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A fast registration making use of implicit polynomial (IP) models is helpful for the real-time pose estima-
tion from single clinical free-hand Ultrasound (US) image, because it is superior in the areas such as
robustness against image noise, fast registration without enquiring correspondences, and fast IP coeffi-
cient transformation. However it might lead to the lack of accuracy or failure registration.

In this paper, we present a novel registration method based on a coarse-to-fine IP representation. The
approach starts from a high-speed and reliable registration with a coarse (of low degree) IP model and
stops when the desired accuracy is achieved by a fine (of high degree) IP model. Over the previous IP-
to-point based methods our contributions are: (i) keeping the efficiency without requiring pair-wised
correspondences, (ii) enhancing the robustness, and (iii) improving the accuracy. The experimental result
demonstrates the good performance of our registration method and its capabilities of overcoming the
limitations of unconstrained freehand ultrasound data, resulting in fast, robust and accurate registration.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Motivation

To support medical diagnosis, various imaging modalities, such
as computed tomography (CT) scan, MRI, PET, and ultrasound (US),
are widely used in clinics. Among these modalities, US has benefi-
cial characteristics such as free-hand manner, non-invasiveness,
compactness, low cost, and synchronization of operations and
imaging. Thus US is attractive for assistance with surgical opera-
tions and real-time diagnosis of problems with the circulatory sys-
tem, abdomen, breast, prostate gland, etc.

However, US images are notorious for the poor image quality,
due to speckle noises, low signal-to-noise ratio, occlusions, and
uniform brightness. And field of view (FOV) in US imaging is very
limited; in severe cases, only 2D cross-sectional images are ob-
tained. These aspects confuse the doctors in making right decisions
for diagnosis.

In order to solve these issues, some recent literature advocates
the fusion-of-modality techniques. For example, before the surgi-
cal operation, 3D models of target parts are obtained by rich but
time-consuming modalities such as CT, MRI, and PET. By superim-
posing US images obtained during the operation on these 3D
models, the result will provide rich information to help a doctor’s
diagnosis. To achieve this, the key for superimposing is to estimate
the pose of US images related to the images derived from other
modalities.
1.2. Related work

The pose estimation can be viewed as a registration problem for
two models: a source model (preoperative 3D model) and a target
model (2D/3D US image). To do this, a class of methods such as
[1,2] bind the optical position sensors to a US probe, and measure
the relative US position to 3D models; For enhancing robustness,
the methods in [3–5] combine the information from position sen-
sors and image features.

Without position sensors, Penney et al. [6] propose to register
the surface points manually selected from US images to a preoper-
ative 3D shape model by MRI segmentation; similarly, Amin et al.
[7] register the bone boundaries in US images to a shape model
segmented from CT image by a modified ICP method; Lange et al.
[8] take advantage of 3D-Power Doppler to extract vessel shapes
from intraoperative 3D US and register with preoperative models
in liver surgery; to enhance the robustness, mutual information
is advocated as measuring image similarities, such as [9,10]; Wein
et al. [11] achieve the CT-ultrasound registration by simulating the
US image sequence from CT image, and using a new similarity met-
ric: linear correlation of linear combination; other methods such as
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Fig. 1. Registration example (IP is shown in gray surface and target model is shown
in blue points). (a) Inaccurate result caused by low degree IP with lack of detailed
representation and (b) failure registration caused by high degree IP with undesired
surfaces. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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[12,13,10] estimate the relative positions according to the image
features or intensity and gradient information of US images and
preoperative 3D models. Although each of the methods has its
effectiveness, they suffer from expensive computation caused
either by the intensity-based similarity calculation or point-to-
point ICP-based registration and thus they are difficult to work in
real time.

Regardless of the data type, the registration problem is solved
basically by three families of methods: (i) ICP-based methods:
the iterative closest point method (ICP) first proposed by Besl
and McKay [14] or its accelerated variations such as [15] for 3D
range data, (ii) point-model methods: e.g., Fitzgibbon [16] encodes
the Euclidean distance field by fast distance transformation and
employs the robust estimation to remove the outliers; Huang et
al. [17] proposed new similarity measurement using information
theory to achieve the robust non-rigid registration; and iii) the
approach relying on algebraic/geometric invariant features, e.g.,
moment features is described in [18], and IP global features are
proposed by Taubin et al. [19,20]. The first family of methods can
achieve fine registration, but requires time-consuming computa-
tion of point-to-point/surface correspondences; The second family
of methods can achieve the registration efficiently but needs huge
memory, especially in dense 3D cases, to preserve the distance
field; and the third family of methods can achieve fast registration,
but cannot deal with registration in the case of partially overlap-
ping the target objects [18].

In our previous work [21,22], we propose to approximate the
Euclidean distance with the algebraic formulation using implicit
polynomials (IPs) and speed up the registration. The advantages
of this method over the prior methods are that: i) unlike the ICP-
based methods, it avoids the extra computation for point-wise cor-
respondences; ii) unlike the point-model method of preserving a
discrete distance field, it needs very little memory space for pre-
serving a few IP coefficients, and the algebraic model can generate
an infinite distance field to support registration in a wider space;
iii) unlike the coarse registration methods, it supports partial-
overlapped registration. A recent work proposed by Rouhani and
Sappa [23] improves the optimization by Levenberg–Marquardt
algorithm which leads to a faster convergence. These methods
adopt a single IP based registration which remains an essential is-
sue: a moderate IP model is really difficult to generate and thus to
be obstacle to an accurate and robust registration.

The previous studies in [24,25] pointed out two issues frustrat-
ing the IP fitting: i) An IP of low degree loses local accuracy for
object representation, whereas ii) an IP of high degree might be
globally unstable (the undesired surfaces appear in the fitting
result). However the former may lead to the lack of accuracy for
registration, but the latter may lead to a failure registration.
Fig. 1 shows an example when an IP (gray surface) is registered
to scattered points (blue points). While Fig. 1 (a) shows the regis-
tration result losing much accuracy due to coarse IP of low degree,
Fig. 2. Coarse-to-fine registration in general case driven by IP models from low degree t
initial position for each step is determined by the result of previous step.
Fig. 1 (b) shows failure registration due to the global instability
problem of IP fitting with high degree.

1.3. Overview and contributions

Our method inherits IP’s merits: neither time-consuming pro-
cess of correspondence searching nor huge memory for storing
the discrete distance field is required. In addition, over the previ-
ous methods in [21–23] that use single IP for registration, we pro-
pose a coarse-to-fine IP registration. As illustrated in Fig. 2
leftmost, it starts from a low degree IP (ellipsoid) to achieve a
robust initial guess. Second, after a rough registration covered by
the IPs of low degree, the higher degree IPs can drive to a more
accurate position, even if the IP is not stably modeled (extra zero
sets appear around the desired zero set), as shown in Fig. 2 right-
most. Our method improves the robustness and accuracy. The
robustness is guaranteed by the coarse estimation with an IP of
low degree, whereas the high accuracy can be achieved by an IP
of high degree given the appropriate initial guess.

Compared to the global IP matching methods, such as [19,20],
our method overcomes the partially overlapped problem. Such
merits make it possible to be applied for the registration between
a 3D shape and a 2D US image plane. We adopt boundary informa-
tion which is independent of the types of modalities. As illustrated
in Fig. 3 (a), our method supposes the 3D model has been obtained
in an advance which is desired to registered with the online
ultrasound image shown in Fig. 3 (b). In an online process, e.g., dur-
o high degree (from left to right). Leftmost: the initial position for registration. The



Fig. 3. (a) Offline obtained 3D prior model and (b) online obtained ultrasound
image.
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ing a surgical operation, it fast aligns a 3D IP models to a 2D US im-
age, as the coarse-to-fine approach shown in Fig. 4. Then the de-
sired relative pose information between 3D model and the 2D US
image (associated with the probe position information of ultra-
sound device) is obtained.

This paper is organized as follows: Section 2 introduces the
mathematics of IP modeling and its properties; In Section 3, we
present the registration technique using IP, formulated in both a
general case and a US image case, and based on coarse-to-fine
approach; Section 4 reports experimental results followed by con-
clusion in Sections 5. In addition, we present our symbolic compu-
tational transformation of IP in Appendix A.

2. Implicit polynomial

We adopt implicit polynomials for modeling the preoperative
3D images captured by a modality such as MRI, CT-SCAN, or 3D
US, supposing that the 3D boundary has been obtained from the
segmentation result of the captured volume images.

2.1. Model

Suppose modelM obtained from 3D boundary data represents
a closed surface, and by contracting and expending it defines two
3D layers (see [26]): the inner layer C� and outer layer C+. Then
the model is represented by its distance transform:

UðxÞ ¼
0; x 2M

þdðx;MÞ; x 2 Cþ
�dðx;MÞ; x 2 C�

8><
>: ; ð1Þ
Fig. 4. Online coarse-to-fine registration in US image case

Table 1
Comparison of registration results. (ICP: iterative closest point [14], SI low: single IP metho
fine method (proposed method), Acc.: accuracy measured with mean squared errors and

Case ICP SI low

Acc. CT (s) Acc. CT (

Fig. 7(a) 5.6e�3 1.1 9.8e�3 0.04
Fig. 7(b) 3.5e�3 10.7 1.2e�2 0.13
Fig. 7(c) 3.2e�3 9.3 2.3e�2 0.12
where x = (xyz) is the location of one data point in Cartesian coor-
dinates, and dðx;MÞ ¼minxM2Mkx� xMk is the Euclidean distance
from x to the model consisting of the points xM. We approximate
U with an implicit polynomial (IP) as:

U � fnðxÞ ¼
X

06i;j;k;iþjþk6n

aijkxiyjzk
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@
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; ð2Þ

where n is the degree of an IP, and the IP can be represented as an
inner product between the monomial vector and the coefficient
vector as: mTa. The indices {i, j,k} are sorted by the inverse lexico-
graphical order (see Table 1 in [27]). This problem can be viewed
as the linear least-squares problem solved by 3L method [26].

2.2. Properties

IP representation has several good properties such as robust
against noise, easy calculation for partial derivatives and easy
transformation, but also has bad properties such as global unstable
fitting. These properties are described in the followings:

2.2.1. Robust against noise
The previous studies, such as [24,28], pointed that IP fitting is

robust against noise, missing data and occlusions, and in [25] there
shows an example that IP representation does not vary largely
when adding noise to the data set to some extent. Note this prop-
erty is best matched to the modeling for medical images, since
many images captured by the modalities, such as ultrasound de-
vice, are often with poor image quality due to speckle noises, low
signal-to-noise ratio and occlusions.

2.2.2. Easy calculation for partial derivatives
Given an IP, its partial derivatives can be simply calculated by a

symbolical transformation. For example, if an IP of n-degree is
associated with coefficient vector a = {aijk}, then its first partial
derivative of y, @fn

@y , is an IP of (n � 1)-degree and can be calculated
as a0 ¼ fa0ijkg, where

a0i;j�1;k ¼
jai;j;k; j P 1;

0; otherwise:

�
ð3Þ

Fig. 5(a) illustrates the gradients5fn ¼ @fn
@x ;

@fn
@y ;

@fn
@z

� �T
, where each

entry is the first order derivatives.
driven by IP models from low degree to high degree.

d with low degree [21], SI high: single IP method with high degree [21], CtF: coarse to
CT: CPU time (s).)

SI high CtF

s) Acc. CT (s) Acc. CT (s)

7.8e�3 0.08 7.8e�3 0.12
N/A N/A 4.8e�3 0.19
N/A N/A 4.2e�3 0.18
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Fig. 5. Properties: (a) IP gradients of inner point x1 and outer point x2, (b) IP fit of degree 8 (global unstable with the extra IP surfaces in gray and the desired surface in red),
and (c) different view of (b). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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2.2.3. Easy transformation
An IP model f(x) = m(x)Ta can be easily transformed by rotation

or/and translation, as it is a matrix–vector multiplication operation
on the coefficients as:

a0 ¼ VðpÞa; ð4Þ

where V is a function mapping 3D transformation parameters
p ¼ ðt;RÞ 2 R3 �SO (3) to a square matrix with same dimension to
coefficient vector a. To our knowledge, although prior literature,
such as [20], have proved the existence of matrix V, the computa-
tional implementation is not explicitly described. Tarel et al. [19]
proposed a tensor-based transformation for IP, but it still suffers
from heavy computational cost. Therefore, let us present our sym-
bolic computational in A based on Taubin and Cooper’s theory [20].
(a)

(c)
Fig. 6. 2D contours for illustrating distance fields: (a) Euclidean distance calculated by
calculated by f

k5f k in Eq. (5). (d) Gradient field calculated by Eq. (6).
2.2.4. Difficult control for global stability
No matter how robust against noise, IP still suffers from the rep-

resentation problem on global instability [24,25], when fitting with
high degree IP to the object. The example shown in Fig. 5(b) and (c)
implies that high degree IP is locally accurate but globally unstable,
which might lead to a failure registration.
3. Registration

In this section, before we present our coarse-to-fine registration
method, let us first consider the case driven by single IP model. The
objective of IP-driven registration is to find a transformation that
makes the IP zero set to be ‘‘best’’ matched with the given data
set. It can be formulated as an energy minimization problem in a
(b)

(d)
closest points searching. (b) Algebraic distance f in Eq. (2). (c) Algebraic distance
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general case or US image case as introduced in Section 3.2. To this
end, the moderate measurement for the distance between data set
and IP is required first.

3.1. Distance metric

We define function d(xi, fn) for measuring the algebraic distance
between a discrete point xi and an IP model fn as:

dðx; fnÞ ¼
fnðxÞ

k 5 fnðxÞk
;8x 2 X; ð5Þ

The magnitude of this algebraic distance d has been proved to close
Euclidean distance in [29]), but note that d is a kind of signed dis-
tance since if x in the inner region of IP, then d < 0. Fig. 6(a)–(c)
illustrate the difference of three distance fields generated by Euclid-
ean distance, Eqs. (2) and (5).

We define the gradient vector with length of distance
G : R3 !R3 as

GðxÞ ¼ dðx; fnÞ
5fnðxÞ
k 5 fnðxÞk

;8x 2 X: ð6Þ

This can be viewed as a resized version of the original gradient vec-
tors with distance d(x). Fig. 6(d) illustrates the gradient field for
example.

3.2. Energy functions for general case and US case

Given the definition of a distance between a certain data set and
an IP, the next problem is how to predict the transformation for the
IP that can minimize distance to the data set.

In our method, the minimization is done through the following
two steps: for accelerating the convergence, first, it minimizes the
function without any constraint in the transformation. This means
every point can move freely during the first minimization. Next, it
determines the transformation parameters to better describe the
first minimization result. These two steps are repeated until
convergence.

Let us describe the registration between an IP and a partial ob-
ject, in a general case and a US image case.

3.2.1. General case
In general case, registration can be simply formulated to mini-

mize the energy functional of the integration of distances as
follows:

E ¼
Z

X
d2ðx; fnðxÞÞdX; ð7Þ

where X represents the partial surface of an object, and x 2X. Then,
by calculus of variations [30], the Gateaux derivative (first varia-
tion) of the functional E to point x can be approximately formulated
as
Fig. 7. Initial position for registration. Target models are shown in green. (a) ‘‘brain’’ objec
with 34,267 vertices.
@E
@x
� 2GðxÞ; ð8Þ

if we consider 5fn as a constant value for computational
convenience.

Therefore, we need to minimize this functional to satisfy the Eu-
ler–Lagrange equation @E

@x ¼ 0. Thus the steepest descent process is
executed in the following gradient flow for each point x:

@x
@t
¼ �2GðxÞ: ð9Þ
3.2.2. US image case
For the task of pose estimation of the US probe, the US images

from the 2D probe that image the organ slice boundaries are usu-
ally expected to be matched with the corresponding planar inter-
section of the 3D model.

Furthermore, US images are heavily noise-contaminated. Since
precise extraction of the organ’s boundary is therefore very diffi-
cult, maybe impossible, simple boundary-based registration de-
scribed in the general case is not sufficient for US images. But
fortunately, the organ’s inside region is clearly seen in US images
as shown in Fig. 3(b). These two points are key for improving the
general method for US images.

For solving the first point, we use a Gaussian smoothed edge
indicator defined by [31]. Let I(x) be a 2D US image function in
3D space, and pixel position xð2 R3Þ be in the 3D plane X. Let
g(x) be the indicator defined as follows:

g ¼ 1

ð1þ j 5 Gr � Ij=kÞ2
; ð10Þ

where Gr is a Gaussian filter with standard deviation r, and ⁄ de-
notes convolution.

For making use of the second point, we compose the energy
function with combining a boundary constraint LðxÞand an inside
constraint AðxÞ, such as

EðxÞ ¼ aLðxÞ � bAðxÞ; ð11Þ

where a and b are constants, and the terms LðxÞ and AðxÞ are de-
fined by

LðxÞ ¼
Z

X
dðdðx; fnÞ � gðxÞÞd2ðx; fnÞdX; ð12Þ

and

AðxÞ ¼
Z

X
Hð�dðx; fnÞ � gðxÞÞd2ðx; fnÞdX; ð13Þ

respectively; X corresponds to the image plane. d is the univariate
Dirac function defined as:

dðxÞ ¼
0; jxj > j

1
2j ½1þ cosðpx

j Þ�; jxj 6 j

(
ð14Þ
t with 11,162 vertices, (b) ‘‘statue’’ object with 33,587 vertices, and (c) ‘‘bone’’ object
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where j is constant and practically set with j = 2 in our experi-
ments. H is the Heaviside function defined as:

HðxÞ ¼
0; x < 0

xþ x2=2; x P 0

�
ð15Þ

Let us explain the meaning of these terms. Minimize the energy
functional E in (11), which is equivalent to minimizing L in (12),
and maximize A in (13). First, the energy function with respect
to the boundary L is equivalent to the integral of edge indicator
values along the intersected curve between IP and US image plane
because the IP model should be converged around an edge-like
part in US images. Second, the energy function with respect to
the inside region A is the integral of edge indicator values over
Fig. 8. Registration result. (a) ICP [14], (b) registration with single IP of 4� [21,23], (c) reg
to-points representation corresponding to (d).
the inner region surrounded by the intersected curve. It is expected
to be as large as possible. To summarize, minimizing L and �A
achieves the registration.

By calculus of variations, the Gateaux derivative (first variation)
of the functional E in (11) can be approximately written as

@E
@x
� ðadðd � gÞ � bHð�d � gÞÞG: ð16Þ

The steepest descent process for minimization of the functional
E is the following gradient flow:

@x
@t
¼ �ðadðd � gÞ þ bHð�d � gÞÞG: ð17Þ
istration with single IP of 8� [21,23], (d) proposed coarse-to-fine method, and (e) IP-



Fig. 9. Registration for partially overlapped data. Four parts of bunny: ‘‘head’’, ‘‘tail’’, ‘‘sparse head’’ and ‘‘3D-plane curve’’ are shown in blue, red, green and pink respectively.
(a) Initial position of each part for the registration. (b) Result of our method. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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3.3. Operation for minimization at each step

The minimization can be done through the following two steps:
for accelerating the convergence, first, it minimizes the function
without any constraint in the transformation. This means every
point can move freely using Eqs. (9) and (17). Next, it determines
the transformation parameters to better describe the first minimi-
zation result. These two steps are repeated until convergence.

Let X 2 RN�3 preserve N 3D data points. Then the approximation
of (9) and (17) by the above difference scheme can be simply writ-
ten as:

@X
@t
¼ Xkþ1 � Xk: ð18Þ

It is the approximation of discrete data set transformation by the
above spatial difference scheme in (9) and (17).

A ¼ ðXk � XkÞ
T
ðXkþ1 � Xkþ1Þ; ð19Þ

where X is a matrix in which each row consists of the mean value
(center point) of X, and if A is decomposed with singular value
decomposition (SVD) algorithm as A = USVT, then the transforma-
tion is given as:
0 5 10 15 20 25
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(a)
Fig. 10. Comparable result based on graph of MSE vs. iteration number. Four methods
registration [21,22] using 10-degree IP, (3) IP6: Single IP registration [21,22] using 6-degre
sets ‘‘sparse head’’ part in green and the ‘‘3D-plane curve’’ in pink respectively, see Fig.
referred to the web version of this article.)
R ¼ UVT; t ¼ X � X 0RT ð20Þ

where R and t are rotation and translation parameters respectively.
Now, we have two choices of operation at each step that makes

the iteration convergent:
Point-to-IP Operation: Each point x moves toward IP, by

updating its position as:

xkþ1 ¼ Rxk þ t; ð21Þ

IP-to-point Operation: IP moves toward the point set by
updating the coefficient vector as:

akþ1 ¼ VðR; tÞak; ð22Þ

by the algorithm proposed in A.
Both the two operations are mathematically equivalent, but

however they can be selected in different cases for accelerating
the computation. When the point set is small, e.g., less than 6800
points, point-to-IP operation is faster than the IP-to-point opera-
tion of an 8-degree IP. But on the other hand, e.g., in the US case,
since the point set extracted from pixels is often huge (a
320 � 240 image can own 76,800 points), then the IP-to-point
operation is definitely required for the acceleration.
0 5 10 15 20 25 30
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0.2

0.3

0.4
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# Iteration

M
SE

DT
IP10
IP6
CtF

(b)
are employed: (1) DT: Distance transformation method in [16], (2) IP10: Single IP
e IP and (4) CtF: proposed Coarse-to-fine method. (a) And (b) correspond to the data

9. (For interpretation of the references to colour in this figure legend, the reader is
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Fig. 11. Open curve registration: two models, M1 and M2 shown in red and blue
respectively, register to an IP fit curve shown in green line. Initial positions are
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IP fit (in green line) is resulted by fitting a source model which is close to the blue
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reader is referred to the web version of this article.)
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3.4. Coarse-to-fine registration

Given the registration approaches both for general and US cases
derived by single IP, let us present our coarse-to-fine registration
with coupled two sub-processes: (1) coarse-to-fine representation
and (2) coarse-to-fine transformation.

The coarse-to-fine representation is based on our previous
method, incremental fitting [25]. This approach can fit a complex
model in an incremental manner, for achieving the coarse-to-fine
representation. It works efficiently because the upper-triangular
linear system is solved incrementally until the desired fitting accu-
racy can be satisfied.

However this incremental method cannot be directly used for
registration, because at each step it cannot guarantee to obtain a
complete degree form of IP which is necessary for calculating the
transformation matrix (See A). To make the incremental scheme
suitable for registration, we modify the incremental scheme to be
a degree-by-degree incremental manner; that is, it increase with
an integral degree at each step.

Then our registration can be conducted through a coarse-to-fine
transformation. As shown in Fig. 2, transformation is carried out at
each step after the degree is increased. Each transformation starts
with the position obtained from the result of lower IP at previous
step, and stops at the position when the registration residual is
small enough. The approach can described by the following
algorithm.
Fig. 12. Pose estimation for phantom ATS514. First row: initial position; Second row: fin
Algorithm 1. Algorithm: Coarse-to-fine registration
al
(1)
positio
Input: given source model S and target model T,

Output: transformation parameter p

Initialization: set pi with null rotation and translation,
(2)
 Fitting S with the ith degree IP fi;

(3)
 Updating coefficient as: ai V(pi)ai;

(4)
 Estimating pi by the registration between fi and T;

(5)
 If the desired fitting accuracy can be satisfied, then stop;
otherwise, increasing degree as: i i + 1 and goto (2)
4. Experimental results

In this section, we report results of experiments dealing with
some synthetic data sets to evaluate the method on computational
performance. All the experiments were implemented in Matlab 8
combined by C++ code with a PC having an Intel core 2 CPU,
2.4 GHz, and 2 GB memory.

4.1. Registration for general case

4.1.1. Globally overlapped registration
In the experiments of registration for general case, we first test

the robustness and accuracy for global overlapped registration
using the 3D shape models shown in Fig. 7, where the source mod-
els are shown in gray and the target models are shown in green;
we added Gaussian noise to the source model with standard devi-
ations 0.01; and we initially rotated the target model by 30� to each
axis, and translated by unit 2 along the X and Y-axis. Note, All the
original data sets are regularized by centering the data-set center
of mass at the origin of the coordinate system and scaling it by
dividing each point by the average length from point to origin.

Then we tested three methods for comparison: (i) standard ICP
method [14], (ii) correspondences free methods with single IP
[21,23] and (iii) proposed method. Fig. 8 shows the registration re-
sults for each method.

Through the results in Fig. 8, we can see that, (i) all the results
for ‘‘brain’’ object look acceptable, since the IP fits are stable even
to the high degree, the registration with single IP works well and
(ii) however, for the other two objects, single IP methods perform
worse as losing accuracy with low degree IP, and failure registra-
tion with high degree IP due to the fits of high degree is unstable.
n and Third row: cross-section contour of IP and US image (white points).



Fig. 13. (a) Measuring duck toy. (b) 3D duck model obtained by range sensor.
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Table 1 shows the comparison of registration result. We can see
that although the ICP method always keep highest accuracy, but it
is time-consuming due to the heavy computation for correspon-
dence searching, while the correspondences free registration with
single IP shows the low accuracy and instability in the second and
third cases.
4.1.2. Partially overlapped registration
Second, we synthesized a set of data for testing the performance

on partially overlaps. As shown in Fig. 9, the following four parts of
the bunny object in different colors are registered to the whole
bunny model: the ‘‘head’’ in blue and ‘‘tail’’ in red are cut from
the original point cloud; the ‘‘sparse head’’ in green is generated
by down-sampling 10% of original points and adding Gaussian
noise with standard deviation of 0.1; and ‘‘3D-plane curve’’ part
in pink is selected from the points on the cross-section between
a 3D plane and the bunny object, and added with Gaussian noise
in standard deviation of 0.1. Fig. 9(a) shows the initial position
for registration for each part and (b) shows the finial result ob-
tained by our method.

We show a comparable result based on graph of MSE vs. itera-
tion number in Fig. 10, where two noisy data set of ‘‘sparse head’’
Fig. 14. Pose estimation for duck toy. First row: Relative poses of coarse-to-fine IPs and U
From (a) to (f): IP increases as 2�, 4�, 6�, 8� and 10�.
and ‘‘3D-plane curve’’ are adopted for the registration in Fig. 10(a)
and (b) respectively. The result implies that (i) single IP registration
[21,22] of 6-degree is stable but lose accuracy while the registra-
tion of 10-degree might lead to slow or failed convergence; (ii) in
contrast, our method is often with fast convergence when using
the IP of low degree and with high accuracy when using the IP of
high degree; (iii) compare to the distance transformation method
[16] which requires 100 � 100 � 100 grid in memory for storing
the distance field, IP only needs very small memory for storing sev-
eral coefficients.

A discussion on partially overlapped registration. However, we do
not suggest IP should be applied for the registration of open curves
or surfaces (e.g., the range images captured from different views)
due to the reason: the IP fit of an open curve/surface might infinite
extend in the space if there is no constraint to make it closed,
which may lead the registration to depend on the initial position
guess very much. To illustrate this, a simple example is shown in
Fig. 11 where an IP fit (shown in green curve) is priorly obtained
by fitting to a target model which is close to the blue dots points
(M2’s final position), but it extends much more longer than this
target model in 2D space. Then two source models M1 and M2
starting at red and blue circle points to register to the IP. Although
M2 successfully register to the correct position, M1 got failure re-
sult caused by the influence under the extended extra part of the IP
fit.

4.2. Registration for US image case

Fig. 12 shows pose estimation process for a US image, where the
US images are obtained by measuring phantom ATS514 [32] con-
sisting of the cylinder-like shapes inside in different materials.
Then we use a cylinder-like IP model (2-degree IP shown in red
in Fig. 12)) to register the US images. The initial position is set
as: the cylinder-like IP model crosses the US image plane with an
angle of 85�. In the process the motion of the IP is driven to fit to
the hole-like region in the image.

Fig. 12 shows three US image frames with the same initializa-
tion and in the second row of Fig. 12 the iteration number required
S images at each iteration. Second row: cross-section contour at selected iteration.



Fig. 15. From (a) to (f): same to Fig. 14. Rightmost: registration result shown in different views.

Fig. 16. Segmentation of kidney data from the CT scans and modeling with a 4-degree IP.

Fig. 17. US pose estimation for CT data with 4-degree IP. Cross-section contours of frames are shown in black points.
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and final relative pose are shown. The third row shows the cross-
section contour between the IP and the US plane at the final itera-
tion. For each case, the consumed CPU time is within 30 ms.
4.2.1. Pose estimation for duck toy
Fig. 14 shows another result of the US image pose estimation

where the images are obtained by scanning a duck toy made of
rubber in the cistern shown in Fig. 13 left. The duck model scanned
by 3D range sensor without denoising is shown in Fig. 13 right. Top
rows of Figs. 14 and 15 show the coarse-to-fine IP models and its
relative positions to US images, and bottom rows show the cross-
section contour resulting from the registration at the selected
steps. In both of the cases the consumed CPU time is within
100 ms.
4.2.2. Pose estimation and tracking
The third example is to test by solving a registration problem

between real CT data and a US image. To do this, we first seg-



Fig. 18. Tracking for US image sequence. Cross-section contours of frames are shown in black points.
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mented the CT data to obtain the desired organ object by modern
segmentation methods such as Graph Cut (see Fig. 16). Note, since
the organ object is simple, we model it only by a 4-degree IP as
shown in Fig. 16 right. Finding the relative pose to CT data for a
US image now becomes finding the relative pose to the IP model.

The first example is pose estimation for a single US image
shown in Fig. 17 where we show the registration process with rel-
ative pose and cross-section contour at each selected iteration.

We also tried a tracking problem for a US image sequence by
tracking the position of the kidney object with the above IP model.
Results are shown in Fig. 18, where we show the cross-section con-
tours of IP for selected frames.

5. Conclusions

In this paper, we extend our previous method, correspondences
free registration with single IP model, to a new coarse-to-fine reg-
istration driven by the multiple IPs of incremental degrees. The
better performance is achieved by two aspects: (i) The registration
robustness and computational efficiency are improved by initial
coarse registration with IP of low degree, since no extra IP surface
appears and low cost of transformation for the IP and (ii) the reg-
istration accuracy is improved by IP of high-degree, due to the local
details are representable for the IP.

In general, the proposed method is has the potential for real-
time US image pose estimation because of four main advantages:
(i) IP representation is robust against US image noise. (ii) IP trans-
formation can be performed faster than transformation of data
sets, since the number of data sets is often large extracted from
US images. (iii) Thanks to IP gradient flows, the registration proce-
dure can be performed by simple steepest descent-based minimi-
zation without time-consuming calculation of point-wise
correspondences. (iv) The coarse-to-fine algorithm improves the
robustness and accuracy than single IP registration.
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Appendix A. A symbolical method for IP transformation

A.1. Pure rotation transformation

First, let us explain some notations for polynomial operations
which were first introduced by Taubin and Cooper (see [20]). Let

a coefficient aijk of an IP in Eq. (2) be presented as Uijk

i!j!k!
, and a vector

U½l� ¼ Ul00ffiffiffiffiffiffiffi
l!0!0!
p Ul�1;1;0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðl�1Þ!1!0!
p . . . U00lffiffiffiffiffiffiffi

0!0!l!
p

� �T

be according to the lth form of IP.

An operation on this vector is defined as: U½l;m� ¼ U½l�HUT
½m�, where w

represents the classic matrix multiplication, with the difference
that the individual elements Uijkffiffiffiffiffiffi
i!j!k!
p and Uabcffiffiffiffiffiffiffiffi

a!b!c!
p in each vector are mul-

tiplied as Uiþa;jþb;kþcffiffiffiffiffiffi
i!j!k!
p ffiffiffiffiffiffiffiffi

a!b!c!
p . For example,

U½1� ¼
U100ffiffiffiffiffiffiffiffiffiffiffiffiffi
1!0!0!
p U010ffiffiffiffiffiffiffiffiffiffiffiffiffi

0!1!0!
p U001ffiffiffiffiffiffiffiffiffiffiffiffiffi

0!0!1!
p

� �T

; ðA:1Þ

and

U½1;1� ¼ U½1�HUT
½1� ¼

U200 U110 U101

U110 U020 U011

U101 U011 U002

0
B@

1
CA: ðA:2Þ

In [20], it was pointed out that under a non-singular coordinate
transformation A, e.g., U0½l� ¼ A½l�U½l�, the transformed coefficient ma-
trix is given by

U0½l;m� ¼ A�T
½l� U½l;m�A

�1
½m�; ðA:3Þ

where A[l] is a non-singular hl � hl transformation matrix (assuming
hl be the number of monomial in the lth form), and A[m] is the same.
From this equation, we know that if A[l] and A[m] are given, then a
linear relationship between U0½l;m� and U[l,m] can be found; that is,
the element-wise correspondence can be linearly expressed as

U0ijk ¼
X

b;i;j;k6lþm

aabUijk ¼ aT
aU½lþm�: ðA:4Þ

Then since all of the elements in vector U[l+m] are contained in
matrix U[l,m], and similarly all of the elements in U0½lþm� are con-
tained in U0½l;m�, a new linear correspondence can be constructed be-
tween U[l+m] and U0½lþm� by arranging the necessary elements in the
right order into U0½lþm� as

U0½lþm� ¼ ðU
0
lþm;0;0;U

0
lþm�1;1;0;U

0
lþm�2;2;0; . . .ÞT

¼ ðaT
1U½lþm�; aT

2U½lþm�;aT
3U½lþm�; . . .ÞT ¼ A½lþm�U½lþm�; ðA:5Þ

if the (l + m)th transformation matrix is constructed as:
A½lþm� ¼ ½aT

1;a
T
2;a

T
3; . . .�T.

As a simple example, the elements of U[2]

¼ U200
2 U110 U101

U020
2 U011

U002
2

	 
T
� �

are contained in U[1,1] shown

in (A.2), and the elements of U0½2� are contained in U0½1;1�. From the

equation U0½1;1� ¼ R½1�U½1;1�R
T
½1� (supposing R[1] is a pure rotation ma-

trix), it is easy to find out the relationship of a linear expansion
for the elements, e.g., the first element of U0½1;1� is expanded as:

U0200 ¼ r1U½1;1�rT
1 ¼ r2

11U200 þ 2r11r12U110 þ 2r11r13U101 þ r2
12U020þ

2r12r13U011 þ r2
13U002, where r1 is the first row of R[1] and rij is an

element of R[1]. Then since all the elements in U[1,1] are contained
in U[1], we can find a linear relationship 1

2 U0200 ¼ aT
1U½2�, where

a1 ¼ r2
11 r11r12 r11r13 r2

12 r12r13 r2
13

	 
T is viewed as the first row of
A[2].

Therefore, transformation matrices for different forms can be
calculated in an incremental manner as.
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Algorithm 2. Algorithm
(1)
 Initialization: given A[1];

(2)
 U0½1;1� ¼ A�T

½1�U½1;1�A
�1
½1� �!A½2�;
(3)
 U0½1;2� ¼ A�T
½1�U½1;2�A

�1
½2� �!A½3�;
..

.

(n)
 U0½1;n�1� ¼ A�T
½1�U½1;n�1�A

�1
½n�1��!A½n�.
Here, ? represents constructing the transformation matrix for
the next step, after finding out the linear mapping relationship be-
tween U0½1;l� and U[1,l]. Note if the initial argument A[1] represents
the pure rotation, then A[l] is an orthogonal matrix (see [20]), and
thus Eq. (A.3) degenerates to

U0½l;m� ¼ A½l�U½l;m�A
T
½m�:
A.2. Affine transformation

By using homogeneous coordinates, an IP of n variables in
Euclidean space can be described in projective space by a corre-
sponding homogeneous IP of n + 1 variables. To convert a ternary
(i.e. 3D) IP of degree d

f d
3Dðx; y; zÞ ¼

X
06i;j;k;iþjþk6d

aijkxiyjzk ðA:6Þ

into its homogeneous representation, a new component t = 1 is
added to the 3D IP as

f d
4Dðx; y; z; tÞ ¼

X
06i;j;k;l;iþjþkþl¼d

aijkxiyjzktl: ðA:7Þ

Therefore a homogeneous polynomial corresponding to a 3D IP
of degree d is a form of degree d in a 4D IP. Thus the procedure
mentioned in the last section can be used to transform the homo-
geneous IP (4D IP). The different is that the incremental algorithm
starts from a 4 � 4 affine transformation matrix A[1], e.g., in the
Euclidean case

A½1� ¼
R3�3 t
01�3 1

0
B@

1
CA;

where R3�3 and t are a pure 3D rotation matrix and a translation
vector. As a result, a 3D IP of degree d can be affine-transformed
only by A[d], once it is worked out. Furthermore, the incremental
scheme can be modified for saving the computational cost, e.g.,
for calculating A[9] we can select the incremental order as:

A[1] ? A[2] ? A[4] ? A[8] ? A[9].
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