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Abstract— Perceptual Aliasing is one of the main problems
in simultaneous localization and mapping (SLAM). Wrong
associations between different places may lead to failure of
the whole map. Research on structure information is rarely
investigated among existing solutions to this problem. In cases
of visual SLAM without sensors, such as LiDAR or Inertial
Measurement Unit (IMU), structure information can rarely be
obtained due to the sparsity of 3D points, which also makes
structure analysis complex. This study provides a spherical
harmonics (SH) based fast structural representation (SH-FS)
in visual SLAM using sparse point clouds, which extracts the
structure information from sparse points into single vector.
SH-FS was applied in conventional feature-based loop closing
process. Furthermore, a structure-aware loop closing method in
visual SLAM was proposed to improve the robustness of SLAM
systems. Moreover, our methods show a favorable performance
in extensive experiments on different large-scale real world
datasets.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is a fun-
damental process that can be applied to several autonomous
systems, where loop closing is used to correct the ac-
cumulation error during mapping process. However, loop
closing might cause the problem of perceptual aliasing,
which remains critical and makes SLAM fail.

Perceptual aliasing can be frequently observed in visual
SLAM cases. Perceptual aliasing describes the phenomenon
that different places generate similar visual/structural (or,
in general, perceptual) footprints [1], such as staircases
on different floors. The false association between different
places will further cause a collapse in map structure and
potentially affect future mapping process by the loop closing
process, which is meant to correct the accumulation error in
SLAM. Given SLAM has been widely adopted in several
safety-critical applications, this kind of structure error that
may cause safety problems should be avoided.

Many efforts have been made towards solving the problem
of perceptual aliasing. Various latest open-source SLAM
systems [2], [3], [4] generally try to solve it by carefully
accepting loop closure candidates. Other existing methods,
such as robust pose graph optimization [5], [6], [7], try
to solve it by reducing the impact of residual errors from
outliers. However, both approaches face some limitations
and one of the challenges is the reliance on manually tuned
parameters.
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Fig. 1. Example of avoiding structure failure via free space check.

Since the problem of perceptual aliasing may lead to
failure in structures, it might be possible to solve it from
the perspective of structural consistency and healthiness. In
order to detect and measure the structural consistency, a
fast structural representation using sparse points is necessary.
From our literature survey, there are no suitable methods that
can abstract the structure information with sparse data.

Therefore, we propose the use of a novel spherical har-
monics based fast structural representation (SH-FS), and
apply it to give a structure-aware loop closing process to
increase the robustness of SLAM system. Figure 1 shows a
general picture of this process. Our method does not highly
depend on parameter tuning and can easily be implemented
in pose graph based SLAM systems.

Our contributions can be summarized as the following
three points.

• Provision of SH-FS, which can extract structure infor-
mation from sparse 3D points by considering the free
space.

• Proposal of structure-aware loop closure detection by
combining SH-FS with conventional feature-based de-
tection methods.

• Proposal of the fast and robust loop closing failure
detection method. This process does not highly rely
on any manual setting and yields high robustness on
different large-scale datasets.

II. RELATED WORKS

This section gives a brief review on the map and struc-
tural representation in SLAM, loop closing and perceptual
aliasing, and robust pose graph optimization.

A. Structure in SLAM

Dense point clouds may describe the structure in an
accurate way. Through further alignment using algorithms,
such as ICP, the structure can be easily reconstructed [8].
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Some methods also can create meshes from the feature
points detected [9], [10]. However, additional data from
IMU is required. As a result, constructing meshes based on
landmarks faces some difficulties in some complicated indoor
scenarios for visual SLAM.

Many state-of-art visual SLAM systems involve a graph of
camera poses, while each pose is associated with a local 3D
points cloud, which is usually sparse in visual SLAM cases.
The concept of pose graph can help in map correction of
global scale drift by optimizing on the basis of loop closure
information. However, pose graph by itself cannot explicitly
preserve the structure information. In a previous study [11],
structure information was modeled by the distance in the
descriptor space between nearest landmarks. Another study
[12], used a virtual occupancy grid map to maintain the
free space information and made it convenient in further
map correction and path planning. Though this approach
relies on dense point clouds alignment to perform the 3D
reconstruction, the idea of free space may be a good attempt
in structural representation.

Similar to the method mentioned in [11], our approach
considers the relationship between landmarks and frames,
however, instead of the distance in descriptor space, we
study the Euclidean distance from frames to landmarks (free
space information) for simplicity. Further, to reduce the cal-
culation complexity, spherical harmonics (SH) is introduced,
by which the free space information can be extracted and
represented as a vector.

B. Loop Closing and Perceptual Aliasing

Some literatures have proposed several useful techniques
to detect loop closure. Bag-of-words (BoW) model is widely
used, which generates a vocabulary consisting of different
visual words based on a pre-trained dictionary [13]. In some
early studies, FAB-MAP [14], SURF [15], and SIFT [16]
features were widely adopted for their high performance.
Binary features, such as ORB [17], BRIEF [18], and BRISK
[19] later yielded better performance in terms of the com-
putational time. DBoW2 [20] introduces the idea of bag of
binary words to recognize the place and is applied by ORB-
SLAM [21] into SLAM algorithm for the first time.

Approaches on the basis of deep learning also play impor-
tant roles in feature extraction and similar place recognition.
Several deep-learned based local features like NetVLAD
[22], SuperPoint [23], SuperGlue [24], and D2Net [25] have
been extensively employed in visual SLAM and localization
[26], [27], [28], [29]. Although involving deep learning tech-
niques may greatly improve the performance of similar place
recognition and loop closure detection in SLAM, repeated
structures remain a significant challenge [30]. Moreover,
deep-learned based methods might be slightly heavy in
terms of computational power in cases where GPUs are not
available.

Unfortunately, since the loop closing outlier pairs are
mutually consistent, the problem of perceptual aliasing can-
not be resolved by upgrading these detection algorithms.
If two different places look the same, both places should

be considered as loop closure candidates, for example, two
identical rooms or staircases on different floors.

Most open-source SLAM systems, such as ORB-SLAM3
[3] and VINS-Mono [4] solve this problem by carefully
tuning the detector and accepting the candidate. However,
over cautiousness about the loop closing candidates cannot
fundamentally solve perceptual aliasing problem.

C. Robust Pose Graph Optimization

Despite fine-tuning of detectors, many efforts have been
made to solve perceptual aliasing. Most robust PGO algo-
rithms attempt to reduce impacts from the outliers. Majority
of studies start from modifying the cost function in PGO to
make residual error scalable [5] and try to make optimizer
able to adjust its performance based on the inputs. Lever-
aging these ideas, recent research developed cluster-based
penalty scaling methods to further improve the performance
[6].

Another category of robust PGO tends to select or remove
outliers directly out of the optimization process based on
the consistency between odometry measurement and loop
closing result. [7], [31], [32]. In a previous study [1], the
authors noticed that directly modeling the outliers using the
co-relationships inside pose graph, instead of mitigating im-
pacts from perceptual aliasing, can reveal the whole problem
more clearly.

Nonetheless, the existing robust PGO approaches face
various challenges. Some methods seem to highly depend
on hyperparameter tuning, whereas different parameters se-
lections, such as largest admissible residual, can result in
totally different performance [1], [7], [31]. Some robust
PGO methods rely on the complete map information and do
not support incremental online SLAM process [1]. Methods
related to convex relaxation are challenging in implementa-
tion, since normal optimizer cannot solve discrete problems,
which makes their usage slightly inconvenient [32].

Most literatures acknowledge that the optimization result
for a correct loop tends to be consistent with the odometry.
However, due to the errors everywhere in tracking and
mapping in visual SLAM, it is difficult to explicitly measure
the global uncertainty of each frame using the existing
methods [33], [34]. Thus, checking the consistency between
optimized trajectory and the odometry seems really difficult
in visual SLAM.

Different from robust PGO methods trying to mitigate the
influence from outliers, our proposal tries to maintain the
structure correctness by nullifying the false loop closure.
If the loop closure is wrong, the safest solution is to
neglect it and continue the tracking and mapping process.
Leveraging the computational convenience of our structural
representation, whether the loop closure is correct can also
be easily checked.

III. FAST STRUCTURE REPRESENTATION

In this study, we propose spherical harmonics based fast
structural representation (SH-FS). Since spherical harmonics
(SH) might not be a popular and familiar concept, in this



section, we will explain some basics of SH briefly, followed
by the details in SH-FS.

A. Spherical Harmonics (preliminary)

Spherical Harmonics (SH) form a complete set of orthog-
onal bases. Thus we can write any function that is defined on
a spherical surface as a weighted summation of SH, which
is very similar to the Fourier expansion.

SH Y m
l (θ, ϕ) are defined as

Y m
l (θ, ϕ) =

1√
2π

·Nm
l · Pm

l (cos θ) · eimϕ, (1)

where Pm
l (x) represents the associated Legendre Polynomi-

als, and

Nm
l =

√
2l + 1

2

(l − |m|)!
(l + |m|)!

. (2)

SH expansion can be described as, for any function f(θ, ϕ)
defined on surface of a sphere,

f(θ, ϕ) =

∞∑
l=0

l∑
m=−l

Um
l Y m

l (θ, ϕ), (3)

where Um
l are SH coefficients. SH coefficients can be ob-

tained in a straightforward manner. Similar to Fourier series,
we just integrate the target function f(s) in the following
way,

Um
l =

∫
S

f(s)Y m
l (s)ds. (4)

One of the most important property of SH is the rotational
invariance. For any rotation R ∈ SO(3) applied on the
function f on sphere S2, it can be expressed by a linear
transform on SH coefficients, which totally depends on R.
The size of the transform depends on the orders of SH
involved. Moreover, since SH bases form an orthonormal
basis, the dissimilarity Q between two functions can be
defined in a natural way. Let a and b be SH coefficients
for two different functions, we can have Q = ∥a−b∥22 [35].

Spherical Harmonics have been applied to generate de-
scriptors for spherical views and 3D shapes [36], [37]. Our
proposed method also leverages the properties of SH as
existing methods. However, instead of using omnidirectional
images and 3D objects as input, we use sparse 3D points.

B. Spherical Harmonics based Fast Structural Representa-
tion

To briefly summarize, SH-FS consists of three parts:
• rmin, minimum radius
• Cintra, free space between landmarks and camera
• Cinter, free space between cameras
As stated in forementioned section, sparsity of data is

the most challenging point in structure representation. We
therefore, focus on the free space between landmarks and
the camera. We record the landmark that is closest to the
camera and denote the distance as minimum radius rmin.
Then we use a sphere with radius as rmin to simulate the
free space of this frame.

…
…

(i). (ii). (iii).

Fig. 2. (i). First we start from sparse landmarks, the closest landmark is
indicated by the red star marker and rmin is indicated by the red dashed
line. The circles represent effective range. (ii). Then we build a pixel map
on the sphere surface for computational simplicity. (iii). The pixel map can
be projected on a plane. Colored pixels stand for pixels that can be affected
by landmarks.

(i). (ii).

Fig. 3. We construct Cinter in a similar way as Cintra. (i). Let the
frame at the center be frame i, then triangles represent frame i − 1 and
i+1, the effective range of frame is larger than that of landmarks. (ii). We
also construct Cinter on a same sized pixel map.

Another advantage of recording rmin is the approximation
of normalized free space map. Due to sparsity, an accurate
depth map is not available; however, the local distribution of
landmarks with respect to the camera can also be considered
as a structural footprint by considering the free space. The
map is constructed by assigning each landmark a spherical
Gaussian function on a spherical pixel map in the local
coordinate system. Since Gaussian value will be close to 0
when the input is far from the center, only the surrounding
range centered at the direction of the landmark will be
considered, which is denoted as effective range.

Let the size of the pixel map be M ×N , and Ξ(a,b) (0 ≤
a < M , 0 ≤ b < N ) be the set of landmarks that can affect
the (a, b)-th pixel. Define rξi as the distance from landmark
ξi ∈ Ξ(a,b) to the camera. Let the parameter αξi = rξi−rmin.
If |Ξ(a,b)| ̸= 0, the value p(a, b) on that pixel is defined as
follows,

rmin +
1

|Ξ(a,b)|
∑

ξi∈Ξ(a,b)

G(vξi ;µ(a,b), γ, αξi). (5)

If |Ξ(a,b)| = 0, we will have p(a, b) = rmin. For spherical
Gaussian, the definition is as follows:

G(v;µ, γ, α) = αeγ(µ·v−1), (6)

where v and µ are both 3-dimensional unit vectors on a
surface of a sphere. v represents the direction of the input
vector and µ represents the center direction of this Gaussian.
Figure 2 shows the generation of the pixel map.

Finally the whole pixel map is integrated together with SH
base functions to obtain Cintra. Define Cintra for frame i
as ci,1,

ci,1 ≈ 1

rmin
· 1

M ×N

∑ Y m
l (a, b)

p(a, b)
sin(

a

M
π). (7)
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Fig. 4. Overview of the proposed loop failure detection process. Blocks marked as blue represents the original parts of conventional visual SLAM while
blocks marked as red represents our proposed method.

An inverse transform is applied on the pixel map to smoothen
the influence from very far landmarks.

Free space exists not only between landmarks and camera,
but also between cameras. Let E be the set of frames inside
the map when the loop closure happens. For the sake of
simplicity, let us consider the free space of frame i between
closest two frames i− 1, i+ 1 ∈ E in the global coordinate
system. Let Ξ̂(a,b) ⊆ {i− 1, i+ 1} be the set of frames that
can affect the (a, b)-th pixel. Let the parameter âξ̂i = di,ξ̂i
which stands for the Euclidean distance between frame i and
frame ξ̂i ∈ Ξ̂(a,b). If |Ξ̂(a,b)| ≠ 0, the value p̂(a, b) on that
pixel is defined as,

rmin +
1

|Ξ̂(a,b)|

∑
ξ̂i∈Ξ̂(a,b)

G(vξ̂i
; µ̂(a,b), γ̂, α̂ξ̂i

). (8)

If |Ξ̂(a,b)| = 0, we will have p̂(a, b) = rmin. In the same
way, we apply SH expansion to get Cinter. Figure 3 shows
the construction of the pixel map based on the free space
between cameras.

IV. LOOP CLOSURE WITH SH-FS

We further explain the application of SH-FS in loop
closure detection as well as loop failure detection in this
section. Figure 4 gives an overview of the proposed method.

A. Structural-aware Loop Closure Detection

As stated in previous section, the local structure is repre-
sented by an SH coefficient vector Cintra, say ci,1 for frame
i. Then the Cintra difference between frame i and j can be
written as ∥ci,1 − cj,1∥2 on the basis of the property of SH.
Therefore, the most straight forward application is to use it
in loop closure detection.

Let Φi be the set of neighboring frames of frame i, and
define the threshold τi,1 of Cintra difference as follows:

τi,1 = max
ϵ∈Φi

∥ci,1 − cϵ,1∥2. (9)

Further, in the loop closure detection, based on the original
feature-based detector, we append one more criteria for
candidate selection. For query frame i and candidate frame
j, their Cintra difference should be restricted below τi,1.

Generally speaking, combining structural-aware loop clo-
sure detection with conventional detection methods based
on visual features implies higher standards for detection.
Though methods such as BoW, can already yield good
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Fig. 5. Frames Ft, Ft+1, Ft+2, Ft+3 are neighboring frames, thus it is
normal for them to have overlapped parts in free space. F ′ is not neighboring
frame of Ft+1 and Ft+2, implying a violation of free space.

performance in most cases, involving structure information
in detection will further improve the robustness and help to
filter some outliers.

B. Structural-aware Loop Failure Detection

Consider E is the set of frames, for each frame i ∈ E,
denotes the minimum radius as ri. Furthermore, denote the
euclidean distance between frames i, j ∈ E as dij . For any
frame i ∈ E, if there exists another frame j ∈ E, that makes
dij < ri+rj . Meanwhile, if i and j are not adjacent to each
other, then we consider i and j violates the correctness of
free space. Figure 5 shows the general concept of checking
free space violation.

Free space violation means part of the map is overlapping
with other part and there is probably a structure failure.
However, checking free space for all frames in E will be
heavy in terms of computation time when N becomes large.
In addition, in the case of a correct loop, checking the whole
map in brute force is inefficient. Thus, we select some sus-
picious frames for structure failure check. By only checking
these selected frames (failure candidates), the method can be
greatly accelerated.

Due to the accumulated error in tracking and mapping
parts of visual SLAM, global information is not reliable. Map
correction process such as PGO can highly modify the map
and the global information. Our concept is to measure the
change before and after map correction. Note that initially
Cintra is local information. In order to measure the structural
change globally, we have to de-rotate Cintra back to world
coordinate.

For frame i whose Cintra is ci,1, let the rotational pose
of frame i be Ri. De-rotating ci,1 means casting a rotation
R−1

i on the spherical function described by ci,1. Thanks to



𝑂

𝐶′

𝐶 𝑟

𝑟′

(i). (ii).

(iii). (iv).

Fig. 6. (i). Structure change caused by rotation difference, OC and OC′

stand for the orientation before and after PGO. (ii), Structure change in
scale. (iii). Structural change caused by translation difference, it can also
be considered as local structure distortion. (iv). Situation when there is no
structure distortion.

the rotational invariance property held by SH, we need not
rotate landmarks and reconstruct the pixel map again. There
exists a linear transform ΛR−1

i
, which makes the

cdi,1 = ΛR−1
i

· ci,1. (10)

cdi,1 is the de-rotated Cintra, we may denote it as Cd
intra.

Thus rmin, Cd
intra, and Cinter all represents global infor-

mation.
We exploit the convenience of our proposed SH-FS to

check the structure change caused by pose graph optimiza-
tion (PGO) given the corresponding loop closing. We con-
sider two categories of failure candidates: (1). Loop closing
pairs; (2). Largely modified frames.

Loop closing pairs In most cases, loop closing points
in trajectories are the most “dangerous” positions because
PGO usually modifies the loop ends to a great extent. While
the existence of scale drift makes it difficult to judge the
correctness of loop closure before PGO, we should make
sure of the correctness of the structure of the closing points
after PGO. The first part of candidates is selected as the loop
closing frame, current frame, and their neighbors.

Largely modified frames As we stated in abovementioned
section, a healthy and correct loop tends to be consistent
with the odometry. Therefore, those frames whose rotation,
translation and scale are largely modified by PGO will be
considered as suspicious frames (failure candidates). Figure
6 shows these three types of structural change. The change in
rotation, translation and scale can be described by the change
in Cd

intra, Cinter, and rmin.
Cintra threshold τi,1 derived in Section IV-A is also used

here to judge the change in Cd
intra caused by PGO. Define

∆cdi,1 = ∥cdi,1− c̃di,1∥2, where cdi,1 and c̃di,1 are the de-rotated
Cd

intra of frame i before and after PGO. If ∆cdi,1 > τi,1, then
frame i is included as a failure candidate.

We also define the threshold τi,2 for Cinter of frame i
similarly, let Φi be the set of neighboring frames of frame i,

τi,2 = max
ϵ∈Φi

∥ci,2 − cϵ,2∥2. (11)

Define ∆ci,2 = ∥ci,2 − c̃i,2∥2, if ∆ci,2 exceeds τi,2, frame
i is also included as a failure candidate.

TABLE I
GENERATION TIME OF SH-FS PER FRAME IN DIFFERENT MAP SETTING

Resolution n×m, effective range l, (n,m, l)
(n,m, l) (10,20,1) (30,60,3) (50,100,5) (50,100,10)

Time [ms] 0.632 1.022 1.586 3.935

TABLE II
AVERAGE FREE SPACE CHECKING TIME IN TWO REAL-WORLD DATASETS

WITH 1011 AND 795 KEYFRAMES

Average checking time [ms]
correct loop wrong loop

Ours 1.950 1.757
Brute-force 56.067 4.615

Another reason for using 7-dof PGO is that the change
of rmin can easily be reflected by the change in scale
si. Following the setting in [38], scale s before PGO is
initialized as 1, so we set the threshold τi,r of frame i as,

τi,r = max
ϵ∈Φi

|ri
si

− rϵ
sϵ
|, si = sϵ = 1. (12)

Define ∆ri = | risi −
ri
s̃i
|, if ∆ri exceeds τi,r, frame i is also

included as a failure candidate.
After the selection of failure candidates, free space viola-

tion is checked between failure candidates and other frames
in the map. If any violation is detected, the algorithm ends,
thus result of PGO is rejected. In this case, the previous
merge between loop pairs should be nullified and everything
in the map should be restored to the same state as it was
before PGO.

V. EXPERIMENTS

A. Experiment Setting

We carried out experiments on large-scale real-world
datasets to evaluate the performance of our fast structural
representation. We used an M1 chip Macbook Pro with 16
GB RAM. To show the practical usability, we evaluated the
timings and precision recall of failure detection, which will
be discussed in the following section.

Moreover, in our implementation, 7-dof PGO was imple-
mented following the similarity transform setting in [38] and
used g2o [39] as back-end.

B. Datasets

The problem of perceptual aliasing is less frequent in
outdoor cases compared with indoor, due to the lack of
duplicate structures. There should be enough similar places
in the dataset to show the performance of the detector.
New datasets were created since public benchmarks that are
suitable for our method were not available.

Our datasets were taken indoors, covering several dif-
ficult scenarios for conventional loop detector including
long corridor and staircases. The datasets are composed by
synchronized video data (taken by Insta360 ONE X2) and
LiDAR data (taken by Ouster OS0-128).
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Fig. 7. Top: Checking time consumption when applying our detection
method. Bottom: Checking time consumption when applying brute-force.
Notice that the empty interval between 600 and 700 frames indicates that
there were no loop closing detected in both datasets.

VI. RESULTS

A. Timings

We measure the total generation time of Cintra, Cinter,
rmin, and average free space checking time to show the real-
time performance of our method.

The generation time is directly affected by the resolution
of the pixel map and the effective range of landmarks. Let
the pixel map size be n×m and effective range be l pixels
in the map, Table I shows the generation time consumption
measurement for each frame.

As stated in the previous section, the purpose of failure
candidate selection method is to reduce the time needed
for free space checking. Otherwise, the free space checking
will become a brute force process for all frames in maps
which can be inefficient in cases of the correct loop. Figure
7 and Table II give the time consumption performance of
our method and brute-force in two datasets with 1011 and
795 keyframes. Since there is no free space overlapping in
the correct loop, the brute-force method will not meet break
points and will make time consumption large. When map
size becomes larger, time consumption with brute-force will
grow quadratically.

Further, structure-aware loop detection stated in Section
IV-A also helps in reducing number of loop closure outliers
and thus reduce the checking time.

B. Precision Recall of Failure Detection

We use precision and recall (PR) to evaluate the perfor-
mance of our failure detector. We define the concept that
“the loop closure result is wrong” as Positive. Table III gives
the results. We compare our method against the following
methods:
(1). Visual SLAM system [40], which is based on Visual

Odometry (VO) and BoW without failure detection
methods (denoted as Baseline).

TABLE III
PRECISION AND RECALL OF FALSE LOOP CLOSURE DETECTION IN

REAL-WORLD DATASETS

Resolution n×m, effective range l, (n,m, l)
(10,20,1) (30,60,3) (50,100,5) (50,100,10)

Baseline 0/0
Ours 0.89/0.95 0.90/0.99 0.91/0.98 0.87/0.98

NC(0.5) 0.79/0.52 0.75/0.66 0.83/0.65 0.80/0.70
NC(0.8) 0.84/0.32 0.81/0.62 0.86/0.73 0.85/0.61
Without1 0.81/0.83 0.85/0.80 0.85/0.78 0.81/0.76
Without2 0.87/0.74 0.84/0.85 0.90/0.81 0.81/0.88

(2). Failure rejection based on percentage of failure can-
didates without checking free space. Reject the loop
closure when the number of failure candidates exceeds
50% of frames in the loop (denoted as NC(0.5)).

(3). Failure rejection based on the percentage of failure
candidates with 80% percentage (denoted as NC(0.8)).

(4). Our proposed method removing Category 1 candidate
selection in Section IV-B (denoted as Without1).

(5). Our proposed method removing Category 2 candidate
selection in Section IV-B (denoted as Without2).

In our case, recall is critical which means how many wrong
loop closures are detected.

C. Qualitative Evaluation

We tested our method on several large-scale indoor real
world datasets, which contains multiple places sharing highly
alike structures. To show the effectiveness of our methods,
we compare our methods qualitatively with some open-
source systems including Fast-LIO [8], Fast-LIO-SLAM
with the application of SC-A-LOAM [41], and the baseline
method. Figure 8 and 9 show the comparison between our
proposal and baseline method as well.

In order to check whether IMU data can help to resolve
the problem of perceptual aliasing, we also planned to test
the performance of visual-inertial-odometry based SLAM
systems. However, since our indoor data consists some nar-
row corridors and staircases, it can cause failure in tracking
due to the lack of features if it is handled by the Pinhold
camera model. Then panoramic data has to be applied to
ensure a successful tracking process. Our literature research
indicates that open-source visual inertial SLAM that supports
panoramic data currently is not available. Therefore, we
choose a more robust and stable LIO-based method to show
whether IMU data can help in our case.

D. Results Interpretation

Table I and II show that the time taken for either the
generation of structural representation or free space checking
process are relatively small and have almost no influence on
the original SLAM algorithm. The experimental performance
shows the average frame rate of our implementation was
around 27[fps] which can be defined as real-time.

Table III shows the precision recall performance under
different parameter settings. Our method can successfully
detect 98% of false loop closing results.
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Fig. 8. (a) to (d) show the performance of different methods in a simple sequence that covers the structure of two floors. (e) to (h) show the performance
of different methods in a relatively harder sequence that covers the structure of three floors with large loops. We can see that in (h), even with IMU and
LiDAR data, the structure still collapsed due to wrong loop closures between different floors. The rightmost images show typical places where false loop
closing happens. The intuitive reason is also the mutual consistency between different floors, causing ScanContext detection to make mistakes.
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Fig. 9. Harder cases with more floors and more potential false loop closings
were also tested. When there was no failure checking process, the baseline
method can make huge mapping errors and lead to structural failure.

Furthermore, Table III results indicate that our method is
robust and does not rely on parameter tuning. Small sized
map might fail to cover all the structure information thus the
performance might be degraded. Hence, the map size should
be made enoughly large, in our case (30, 60, 3), to keep good
performance.

Figure 8 confirms the wide existence of perceptual aliasing

in different SLAM systems. In certain indoor cases, IMU
and LiDAR data might also not help to avoid it. Figure 8
and 9 also gives a clear picture of how our method can help
to avoid structure failure caused by perceptual aliasing and
further indicate the effectiveness of our failure detection and
free space checking methods.

Our method does not rely on PGO algorithms as well.
It can be applied to methods based on pose graph and
landmarks, which makes it very easy to be implemented.

The results also reveal the limitations of our method. First,
our method does not ensure 100% failure detection since
theoretically our method can only detect those failures that
cause free space overlapping. Wrong loop closure without
structure failure can occur in either very small or very
large loops, in this case our method might be unsuccessful.
Second, though our method can be rapid, when the map
grows larger, the time cost by PGO becomes the bottleneck.
In such cases, the time consumed by PGO might be even
hundreds of times longer than the time taken by free space
checking. Thus applying our checking method will hardly
improve time efficiency in those cases.

VII. CONCLUSION

In this paper, we proposed spherical harmonics based fast
structural representation (SH-FS) in visual SLAM framework
that can help to improve the accuracy and robustness of
loop closing and loop correction. We demonstrate high
performance in several large-scale real-world datasets, with
substantial improvement comparing baseline method. Fur-
thermore, different from normal robust PGO methods, we
do not try to mitigate influence of outliers during optimiza-
tion; nevertheless, we reject outliers based on the structure
healthiness after optimization. Thus our method is easier to
implement and takes lesser time.



Future work will further generalize the fast structural rep-
resentation and application in different part of SLAM, such
as tracking and mapping modules. We also plan to implement
our method in both visual inertial SLAM and LiDAR inertial
SLAM systems. In addition, we aim to extend our fast
structural representation into an environment reconstruction
system, leveraging the fast computation, which can be useful
in other tasks such as path planning for robots.
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