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A Explanation and Extension of Equation 13

In the derivation of Equation 13, there is an important point that for two random
index t1, t2 ∈ N and t1, t2 ∈ [0, s− 1], we have,

Λ((s− 1)x− t1) · Λ((s− 1)x− t2) = 0, if |t1 − t2| > 1. (1)

Therefore, we can conclude the results as the summation of k-th power of trian-
gular functions and the polynomials P (x) related to neighboring functions.

In order to extend Equation 13 to more general cases, we first begin with
discussing the situation where L > 1. From Equation 13 in the paper, we can
have

z(1) = C + P (x) +

K∑
k=0

s−1∑
t=0

h′
(t;1),k · Λk((s− 1)x− t). (2)

Using the formulation of INR in Sec. 3.2, we have

z(2) = ρ(2)
(
W(2)z(1) + b(2)

)
. (3)

Note that here W and b will not affect the order of Λ(·) in z(1), therefore, we
may simply model z(2) as,

z(2) = ρ(2)(ẑ(1)) = ρ(2)

(
C + P (x) +

K∑
k=0

s−1∑
t=0

h′′
(t;1),k · Λk((s− 1)x− t)

)
, (4)

Where C can be arbitrary value to absorb the constant part. Keep using the
polynomial approximation such that ρ(2)(z) =

∑K
k=0 αkz

k [7], then we can obtain

z(2) =

P∑
p=0

αp

(
C + P (x) +

K∑
k=0

s−1∑
t=0

h′′
(t;1),k · Λk((s− 1)x− t)

)p

. (5)



2 S. Xie et al.

Recall multinomial theorem that for positive integer m and non-negative integer
n,

(x1 + x2 + · · ·+ xm)n =
∑

k1+k2+···+km=n

γ(k1,k2,...km) ·
m∏
i=1

xki
i , (6)

where γ(k1,k2,...km) =
n!

k1!k2!...km! . Consider the inner part in Eq. (5),

(ẑ(1))p =

(
C + P (x) +

K∑
k=0

s−1∑
t=0

h′′
(t;1),k · Λk((s− 1)x− t)

)p

(7)

= Ĉ + P̂ (x) +
∑

p1+p2+...pk=p

η{pk} ·
p∏

i=0

[
Λi((s− 1)x− t)

]pi
. (8)

Notice that here η{pk} is calculated by multiplying some value to γ(p1,p2,...pk),
and Ĉ stands for some constant, P̂ (x) means the polynomials related to neigh-
boring functions. We can see that z(2) is still in a similar form of Eq. (2). Given
the condition that the coefficients of the polynomial used in the approximation
usually decay very rapidly as the order k increases, the rest analysis become the
same as we discussed in the paper. Therefore, adding network depths will not
affect our conclusion.

Then we consider the case of multi-resolution. Let L = 1,M = 2, and s1 =
s, s2 = 2s. The encoded function Ψ(x) becomes

Ψ(x) =

[
s−1∑
t=0

h(t;1) · Λ((s− 1)x− t),

2s−1∑
t=0

h(t;2) · Λ((2s− 1)x− t)

]⊤
. (9)

When G2f R or any other binary masking techniques as in [2,3,5,6] are applied,
we just need to multiply a weighting coefficient for each element in Ψ(x). Then
we have

z(1) = ρ(1)
(
W(1) ·

[ ∑s−1
t=0 h(t;1) · Λ((s− 1)x− t)∑2s−1

t=0 h(t;2) · Λ((2s− 1)x− t)

]
+ b(1)

)
. (10)

Let W(1) = [W1,W2]
⊤, we may further write z(1) as

z(1) = ρ(1)

(
2∑

i=1

Wi ·
i·s−1∑
t=0

h(t;i) · Λ((i · s− 1)x− t) + b(1)

)
, (11)

where the inner part is a linear combination of triangular pulse functions with
resolution of s and 2s. We can still use multinomial theorem to expand ρ(1)(·),
which will finally lead to

z(1) ≈
K∑

k=0

s−1∑
t=0

u(t;k) · Λk((s− 1)x− t) +

K∑
k=0

2s−1∑
t=0

v(t;k) · Λk((2s− 1)x− t)

+
∑

k1+k2≤K

w(t;k1,k2)Λ
k1((s− 1)x− t) · Λk2((2s− 1)x− t).

(12)
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We can see that the main part of z(1) is still a combination of product of trian-
gular functions. Note that here we omit constant and neighboring polynomials
for simplicity.

The Fourier transform of z(1) becomes complicated. Here we only show the
results of Λ(x)·(2x+1), which is the basic scenario of

∑
k1+k2≤K w(t;k1,k2)Λ

k1((s−
1)x− t) · Λk2((2s− 1)x− t) part in z(1). After integral we can obtain,

F [Λ(x) · Λ(2x+ 1)](ω) =

∫ − 1
2

−1

(x+ 1)2e−jωx dx+

∫ 0

− 1
2

(−x2 − x)e−jωx dx

=
1

ω2
(1− e

1
2 jω) +

2

ω3
· (e

1
2 jω + 1)2

j
.

(13)

Similar analysis corresponding to the bandwidth can be conducted as shown in
the paper.

To conclude, extending Equation 13 to additional layers or dimensions in-
creases the complexity of the analysis, but the underlying principles and concepts
remain the same.

A.1 Calculation of Fourier Transform

Recall that the triangular function is defined as Λ(x),

Λ(x) = max(0, 1− |x|). (14)

We can calculate the Fourier transform by the following steps:

F [Λ(x)](ω) =

∫ ∞

−∞
Λ(x)e−jωx dx

=

∫ 0

−1

(x+ 1)e−jωx dx+

∫ 1

0

(−x+ 1)e−jωx dx.

(15)

Let k = −jω, we can obtain:

F [Λ(x)](ω) =
ekx(kx+ k − 1)

k2

∣∣∣∣0
−1

+
ekx(−kx+ k + 1)

k2

∣∣∣∣1
0

=
1

k2
(e−k + ek − 2)

=
1

(−jω)2
(ejω + e−jω − 2).

(16)

Since ejω + e−jω = 2 cosω, we can see that F [Λ(x)](ω) = 2−2 cosω
ω2 .
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The calculation of Fourier transform of Λ2(x) is also similar. Let k = −jω,
we calculate the Fourier transform as,

F [Λ2(x)](ω) =

∫ ∞

−∞
Λ2(x)e−jωx dx

=

∫ 0

−1

(x+ 1)2e−jωx dx+

∫ 1

0

(−x+ 1)2e−jωx dx

=
1

k3
[
ekx(k2(x+ 1)2 − 2k(x+ 1) + 2)

] ∣∣∣∣0
−1

+

1

k3
[
ekx(k2(x− 1)2 − 2k(x− 1) + 2)

] ∣∣∣∣1
0

=
1

k3
(−2e−k + 2ek − 4k)

=
1

ω3
(
−2ejω + 2e−jω

j
+ 4ω).

(17)

Since sinω = ejω−e−jω

2j , we can see that F [Λ2(x)](ω) = 4ω−4 sinω
ω3 .

A.2 Bandwidth of Single Pulse

In this section, we are going to prove ∃η1, η2 ∈ R, and η1, η2 > 0 that make
F [Λ(x)](ω) ≤ η1 · 1

ω2 and F [Λ2(x)](ω) < η2 · 1
ω2 .

For F [Λ(x)](ω), it is very obvious that cosω ∈ [−1, 1], then 2−2 cosω ∈ [0, 4].
Therefore, we just to make η1 ≥ 4 then we shall ensure F [Λ(x)](ω) ≤ η1 · 1

ω2 .
For F [Λ2(x)](ω), we begin by considering the minimum and maximum value

of g(ω) = sinω
ω . We have limω→0 = 1 and limω→∞ = 0. Then we consider,

g′(ω) =
ω cosω − sinω

ω2
. (18)

Note that d
dω (ω cosω − sinω) = −ω sinω < 0, when ω ∈ (0, 1]. Considering

ω cosω − sinω = 0 when ω = 0, we can have g′(ω) < 0 for ω ∈ (0, 1]. Then we
may conclude that the minimum value of g(ω) when ω ∈ (0, 1] is g(1) = sin(1)
when ω = 1. Situations are the same for ω ∈ [−1, 0). As for the case where
ω > 1, it is obvious that g(ω) ∈ (−1, 1) since sin(ω) is bounded by −1 and 1.
Considering g(1) = sin(1) > −1, then we can have g(ω) > −1.

Since F [Λ2(x)](ω) = 4ω−4 sin(ω)
ω3 , it is easy to see that

F [Λ2(x)](ω) =
1

ω2
· (4− 4g(ω)) <

1

ω2
· 8. (19)

Then η2 just need to take the value of 8 to ensure F [Λ2(x)](ω) < η2 · 1
ω2 .
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B Experimental Results

To remind, we test the following methods for the comparative experiments:
BARF [4]: frequency regularization in PE NeRF; L2G-NeRF [1]: local-to-global
camera pose representation; RCPR4 [2]: smooth interpolation instead of linear;
CamP [5]: preconditioners for camera pose and intrinsic parameters.

Scene

Camera pose registration View synthesis quality
Rotation error (◦) ↓ Translation error ↓ (×102) PSNR ↑

BARF L2G- RCPR CamP NGP Mtrf BARF L2G- RCPR CamP NGP Mtrf BARF L2G- RCPR CamP NGP Mtrf
NeRF +G2f R +G2f R NeRF +G2f R +G2f R NeRF +G2f R +G2f R

Chair 0.099 0.117 0.202 0.232 0.185 0.105 0.360 0.449 1.279 1.344 0.689 0.636 31.08 31.01 30.77 38.05 35.01 32.17
Drums 0.045 0.064 0.418 0.449 0.028 0.031 0.276 0.340 4.840 2.575 0.135 0.096 23.90 23.79 19.03 23.17 25.36 23.56
Ficus 0.075 0.180 0.230 1.187 0.043 0.069 0.444 0.849 1.396 3.764 0.204 0.236 26.29 26.21 26.29 18.86 26.98 26.65

Hotdog 0.246 0.253 0.830 3.105 0.128 0.682 1.204 1.273 0.309 1.437 0.745 1.554 34.58 34.59 33.02 32.83 36.89 34.79
Lego 0.076 0.10 0.064 0.164 0.043 0.039 0.300 0.433 0.280 0.884 0.143 0.148 28.32 27.97 32.21 32.33 33.55 29.71

Materials 0.837 0.051 1.156 0.598 0.378 0.028 2.729 0.268 2.789 3.764 2.042 0.094 27.86 27.71 25.09 14.78 27.70 28.65
Mic 0.080 0.093 0.933 0.504 0.041 0.040 0.402 0.372 1.004 1.312 0.124 0.129 31.18 31.03 29.89 33.82 34.32 32.80
Ship 0.074 0.179 0.896 0.431 0.099 0.108 0.341 0.746 1.178 1.344 0.605 0.830 27.54 27.44 30.64 29.84 30.19 27.03

Table 1: Comparative results of the camera pose optimization experiments using
different methods. The data inside row Lego is the data on the paper.

Scene

View synthesis quality

Scene

View synthesis quality
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Mtrf Mtrf Mtrf Mtrf Mtrf Mtrf Mtrf Mtrf Mtrf Mtrf Mtrf Mtrf
w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o

Chair 28.63 27.91 0.949 0.946 0.039 0.039 Bicycle 15.17 11.61 0.278 0.229 0.868 0.880
Drums 17.18 13.69 0.781 0.694 0.216 0.430 Bonsai 12.99 9.95 0.438 0.393 0.687 0.680
Ficus 20.18 21.93 0.865 0.892 0.099 0.072 Counter 15.21 15.73 0.437 0.449 0.657 0.601

Hotdog 27.77 27.15 0.939 0.926 0.065 0.083 Garden 20.33 19.87 0.344 0.368 0.695 0.680
Lego 25.14 25.62 0.899 0.916 0.068 0.063 Kitchen 13.22 12.13 0.385 0.336 0.695 0.680

Materials 22.78 21.73 0.887 0.867 0.040 0.068 Room 19.22 19.04 0.595 0.621 0.493 0.503
Mic 20.83 30.01 0.922 0.971 0.090 0.024 –
Ship 17.62 19.57 0.688 0.732 0.259 0.222 –

Table 2: Quantitative results of few-shot reconstruction on both the NeRF-synthetic
and MipNeRF-360 datasets utilizing Mtrf.
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