. Turitzin, M. Levoy, M. Tarini, G. Croccia,
P. Cignoni, and R. Scopigno. Protected interactive 3d graph-
ics via remote rendering. In Proceedings of ACM SIG-
GRAPH 2004, pages 695–703, 2004. 2

[12] M. Levoy and P. Hanrahan. Light field rendering. In Pro-
ceedings of ACM SIGGRAPH 96, pages 31–42, 1996. 4

[13] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller,
L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg,
J. Shade, and D. Fulk. The digital michelangelo project:
3d scanning of large statues. In Proceedings of ACM SIG-
GRAPH 2000, Computer Graphics, pages 131–144, 7 2000.
1

[14] D. Luebke, M. Reddy, J. D. Cohen, A. Varshney, B. Watson,
and R. Huebner. Level of Detail for 3D Graphics. Morgan
Kaufmann, 2002. 1

[15] S. Rusinkiewicz and M. Levoy. QSplat : A multiresolution
point rendering system for large meshes. In Proceedings of
the 27th annual conference on Computer graphics and inter-
active techniques, pages 343–352, Jul. 2000. 1

[16] S. Rusinkiewicz and M. Levoy. Streaming QSplat : A viewer
for networked visualization of large, dense models. In Pro-
ceedings of the 2001 Symposium on Interactive 3D Graphics,
pages 63–68, 2001. 2

[17] J. Shade, D. Lischinski, D. H. Salesin, T. DeRose, and
J. Snyder. Hierarchical image caching for accelerated walk-
throughs of complex environments. In Proceedings of ACM
SIGGRAPH 96, pages 75–82, 1996. 2

