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ABSTRACT

In this paper, we present a method for simultaneous artic-
ulation model estimation and segmentation of an articulated
object in RGB-D images using human hand motion. Our
method uses the hand motion in the processes of the initial
articulation model estimation, ICP-based model parameter
optimization, and region selection of the target object. The
hand motion gives an initial guess of the articulation model:
prismatic or revolute joint. The method estimates the joint
parameters by aligning the RGB-D images with the con-
straint of the hand motion. Finally, the target regions are
selected from the cluster regions which move symmetrically
along with the articulation model. Our experimental results
show the robustness of the proposed method for the various
objects.

I. INTRODUCTION

Understanding the articulation of objects is crucial for
robots to manipulate various functional objects. The robot
needs to learn how to use the tools that humans use at home
or in the workplace. For that, the robot needs to understand
movement patterns and ranges in 3D space, the articulation
model, of these objects to manipulate them correctly and to
avoid damages of the object, environment, and robot itself.

Most of the previous works on articulation estimation
utilize visual input: an RGB or RGB-D image sequence.
The image-based method tracks feature points of a moving
object in a 2D space [1], [2], [3] or a 3D space [4], [5]. If
depth information is given, 3D geometric features are useful
[6], [7]. Recently, Deep Neural Network-based approaches
such as CNN for functional estimation [8] or a verbal-guided
approach [9] have also been proposed. Aside from visually
supervised methods, the interactive approach using a robot
arm is an alternative research direction [10], but we consider
the visual supervision for general-purposes.

In addition to the articulation model estimation, the func-
tional segmentation of the object is also important. One of the
popular approaches is a structure-driven method that assumes
the target object is composed of rectangular planes [11]. The
CNN-based approach is also successful in the segmentation
process [8]. Another stream is more closely linked to the
articulation, i.e., tracking and clustering movements. The
point clouds that belong to a functional segment move along
with the same articulation model. Therefore, the segmenta-
tion is performed by tracking 2D feature points [1], [12] or
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(a) (b)

Fig. 1. Articulation and segmentation estimation from RGBD images
with using human’s hand movement. (a) input RGB-D image sequence with
human pose detection by OpenPose [15]. (b) Articulation and segmentation
estimation results.

3D structural feature points [13], [14] and by clustering the
motions of the points.

Some problems with conventional methods are the depen-
dency on textures and distinctive shapes of the object. Since
functional objects are usually textureless and symmetric,
these problems are highlighted especially when using noisy
depth information from optical sensors. In short, robustly
tracking the target regions in 3D space is no easy task.

We consider using human motion while manipulating the
articulated object. The human interacts with the target object,
and the contact point moves according to the articulation
model. Recent CNN development makes it easy and accurate
to detect human motion from RGB or RGB-D images [16],
[17], [15], even in situations with partial occlusions. We can
easily observe the human motion during manipulation and
the target regions at the same time.

In this paper, we propose a method of hand motion-
guided articulation and segmentation estimation from RGB-
D images. The inputs are the RGB-D images of a background
scene and a sequence of manipulation (Fig. 1 (a)). The
outputs are the articulation model and segmentation of the
target object (Fig. 1 (b)). We detect hand motion using a
CNN-based method [15] and utilize it for initial estimation
of the articulation model, weight and constraint for depth
image alignment, and region selection. The proposed method
does not primarily depend on the object shape and textures
since we estimate the initial model from the human body
information, which is characteristic and detectable using
modern CNN-based methods. The experimental results show
the robustness of our method for various objects. The code
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Fig. 2. Overview of our method. The red letter indicates the outputs of our method. The loop indicated by the red arrow is the iterative refinement
process.

is released as an open-source1.

II. OVERVIEW AND NOTATION

A. Overview

We use an RGB-D video that captures a scene of ma-
nipulating the articulated object and an RGB-D image of
background. Figure 2 shows an overview of the proposed
method.

We assume the following conditions:
• Input RGB-D video includes only a manipulation scene,

and the first frame is the start of manipulation.
• Only one person is in the RGB-D video.
• It is known which hand is used.
• Articulation type is either prismatic or revolute as

described in II-B.
First, we estimate the hand motion in 3D space from

RGB images and depth images using CNN-based semantic
segmentation and human pose estimation method. Next, the
articulation type and the initial parameters are estimated from
the hand motion. The alignment is applied to the point clouds
derived from the depth images to optimize the articulation
parameters according to the estimated articulation type. The
segmentation is performed by extracting points which are
symmetric and move according to the articulation model. The
alignment using the segmentation result refines the parame-
ters. The refinement process is shown as the red arrows in
Fig. 2. (In our experiments, we iterate the refinement process
twice)

B. Articulation model

We treat an object as either containing a prismatic joint
or a revolute joint. These joints are the basis of most objects

1https://github.com/cln515/Articulation-Estimation

Revolute jointPrismatic joint

Fig. 3. Example of a prismatic joint and a revolute joint. The prismatic joint
object transformed along the direction t̄. The revolute joint object rotates
around the axis where going through l in the direction n̄

designed for humans. We describe how we express these
joints as follows.

1) Prismatic joint: When a rigid object is linked to a
sliding linkage, in which we call the prismatic joint, the
movement of the object is restricted to make only a linear
sliding movement relative to the linkage (See the left of
Fig. 3). The prismatic joint has only one direction to move
in 3D space. We express the prismatic joint as 2-DoF
normalized 3× 1 vector t̄ indicating moving direction. The
amount of movement of a prismatic object is represented by
a. The unit of a can be any but is a meter in the experiment.
An object moving along the prismatic joint is transformed
by the following 4× 4 matrix;(

I3×3 at̄
01×3 0

)
. (1)

https://github.com/cln515/Articulation-Estimation


where, I3×3 is 3× 3 identity matrix.
2) Revolute joint: When a rigid object is linked to a

rotating linkage, in which we call the revolute joint, the
movement of the object is restricted to only rotation around
an axis with a certain movement range relative to the linkage
(See the right of Fig. 3). The revolute joint can be expressed
as a line in 3D space. We express the revolute joint as a total
of 4-DoF parameters: 2-DoF unit vector n̄ of the rotation axis
and 2-DoF vector l where the rotation axis passes through
and holds n · l = 0. The amount of movement of a revolute
object is represented by θ, and the unit is the radian. An
object moving along the revolute joint is transformed by the
following 4× 4 matrix;(

R(θ, n̄) l−R(θ, n̄)l
01×3 0

)
. (2)

where, R(θ, n̄) is 3 × 3 rotation matrix indicating rotation
by θ around n̄:

R(θ, n̄) = cos θI + (1− cos θ)n̄n̄> + sin θ[n̄]×, (3)

where [·]× is 3× 3 skew symmetric matrix.

III. METHODLOGY

A. Initial articulation estimation

We recognize the articulation type and estimate the initial
articulation parameters from the hand motion during manip-
ulation in the 3D space. To detect the hand position in RGB
images, we use hand keypoint detection [18] implemented in
OpenPose [15]. The hand keypoint detection offers a detailed
hand pose as a set of 2D points and it needs a bounding
box around the hand area. The bounding box is offered
from OpenPose when the entire body is pictured or CNN-
based hand detection implementation [19] trained using the
EgoHands dataset [20]. After obtaining a hand pose in 2D
space, we compute the 3D points of the hand points using
the depth map and compute the 3D centroid of the hand.

After estimating the hand motion, we fit a circle to the
motion path for recognizing the articulation type. We use
RANSAC and a non-linear optimization method to fit the
circle to the noisy points. Counting the number of inlier
points is not practical since a straight line can be considered
as a part of a large circle. Therefore, we use the range of the
movement angle for type recognition. If the range is smaller
than a predetermined threshold value (we set the value to 30
degrees), we recognize the target object to be prismatic and
perform the line fitting.

We estimate the initial articulation parameters from the
result of the fitting. The line fitting computes 4-DoF param-
eters as explained in Sec. II-B.1. The circle parameters are
6-DoF parameters consisting of the radius r (1-DoF), center
point c (3-DoF) and a normal vector of the circle n̄ (2-DoF).
In the case of the prismatic joint, the direction of the fitting
line becomes the direction t̄. In the case of the revolute joint,
the axis passes through c in the direction n̄. Since l · n̄ = 0
holds, the position parameter of the axis l is;

l = c− (c · n̄)n̄. (4)

B. Articulation parameter optimization

The articulation parameters are optimized by aligning the
point clouds of the manipulated object through the sequence.
Since the point cloud sequence includes both the static
background and the dynamic objects, the alignment of the
manipulated object needs to ignore the effect of the static
background. We assume that points nearby the detected hand
are likely to belong to the manipulated object. Therefore, we
introduce a weighting scheme on 3D points using the hand
position; we set the weighting parameter according to the
distance from the hand to each point.

The parameters in the optimization process are the artic-
ulation parameters and the amount of movement of object
between each frame. For simplicity, let J be the articulation
parameters and mi be the amount of movement of the
manipulated object in i-th frame. In the case of prismatic
joint, J is the moving direction t̄, and mi is the distance
parameter a in Sec. II-B.1. In the case of revolute joint, J is
the rotation axis n̄ and l, and mi is the amount of rotation
θ in Sec. II-B.2.

We align the point clouds of multiple frames simultane-
ously by a constrained ICP. Let pk be k-th points in i-th
frame and qk be the closest point of pk in j-th frame. Con-
sidering constrained ICP alignment with only two frames,
i-th and j-th, the error is described as follows:

εi,j =
∑
k

wkw
′
k|((Ri(J ,mi)pk) + ti(J ,mi))−

((Rj(J ,mj)qk) + tj(J ,mj))|,
(5)

where Ri is the rotation matrix constrained by the joint
parameters J with the amount of movement of i-th frame
mi, and ti is the translation vector as well. wk, w

′
k are the

weighting parameters according to the distance from the hand
as described above and we define them as follows:

wk =


(

1
C+|pk−hi|

)2
(hand position is detected)

1 (otherwise)
(6)

w′k =


(

1
C+|qk−hj |

)2
(hand position is detected)

1 (otherwise)
(7)

where hi is hand position in i-th frame and C is a con-
stant value empirically determined. The optimal parameters
Ĵ , (m̂1 . . . m̂N ) are obtained by simultaneously minimizing
the error as follows:

Ĵ , (m̂1 . . . m̂N ) = arg min
J,(m1...mN )

∑
i,j

εi,j , (8)

where N is the number of frames.

C. Segmentation

We segment the points in the sequence of the point
clouds into the manipulated object and the background. After
aligning the point clouds as described in the previous section,
the areas that move symmetrically about the articulation
axis overlap each other, as shown in Fig. 4 (a). We first
extract the points in these areas as the potential regions of



(a) (b)

Fig. 4. (a) Point clouds after the alignment of the manipulated object. (b)
Extracted symmetric objects.

Fig. 5. Prismatic object alignment. After aligning the brown area, gray
areas are also detected as a symmetric area because of these overlap between
before and after the movement.

the manipulated object, as shown in Fig. 4 (b). Next, since
the extracted points include ambiguous regions, we select
the regions of the manipulated object by using a clustering
method and the hand position by assuming that the object is
connected to the hand that manipulates it.

1) Initial points extraction: We consider that the points
of the manipulated object move symmetrically according to
the articulation model through the frames. For example, in
the case of the prismatic drawer, the points on the drawer’s
surface move in parallel along the direction of movement.
In the case of the revolute drawer, such as a door, the
points move symmetrically about the axis of rotation. Such
areas overlap with each other in the sequential frames after
alignment in the previous section. In other words, the error
between the corresponding points is small in these areas.

We obtain the points in the overlapping areas using the
alignment error. If the distance from a point in each frame
to the closest point in the background frame is less than
a threshold value, we extract the point as the potential
manipulated object’s point. The threshold value depends on
the sensor accuracy. In our experiments, after calculating
distances from the background frame to each frame, we used
the median distance and set the threshold to 5cm for the first
time and 3cm for the subsequent iterations in the refinement
process described later in Sec. III-D.3.

2) Region selection: The extracted point cloud contains
confidence and ambiguous regions. The confidence region
really moves according to the articulation model. On the
other hand, the ambiguous region looks moving according to
the model, but it is not easy to identify it to be background
or target. For example, in the case of the prismatic joint,
a region like a floor in Fig. 5 whose surface normal is
perpendicular to t̄ is ambiguous. In the case of the revolute

Fig. 6. Revolute object alignment. After aligning the brown area, gray
areas are also detected as a symmetric area because of these overlap between
before and after the movement.

Fig. 7. Example of symmetric areas of a revolute joint. A part of the
floor is detected as a symmetric area due to its symmetric structure on the
rotational axis of the chair.

joint, a region like a ceiling or a floor in Fig. 6 that
is symmetric about the rotation axis is also ambiguous.
Figure 7 shows an example of the symmetric area including
ambiguous objects.

Therefore, we need to select points of the manipulated
object from the initially extracted point cloud. The confi-
dence region can be identified by the surface normal and
the articulation model. The surface normal of the point in
the confidence region is the same direction to t̄ in the case
of the prismatic joint. In the case of the revolute joint, the
surface normal moves along the tangential direction about the
rotation axis. We use the hand information again to select
the points from ambiguous regions by assuming that the
manipulated object connects to the hand. We apply Euclidian
clustering [21] on the extracted point cloud and select the
clusters nearby the hand position in the first frame with a
threshold distance.

D. Refinement with a hand soft constraint

We refine the articulation parameters by aligning the
segmented point clouds. Since the first alignment process in
Sec. III-B uses all points, including non-manipulated objects,
the estimated parameters still have room for improvement in
the accuracy. On the other hand, in the case of a feature-less
object, the segmented point cloud does not have distinctive
features for alignment. Therefore, we introduce a soft con-
straint by the hand in the refinement process.

1) Geometric error term: We define the geometric error
by the distance of the corresponding points between the



Fig. 8. Alignment ambiguity in a flat prismatic object. Consider the
case where the flat drawer moves along with the black arrow, however
the estimated direction is the red. The alignment performs with even the
wrong estimated direction by treating the non-overlapped parts as outliers
of alignment

segmented points in the first frame and the corresponding
points in i-th frame. The cost of the geometric error cgeo
is defined as the same with Eq. 8 with constant weights
wk = w′k = 1 as follows:

cgeo =
∑
j

ε0,j (9)

Note that ε0,j includes the error of only the segmented points.
2) Hand soft constraint: We introduce soft constraint of

hand to support the alignment of relatively feature-less sur-
faces and to eliminate the ambiguous regions. For example,
in the case of prismatic objects as shown in Fig. 8, the
alignment error in the region where the surface is almost
flat in the direction parallel to t̄ becomes small even the
corresponding points are wrong by the sliding effect.

We use the 2D positions of the hand joints which are also
given by the hand-keypoint detector. The soft constraint of
hand is the summation of the geometric error of each joint
position. The cost of soft constraint of hand chand is,

chand =
∑
l

∑
j

α0,lαj,l |h0,l − ((Rjhj,l) + tj)| , (10)

where hj,l is the position of l-th hand joint in j-th frame,
and αj,l is its confidence value. The confidence value is also
given by the detector.

3) Optimization: Finally, the parameters are optimized by
minimizing the joint cost described as follows:

Ĵ , (m̂1 . . . m̂N ) = arg min
J,(m1...mN )

1

n
cgeo + λchand, (11)

where n is number of points in the segmented region, and λ
is the weight value which is empirically given to adjust the
effect of the hand constraint. After the parameter refinement,
the segmentation result is also refined by the same process
described Sec. III-C.

IV. IMPLEMENTATION

The scanned person and apparent static objects are re-
moved from point clouds to reduce the number of points
for computational efficiency and improve the robustness. We
apply RCNN-Mask [22] to RGB images to find the region
of the person and remove the points in the region. The static

Static camera Static camera

Background pointcloud

Rotational object

Alignment

Fig. 9. We remove points in a frame with a shallower angle of incidence
from the camera for median computation of distance to the nearest points
in each frame.

objects can be removed by comparing the depth values in
each pixel of the background frame and the manipulation
sequence.

We use a downsampled point cloud in the initial estima-
tion process for computational efficiency. We also limit the
number of frames up to 15 frames. If the number of frames is
higher than that, we sub-sample 15 frames from the original
sequence in which the hand positions are correctly detected.
We use kd-tree [23] for searching nearest neighbor points and
Voxel Grid Filter to query in the downsampled kd-tree. After
the first segmentation, we use all points for the constrained
ICP.

In the segmentation process, we also use surface normal
information for filtering points out. The accuracy of depth
measurement gets worth when an incident angle of light is
small. We derive the symmetric region with filtering out the
points in a frame with a smaller incident angle from the
camera (See Fig 9).

We also have several empirically determined values. We
set C = 0.2 in Eq. 6 and λ = 0.01 in Eq. 11. We used
the implementations in [24] for the Euclidean clustering for
segmentation, Voxel Grid Filter, and kd-tree. We also used
ceres-solver [25] for the non-linear optimization.

V. EXPERIMENTAL RESULTS

We first validate the accuracy of the estimated articulation
model. We also demonstrate that the proposed method works
well in various scenes. We used Microsoft Kinect v2 [26] as
the RGB-D input device in all experiments. The length of the
original input RGB-D sequences was around 10-40 frames.

A. Accuracy evaluation

We used a flat prismatic object for validating the effect
of soft hand constraint. In addition to this, we demonstrate
that the proposed method estimates the articulation model
and segmentation of a revolute joint object accurately.

1) Validation of hand soft constraint: We used a flat
drawer and pasted ArUco code on it for the comparative
evaluation. Figure 10 shows the estimation result of hand
motion fitting (green), ArUco code (yellow), final estimation
result with soft hand constraint (red), and without it (light
blue). Since the ArUco code detection works well, we can



Fig. 10. The articulation and segmentation estimation result with a flat
drawer. (Green) Line fitting with the hand positions. (Yellow) Estimation
using the trajectory of ArUco code corners, the corner trajectories are also
shown as the yellow points. (Blue) The estimation result without hand soft
constraint, (Red) The estimation result with hand soft constraint. Red points
are the segmentation result with our method.

assume that the result of the ArUco code is a reference
result in this case. Comparing to the ArUco code result,
the constrained ICP with hand motion is almost in the
same direction, whereas the hand motion fitting and original
ICP show an apparent error in the direction. The result
indicates that the human hand information works well for
the articulation model estimation.

2) Accuracy evaluation in revolute object: Figure 11
shows the result of the revolute articulation estimation. In this
case, we manually give the reference result by pointing out
the hinges (right blue). The estimation result of hand motion
fitting (green), ArUco code (yellow) and final segmentation
result with hand soft constraint (red) are shown in the figure.
The result by ArUco (yellow) has a more significant error due
to the distortion when the incident angle becomes small. The
circle fitting on the hand motion (green) still has the error
in position. After the refinement, the articulation parameters
(red) have been clearly improved.

B. Other results

Figure 12 shows the results of several scenes, including
both prismatic or revolute objects. Only for the prismatic
object in the top-right in Fig. 12, we applied the hand region
detector [19] since there was not enough body area in the
picture for detecting hand positions by OpenPose. One of
the advantages of the proposed method is robustness. In the
initial estimation by the hand motion, the proposed method
correctly identified the articulation type of the objects. In all
scenes of Fig. 12, the final segmentation results demonstrate
that our method correctly estimated the manipulated object’s
region without ambiguous regions.

Fig. 11. The articulation and segmentation estimation result with a shelf
door. (Light blue) The parameters manually calculated from the hinge
structure. (Green) Line fitting with the hand positions. (Yellow) Estimation
using the trajectory of ArUco code corners, the corner trajectories are also
shown as the yellow points. (Blue) The estimation result without hand soft
constraint, (Red) The estimation result with hand soft constraint. Red points
are the segmentation result with our method. (White) movement range

VI. CONCLUSION

In this paper, we presented a hand-motion-guided artic-
ulation model estimation and segmentation method. The
proposed method uses the hand position information for
the initial articulation estimation, the model refinement by
a constrained ICP alignment, and selecting the region of the
manipulated object from ambiguous regions. The experimen-
tal results demonstrate that our method correctly estimates
the articulation model and segmentation of manipulated
objects. For future work, we will extend the method and
apply it for articulated objects with more degrees of freedom.
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