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Abstract— This paper proposes a targetless and automatic
camera-LiDAR calibration method. Our approach extends the
hand-eye calibration framework to 2D-3D calibration. The
scaled camera motions are accurately calculated using a sensor-
fusion odometry method. We also clarify the suitable motions
for our calibration method.

Whereas other calibrations require the LiDAR reflectance
data and an initial extrinsic parameter, the proposed method
requires only the three-dimensional point cloud and the camera
image. The effectiveness of the method is demonstrated in
experiments using several sensor configurations in indoor and
outdoor scenes. Our method achieved higher accuracy than
comparable state-of-the-art methods.

I. INTRODUCTION

Sensor fusion of the camera and LiDAR has been widely

studied in the robotics and computer vision fields. The

multimodal systems enable the better performances in the ro-

bustness and accuracy in many vision problems than single-

modal systems. One of the successful studies of sensor fusion

is the three-dimensional scanning systems [1], [2], [3], [4].

2D-3D sensor fusion provides reliable 3D point clouds with

color information. The system also achieves accurate motion

estimation while reconstructing 3D points.

The extrinsic calibration of multimodal sensors is one of

the critical issues in 2D-3D sensor fusion systems. The error

in the extrinsic parameters causes the distortions in between

2D and 3D images. The extrinsic parameters are usually

estimated by using target cues or by manually associating

2D points on the image with 3D points on the point cloud.

Unfortunately, accurate calibration by manually establish-

ing the correspondences is laborious because it requires

multiple matches. Automated methods such as those de-

veloped in [5], [6], [7] use targets that are detectable on

both 2D images and 3D point clouds. However, as prepared

targets must be detectable by both the camera and LiDAR,

these methods are impractical and undesirable for on-site

calibration. Some recent studies have proposed targetless au-

tomatic 2D-3D calibration [8], [9], [10]. These methods use

the mutual information for evaluating the distance between

2D and 3D images. As each sensor collects multimodal

information, the calibration result depends on the modality

among the sensors. The motion-based approaches use the

relative motions that are separately estimated for single
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Fig. 1. Top: Proposed motion-based 2D-3D calibration. The LiDAR motion
is estimated by ICP algorithm. The camera motion is initially estimated by
feature-point matching, then estimated to scale by a sensor-fusion system.
Bottom: Colored scan captured by HDL-64E. The texture is taken by
Ladybug 3 and corrected by our calibration result.

modalities as with the hand-eye calibration [11]. The motion-

based 2D-3D calibration obtains the camera motion from the

2D images alone; the translation of the camera motion is

without scaling. Accordingly, the precision of the extrinsic

parameter largely depends on the motion error in the hand-

eye calibration. Although the scale and extrinsic parameter

can be simultaneously calculated from multiple movements,

the scaleless camera motion deteriorates the accuracy of the

hand-eye calibration.

The present paper proposes an automatic targetless cal-

ibration method between a fixed camera and LiDAR. The

proposed method employs a motion-based approach (see

Fig. 1). The method estimates the relative motions of the

sensors separately for several movements and estimates the

calibration parameters. The extrinsic parameter is numeri-

cally solved from the sensor motions which are calculated

in the same modality. To solve the scale issue and achieve

accurate camera translation, our method estimates the cam-

era motion using sensor-fusion odometry [1], [2], [3], [4].

Though the sensor fusion odometry gives accurate camera

motions with scale, it requires known calibration parameters.



Therefore, it first obtain an initial extrinsic parameter from

the LiDAR motions and the ”scaleless” camera motions.

Next, the camera motions are recalculated using the scale

determined by the initial extrinsic parameter and the point

cloud from the LiDAR. The extrinsic parameter then recal-

culated using the updated motions. The camera motions and

the extrinsic parameter are repeatedly calculated until the

estimation converges.

The contributions of this paper are summarized below.

• To our knowledge, the estimation of camera motion

estimation in a sensor fusion system has not been

previously applied in 2D-3D calibration.

• We determine the sensor motion that optimizes the

effectiveness of the calibration method.

• The only inputs are the RGB image from a camera

and the three-dimensional point cloud from a LiDAR.

No additional data such as the LiDAR reflectance or

initial value of the extrinsic parameter are required.

The method estimates the extrinsic parameter more

accurately than other methods from a small number of

motions.

Our proposed method requires that the measurement

ranges of the camera and the LiDAR overlap. To align the

scans for the LiDAR motion estimation, the LiDAR’s mea-

surement range must also be two-dimensional for securing

overlap.

II. RELATED WORK

Our work is related to targetless automatic 2D-3D calibra-

tion and hand-eye calibration.

A. Targetless multimodal calibration

Targetless automatic 2D-3D calibration methods generally

use the mutual information in the image and the point cloud.

For example, portions that appear as discontinuous 3D shapes

will probably appear as edges on an RGB image. There-

fore some calibration methods align this three-dimensional

discontinuous portion with the 2D edges [9], [10]. Viola

et al.[12] proposed a multimodal alignment method based

on mutual information (MI), which has been developed

mainly for medical imaging purpose. More recently, MI-

based 2D-3D calibration methods that evaluate the common-

ality between LiDAR and camera data have been proposed.

Among the indicators for MI evaluations are the reflectance

- (gray-scale intensity) [8], surface normal - (gray-scale

intensity) [13], and multiple evaluation indicators, including

the discontinuities in LiDAR data and the edge strengths in

images [14]. A gradient-based metric was proposed by Taylor

and Nieto [15].

The above methods align 3D point clouds to 2D images

by projecting the points in the 3D space onto a 2D surface.

Alternatively, texturing methods construct a stereo image

from camera images taken at multiple sites. The 3d structure

is then reconstructed from the images and aligned with a

3D point cloud. The authors of [16] developed a method

that computes the extrinsic parameter between the LiDAR

and the camera for texturing a dense 3D scan. The method

uses the anisotropic error distribution but the accuracy of

the alignment is deteriorated because of the sparse stereo

reconstruction.

B. Hand-eye Calibration

In hand-eye calibration, the position and orientation of the

sensor are changed and the extrinsic parameter is calibrated

using the motions observed by each sensor. Let A and B be

the position and orientation changes observed by two fixed

sensors, and let X be the unknown relative position and

orientation between the sensors. Then A and B are related as

AX = XB (upper panel of Fig. 1). Solving this expression

for X provides the extrinsic parameter between the two

sensors [17], [18]. Furthermore, as the sensor is influenced

by noise, the calibration is accompanied by estimation of the

sensor bias using a Kalman filter [19], [20].

Heng et al.[21] proposed a method that calibrates the tran-

sitions between four cameras mounted on a car using visual

odometry. Taylor and Nieto [11] obtained the motion of a

sensor in a 2D-3D calibration and estimated the extrinsic pa-

rameter combining the motion and the multimodal alignment.

Although their method achieves highly accurate calibration,

it estimates a scaleless translation from the camera images,

which reduces the accuracy of the camera motions. This

deteriorate the accuracy of the extrinsic translation parameter

particularly for a small number of motions.

III. METHODOLOGY

Our method is overviewed in Fig. 2. The proposed method

is divided into two main steps. The initialization phase

estimates the extrinsic parameter from the LiDAR motions

{Rlid, tlid} using iterative-closest-point (ICP) alignment and

from the camera motions {Rcam, t̄cam} using feature-point

matching. The iterative stage alternates between updating

the extrinsic parameter R̂, t̂ and the scaled camera motions

{R̂cam, t̂cam} through sensor-fusion odometry until the con-

vergence condition is reached.

A. Initial calibration parameter estimation

1) LiDAR motion estimation: The LiDAR motion is es-

timated by a high-speed registration method in the ICP

algorithm, which searches for corresponding points in the

gaze direction [22]. Meshes on the point clouds are created

in advance by projecting a sequence of points onto a two-

dimensional plane and applying Voronoi splitting. When

aligning the scans, the threshold distance between corre-

sponding points is initially set to a large value, and the outlier

correspondences are eliminated while gradually decreasing

the threshold. Assuming that two point clouds are scanned

at sufficiently close positions for ICP alignment, the initial

position of the ICP alignment is the center of the two LiDAR

coordinates.

2) Camera-motion estimation: The initial motion of the

camera is estimated by standard feature-point matching.

We first extract the feature points from two images using

the AKAZE algorithm [23], calculate the descriptors, and

make the matchings. From the matchings, we calculate the
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Fig. 2. Overview

initial relative position and orientation between the camera

frames using a 5-point algorithm [24] and the random sample

consensus algorithm [25]. Let uj and vc
j be the j th matched

pair of feature points in the first and second image of the i th

motion (expressed as a unit vector from the camera center).

vc
j is expressed in the coordinate frame of the second camera.

After obtaining the initial relative position and orientation of

the camera motion Ri
cam, t̄

i
cam by linear computation, the

camera motions are optimized by minimizing the projection

error using an angle error metric with an epipolar plane [26]:

Ri
cam, t̄

i
cam = arg min

Rcam,t̄cam

∑

j

u⊤
j [̄tcam]×Rcamvc

j

|[t̄cam]×Rcamvc
j |

(1)

where [·]× is a skew-symmetric matrix expressing the

crossproduct operation.

3) Extrinsic calibration I: To obtain the relative position

and orientation between the two sensors from the initially

estimated motions, we extend the normal hand-eye calibra-

tion to include the scale estimation of the camera motion.

The series of camera motion Ri
cam, t̄

i
cam and LiDAR motion

Ri
lid, t

i
lid satisfy the following relationships [17]:

Ri
camR = RRi

lid (2)

Ri
camt+ sit̄

i
cam = Rtilid + t, (3)

where si is the scale factor. The extrinsic calibration pa-

rameter R is initially estimated from the following equation

derived from Eq. 2:

ki
cam = Rki

lid (4)

where ki
cam and ki

lid are rotational axes of rotation matrices

Ri
cam and Ri

lid, respectively, and t is solved through Eq. 3.

R is linearly solved from the series of ki
cam,ki

lid by singular-

value decomposition. However, the rotation solution requires

at least two position and orientation transitions, and the series

of transitions must include rotations in different directions.

R is then nonlinearly optimized by minimizing the following

cost function:

R = arg min
R

∑

i

∣

∣R
i
camR−RR

i
lid

∣

∣ . (5)

After optimizing R, t and si are obtained by constructing

simultaneous equations and solving them by the linear least-

squares method.

B. Iteration of camera-motion estimation and sensor cali-

bration

The sensor-fusion system enables highly accurate esti-

mates of the scaled camera motion [1], [3] even when

the base line is short. In contrast, estimating the relative

translation between two camera images is inaccurate without

scaling. Having estimated the extrinsic parameter, we can

compute the scaled camera motion R̂cam, t̂cam, and update

R̂, t̂ by the extrinsic calibration II. The extrinsic parameter is

then optimized by repeatedly alternating the camera motion

and extrinsic parameter estimations until convergence.

1) Camera-motion estimation with range data: This step

first constructs the 2D-3D correspondence for computing

R̂cam, t̂cam. Figure 3 shows the construction of the 2D-

3D correspondence. The inputs are a point cloud in LiDAR

coordinates, two camera images taken from the positions of

cameras 1, and 2, and the extrinsic parameter. First, the point

cloud is projected onto the image from camera 1. A certain

point in the point cloud with local LiDAR coordinates pl

is transformed into camera coordinates and projected onto a

two-dimensional plane by a projection function Proj(p) =
p

|p| . The pixel onto which pl is projected is expressed as

u = Proj(Rpl + t), (6)

where u is the vector heading from the center of camera 1

to the corresponding pixel (See Fig. 3 (a)). The pixel onto

which p is projected is then tracked from camera image 1

to image 2 using a KLT tracker [27]. Let vc be the vector

heading from the center of camera 2 to the tracked pixel,

where c indicates that the vector is expressed in the local
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Fig. 3. (a) Construction of the 2D-3D correspondences. The range
data are projected onto first image. The pixels with depth are tracked
to second image. (b) Example of the construction process of the 2D-3D
correspondences.

coordinates of camera 2. The point p and vector vc of the

2D-3D correspondences are then constructed.

After constructing the 2D-3D correspondences, the relative

position and orientation of camera 1 with respect to camera

2 can be optimized by minimizing the projection error. Let

(vc
j ,p

l
j) be the j th 2D-3D correspondence in the i th motion.

The position and orientation transition R̂
i

cam, t̂
i

cam between

the cameras is optimized by minimizing the following angle-

metric cost function

R̂
i

cam, t̂
i

cam =

arg min
Rcam,tcam

∑

j

∣

∣

∣
vc
j × Proj(R⊤

cam((Rpl
j + t) − tcam))

∣

∣

∣
.

(7)

The first iteration implements a generalized perspective

3-point algorithm on the initial values of R̂cam and t̂cam
[28]. The estimation result of the previous iteration is used

in subsequent iterations.

2) Extrinsic calibration II: After updating the camera

motions R̂cam, t̂cam, the method updates the extrinsic

parameter R̂, t̂. In each iteration, R̂cam and t̂cam are

solved both linearly and nonlinearly. The camera and LiDAR

motions are related as follows [17]:

R̂
i

camt̂ + t̂
i

cam = R̂tilid + t̂, (8)

In the nonlinear optimization step, R̂ is optimized by Eq. 5

and t is optimized by the following cost function based on

u

 Camera 1

p

 Camera 2

v

Fig. 4. Case of an error in the localized range data in camera 1 coordinates

Eq. 8:

t̂ = arg min
t

∑

i

∣

∣

∣
(Ri

camt + ticam) − R̂tilid + t)
∣

∣

∣
. (9)

IV. OPTIMAL MOTION FOR 2D-3D CALIBRATION

When determining the most suitable sensor motion for the

calibration, we must consider the influence of the extrinsic

error on the camera-motion estimation. During the repeated

alternating estimation of the extrinsic parameter between the

sensors and the camera motion, extrinsic parameter error

in the camera motion is inevitable. As the motion and

extrinsic parameter estimates also depend on the measured

environment and the number of motions, precise convergence

conditions are difficult to obtain. However, the motions will

likely converge the estimation are determinable.

A. Camera motion estimation

Let us consider the conditions of successful camera-

motion estimation when the extrinsic parameter is erroneous.

We associate the depth information to the camera images.

vc and pl is transformed to v and p in global coordinates,

respectively. p, u, and v are aligned in the same coordinate

system. Define d as the distance from camera 1 to p. During

the projection step, the LiDAR point cloud is transformed

by the extrinsic parameter, and becomes localized in the

coordinate system of camera 1. However, as the extrinsic

parameter contains error, the localization is incorrect and the

depth associated with u includes an error ∆d.

This depth error shifts the estimated position of camera 2

from the ground truth when minimizing the projection error.

At the correct position of camera 2, the projection error is

given by

e =

∣

∣

∣

∣

v ×
(∆d + d)u− tcam

|(∆d + d)u− tcam|

∣

∣

∣

∣

. (10)



From Fig. 4, v is given by

v =
du− tcam

|du− tcam|
. (11)

Substituting Eq. 11 into Eq. 10, we obtain

e =

∣

∣

∣

∣

∆d(tcam × u)

|du− tcam||(∆d+ d)u− tcam|

∣

∣

∣

∣

. (12)

Now, to estimate the extrinsic parameter accurately, we

should estimate the ideal camera motion during the actual

movement of the camera. In other words, the estimated

orientation and position of camera 2 should approach Rcam

and tcam, respectively. This requires The projection error

becomes vanishingly small (e → 0) when estimated camera

2 is localized on ground truth. From Eq. 12, followings is

said:

• According to Eq. 12, reducing tcam reduces e even

when the extrinsic parameter contains error. That is, the

smaller the moving distance of the camera, the more

accurate is the estimation becomes. In other words,

when tcam is small, the estimated position of camera

2 will more likely lie at the periphery of the ideal site.

In subsequent extrinsic parameter estimations, the ex-

istence probability of the calibrated extrinsic parameter

will also sharply distribute around the true value.

• Decreasing ∆d also reduces the projection error. ∆d

can deviate under certain points. For example, when

there are depth discontinuity parts nearby or when the

incident angle from the camera is shallow. To avoid

these problems, the calibration environment should be

surrounded by smooth terrain as possible.

B. Extrinsic parameter estimation

We next consider how the error in the estimated motions

influences the extrinsic parameter calibration. Ignoring the

rotation error for simplicity, we assume errors in the trans-

lations of the camera motion and the extrinsic parameter in

Eq. 8. Let ecam and e be the error in tcam and t, respectively.

Then we have

Rcam(t+ e) + tcam + ecam = Rtcam + t+ e. (13)

The difference between Eqs. 13 and 8 is

ecam = (I −Rcam)e. (14)

We assume that Eq. 14 describes a single unit. When the

rotation Rcam is small, the translation errors satisfy |ecam| <
|e|. This indicates that the error of the camera motion is

amplified and propagates to the extrinsic parameter.

If the error propagated when estimating the extrinsic

parameter from the camera motions does not exceed the

error reduction when estimating the camera motion from

the distance image, the proposed method will improve the

accuracy of the relative position and orientation. Therefore,

to reduce the propagated amount of error in the relative

position and orientation estimation, one can rotate the camera

motion through a larger angle. Sampling a plurality of

motions (as many as possible) will also ensure a robust

Fig. 5. Indoor and outdoor calibration scene taken by Ladybug 3

Fig. 6. Sensor configurations. (a)Imager 5010C and Ladybug 3, (b)HDL-
64E mounted with Ladybug 3

extrinsic parameter estimation. When rotation the camera

motion, one must realize that if the image appearance

changes significantly, the accuracy of the motion estimation

can degrade. One must therefore account for this possibility.

Although the proposed method is applicable to perspective

cameras, omnidirectional cameras are advantageous because

they can secure a common field of view even when rotated

significantly.

V. EXPERIMENTAL RESULTS

The experimental calibrations were conducted in indoor

and outdoor environments (see Fig. 5). Images and point

clouds were collected by a panoramic LiDAR, a multibeam

LiDAR, and an omnidirectional camera. As the comparison

method, we selected image-based calibration using scaleless

camera motions, as applied in [11]. This calibration, hereafter

referred to as ”Scaleless”, is the initialization output in Fig. 2.
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Fig. 7. Rotation error versus the number of motions. Blue line: Scaleless,
Red line: Our method.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5

Tr
an

sl
at

io
n 

er
ro

r 
(m

) 

Number of motion  

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

1 2 3 4 5

Tr
an

sla
tio

n 
er

ro
r 

(m
) 

Number of motion  

Fig. 8. Translation error versus number of motions. Blue line: Scaleless,
Red line: Our method. Bottom panel shows the result of our method only.

As the other comparison methods, we chose calibration

by Manual correspondence acquisition and calibration with

alignment using MI [8].

A. Evaluation with colored range data

We first show the results of the evaluation datasets.

The data were measured by two range sensors, Focus S

150 by FARO Inc.1 and Imager 5010C by Zollar+Flöhlich

Inc.2. High-accuracy panoramic laser range scanners can be

used for mobile scanning in profiler mode [3], [4]. Three-

dimensional panoramic point clouds were scanned with both

range sensors. The data measured by Focus S 150 were con-

verted to a colored point cloud using a photo texture function.

The evaluation inputs were a pseudo-panorama-rendered

image obtained from the colored point cloud scanned by

Focus S 150, and a point cloud scanned by Imager 5010C.

The ground truth was computed by registering the two point

clouds scanned by the two sensors.

Motion in the indoor scene were captured by rotating

the sensors five times each in the vertical and horizontal

1https://www.faro.com
2http://www.zf-laser.com
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(green line) error versus iteration times using ten motions.
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Fig. 10. Error in the calibration results of each method (relative to the
ground truth) in the indoor scene

directions. The rotational and translational calibration with

changing the number of motion in the indoor scene is

shown in Figs. 7 and 8, respectively. The horizontal axes

represent half the numbers of horizontal and vertical motions

in the calibration. For example, one motion denotes that the

calibration was performed with two motions (one horizontal

and one vertical motion). Each calibration was performed

10 times for each number of motion(1-5), with random

sampling of the motions. The result of Figs. 7 and 8 are

the averages and standard deviations of the rotational and

translational errors in the extrinsic parameter, respectively,

in both Scaleless (blue lines) and the proposed method (red

lines). The proposed method did not significantly improve the

rotational error, but dramatically improved translational error.

Moreover, the translational error in the proposed method

gradually decreased with increasing number of motions.

Figure 9 shows the example of translation parameter con-

vergence.

Figure. 10 compares the calibration results of the pro-

posed, Scaleless, Manual, and MI methods. Registration

by maximizing MI completes only one scan. This method

shifts the initial point from the ground truth by a fixed

distance (0.1m) in a random direction (the rotational pa-

rameter is not shifted). The Manual calibration acquires

30 correspondences in as many directions as possible. As

shown in Fig. 10, the rotational error was below 1 ◦ in all

method. However, our method achieved considerably lower

translational error than the other methods.

Figure 11 plots the evaluation results in the outdoor

environment. The motions were captured by rotating the

sensors by three times in the vertical direction and three times
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Fig. 11. Error in the calibration results of each method (relative to the
ground truth) in the outdoor scene

Fig. 12. Checkerboard arrangement of the panorame images taken by
Ladybug 3 and the panorama-rendered reflectance image scan scanned by
Imager 5010C. When the extrinsic parameter is correct, the two images are
consistent.

in the horizontal direction. Although our method minimized

the rotation error, the errors in all methods were less then

0.5 ◦, with no significant differences among the methods.

On the other hand, our method most accurately estimated the

translation. For the same number of motions, the translational

accuracy was below 1 cm in the indoor environment, versus

2.5 cm in the outdoor environment. Therefore the indoor

scene is preferred for calibration purposes.

B. Ladybug 3 and Imager 5010C

We now show the calibration results of the omnidirectional

camera Ladybug 3 by FLIR Inc.3 and Imager 5010C. The

sensor configuration is shown in Fig. 6 (a). The evaluation

was performed by overlaying the image of Ladybug 3 and

the reflectance image obtained by the panorama rendering

from the center of the estimated camera position in the point

cloud (See Fig. 12). The Images from the two sensors were

alternated in a checkerboard pattern. We thus confirmed the

consistency of the two images. As shown in Fig. 12, the

pre-optimized Scaleless lacked consistency between RGB

and reflectance images, but the proposed method achieved

consistency between the two images.

C. Ladybug 3 and Velodyne HDL-64E

Finally, we show the extrinsic calibration results of La-

dybug 3 and the multibeam LiDAR HDL-64E by Velodyne

3https://www.ptgrey.com/
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Fig. 13. Error in the calibration results of each method (relative to the
ground truth) using the HDL-64E and Ladybug 3 sensors. In MI, Scaleless,
and proposed method, the calibration was performed with 16 scans.

Inc. 4 in the indoor scene. The sensor configuration is shown

in Fig. 6 (b). While measuring the data, the rover loaded

with the sensors was operated to generate rotational motion

in the vertical direction and the horizontal directions. The

vertical motions were generated by raising and lowering the

front wheel through steps of approximately 4 cm. The data

were measured in stop-and-scan mode; that is, the rover was

stopped while the data were scanned. To obtain the range

data and scanned camera images at the same position, we

visually checked the times at which the LiDAR and the

camera were stationary.

The ground truth of the extrinsic parameter between HDL-

64E and Ladybug 3 was indirectly obtained by computing

the relative position and orientations of the point cloud

measured by Imager 5010C in the same environment. The

positions and orientations of HDL-64E and Imager 5010C

were obtained by aligning the range data scanned by each

sensor. The extrinsic parameter between Ladybug 3 and

Imager 5010C was obtained by manually specifying the

correspondence points between the panorama image and the

three-dimensional reflectance image. The extrinsic parameter

was then computed using the correspondences. When cali-

brating Scaleless and the proposed method, eight horizontal

rotation motions and eight vertical rotation motions were

randomly sampled at each time, and the average error of

10 calibrations was recorded. The Manual calibration was

carried out using a single scan, taking the corresponding

points between the panoramic image of Ladybug 3 and the

3D reflectance image of HDL-64E. In the MI calibration, the

MI was calculated from 16 scan sets of an image-point cloud

scanned at each position.

As shown in Fig. 13, the Manual calibration was inac-

curate because the correspondence construction failed under

the narrow scan range and the sparse point cloud of HDL-

64E. Meanwhile, the MI optimization failed on the HDL-

64E dataset because of the low resolution and unclear

reflectance information. On the other hand, the accuracies

of the motion-based methods (Scaleless and the proposed

method) were below 1 ◦ in the rotational direction. However,

the translation in Scaleless significantly differed from the

ground truth, whereas the proposed method achieved highly

accurate translation results.

The proposed method can also process the motions ac-

quired by an operating rover. To obtain the extrinsic param-

4http://velodynelidar.com/



eters of a six degree-of-freedom by hand-eye calibration, the

sensor must be rotated in two or more directions. However, in

vertical rotational motion, part of the platform on which the

sensors are mounted must be raised. Although this operation

is more difficult than horizontal rotation, this experiment

demonstrates that the proposed method works well when the

vertical rotational motions are implemented by reasonable

mobile-platform operations, such as raising and lowering by

a small step.

VI. CONCLUSION

We presented a targetless automatic 2D-3D calibration

for camera-motion estimation. The calibration is based on

hand-eye calibration and uses sensor fusion odometry. The

proposed method can be fully utilized with fewer translations

and larger rotations of the camera than other approaches. The

calibration measurements are best acquired in environments

surrounded by flat terrains.

Hand-eye calibration requires multi-directional rotations

of the sensor. However, in many situations, vertical rotations

are more difficult than horizontal rotations. Although the

proposed method must also satisfy this condition, sufficient

vertical rotation was achieved by reasonable movements of

the mobile platform. Therefore, this method is highly practi-

cal. Although the proposed method is for off-line calibration,

it can be extended to on-line calibration during scanning,

provided that the motions are appropriately selected and

computational time is reduced.
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