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Abstract— In this paper, we propose a dynamic calibration
between a mobile robot and a device using simultaneous local-
ization and mapping (SLAM) technology, which we termed as
the SLAM device, for a robot navigation system. The navigation
framework assumes loose mounting of SLAM device for easy
use and requires an online adjustment to remove localization
errors. The online adjustment method dynamically corrects not
only the calibration errors between the SLAM device and the
part of the robot to which the device is attached but also the
robot encoder errors by calibrating the whole body of the robot.
The online adjustment assumes that the information of the
external environment and shape information of the robot are
consistent. In addition to the online adjustment, we also present
an offline calibration between a robot and device. The offline
calibration is motion-based and we clarify the most efficient
method based on the number of degrees-of-freedom of the robot
movement. Our method can be easily used for various types
of robots with sufficiently precise localization for navigation.
In the experiments, we confirm the parameters obtained via
two types of offline calibration based on the degree of freedom
of robot movement. We also validate the effectiveness of the
online adjustment method by plotting localized position errors
during a robots intense movement. Finally, we demonstrate the
navigation using a SLAM device.

I. INTRODUCTION

Navigation is one of the most important issues for a robot

to perform many tasks in various environments such as

homes, factories, and outdoor fields. The robot navigation

system estimates the 6-DoF pose of the robot in a 3D

space and leads the robot to a destination. The robot uses

different types of sensors including a camera, LiDAR, GPS,

and IMU based on system and environmental requirements.

Specifically, there are several studies on visual navigation

because optical sensors and algorithms for camera tracking

are widely available.

Various approaches for localizing a robot in a given

environmental map were proposed over the past few decades.

Global algorithms conduct the scan-to-map matching via the

iterative closest point (ICP) algorithm [1], 2D Monte Carlo

localization (MCL) [2], 3D MCL [3], view-sequence match-

ing [4], and particle filters [5]. Local feature-based methods

use certain types of landmarks such as two-dimensional bar

code [6] and natural feature points [7].
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Fig. 1. (a) Attaching the SLAM device on a robot and calibrating the
relative pose via moving the robot head, (b) After calibration, the SLAM
device is located in front of the robot head, and the robot is localized in
the map coordinate system.

Recently, simultaneous localization and mapping (SLAM)-

based approaches are popular for robot navigation. Specif-

ically, SLAM provides a 3D map while simultaneously

localizing the robot via a monocular camera [8], [9], an

RGB-D camera [10], and a LiDAR [11]. The entire SLAM

system can be used as odometry to navigate a robot with

several types of devices [12], [13], [14], [15].

We refer to this type of a 3D localization device as

SLAM device. The device exhibits SLAM functionality and

provides a 6-DoF pose for the device in real-time. We also

refer to multi-functional devices, such as smartphone and

head-mounted display (HMD) as the SLAM device. The

devices are designed for augmented reality (AR) and mixed

reality (MR). Thus, AR and MR require self-localization for

rendering virtual objects in the real world and exhibit SLAM

functionality.

In this paper, we propose an online calibration between a

device and robot for a framework of the robot navigation

using the SLAM device. The purpose of this method is

easy navigation implementation for robots which is no visual

sensor which is not suitable for SLAM. Since we assume that

a SLAM device is loosely mounted on a robot because of

easy and quick use, an online calibration between the device

and robot is important for removing localization error. We

also present offline calibration for computing relative pose

between a device and a robot as shown in Fig. 1.

The online calibration considers consistency between the

robot, environment, and the SLAM device. The position

estimated by the SLAM device and inner state of the robot in-

cludes error due to the robot-device calibration error and the

joints lags of the articulated robot. We introduce a calibration

method between the SLAM device and the complete body to



Fig. 2. Overview of the proposed localization system for navigation

refine the positioning of the robot whereas dynamic motion-

based sensor calibrations calibrate two fixed sensors [19],

[20]. In the process, calibration parameters are dynamically

adjusted during robot moving to reduce the positioning error

given the assumption that the robot is in contact with a floor.

The offline calibration method is based on hand-eye cal-

ibration [16], [17], [18]. The hand-eye calibration estimates

the relative pose of two different systems from several ego-

motions of the systems. The motion-based approach is also

used for calibration between camera-IMU [19], [20], camera-

camera or LiDAR-camera [21], [22], [23]. However, the

studies do not consider the degree of freedom of the systems.

Therefore, we clarify necessary and efficient movements for

the calibration with respect to the degree of freedom of the

robot.

The proposed calibration method between the SLAM

device and robot can be easily applied to various types

of robots although the robot does not possess sufficient

degrees of freedom. We demonstrate that accurate navigation

is performed via the proposed online adjustment.

Figure 2 shows an overview of our localization system.

The SLAM device offers an environmental map and a self-

pose in the map. The SLAM device is localized in the pre-

built map via aligning the environmental map in the SLAM

device. The system also localizes a robot footprint in the map

by using the extrinsic calibration parameter and robot pose

information. In the following sections, we describe offline

calibration between the SLAM device and robot and online

adjustment of the localized robot footprint.

II. ONLINE WHOLE-BODY CALIBTARION

Online calibration is required between the SLAM device

and the whole-body of the robot while offline calibration is

used to calculate the extrinsic parameter between the SLAM

device and the part of robot where the device is attached. The

error in the robot-device calibration is unavoidable given the

play of the attachment, encoder error at the calibration, and

movement of the SLAM device as the robot is moving. Ad-

ditionally, motion lags exist when controlling an articulated

robot such as humanoid robot. Thus, the pose of the robot

given by SLAM device is inaccurate and should be calibrated
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Fig. 3. Overview of the on-line adjustment method: Loop closure is
partially created by aligning the floor normal and a vector perpendicular
to the robots contact surface of the floor.

online for accurate positioning of the robot. The overview of

the process is shown in Fig. 3.

We calibrate the SLAM device and whole-body of the

robot by closing a loop between the SLAM device, envi-

ronmental map, and robot. The robot does not estimate the

calibration error and lags only from the inputs by the SLAM

device while moving. Conversely, the SLAM device knows

the pose of the device in the 3D environmental map, and the

robot knows its foot contacts to the floor which constitutes

part of the environment. It is possible to correct the error by

performing a consensus between them, and this requires a

loop closing scheme.

The rotation error mainly contributes to the estimated

position of the robots foot if the SLAM device is attached to

a relatively high position. The estimated position error is in

proportion to rx and ry rotational errors aside from a rotation

around vertical direction axis rz (See Fig. 5) and SLAM

device height. Even the rx and ry rotational errors are small,

the localized position error becomes large whereas the small

translation error not largely affects the position. The rotation

parameter rz also mainly contribute to the locomotion of the

robot. The robot moves in wrong directions if a rotation error

exists.

Therefore, we adjust only the rotation parameters. We

assume that the robot stands perpendicular to the floor.

The robot is inclined to the floor if there are errors in

rotation parameters rx and ry . The remaining rz parameter

is corrected by using horizontal movement described in

Sec. III-B.3. We align the vertical direction of the robot n

to the surface normal of the floor nf . The estimated vertical

direction of the robot is calculated by the pose given by the

SLAM device and inner state of the robot. Specifically, nf

is given by the map in the SLAM device. We define Ra that

aligns n to nf as follows:

nf = Ran. (1)

Specifically, Ra is not uniquely determined because the rank

of Ra corresponds to two. We compute Ra using the angle

between n and nf : θ. The Rodrigues rotation formula gives



Fig. 4. Relations between movements and obtained parameters

Ra as follows:

Ra = cos θI + (1− cos θ)aa⊤ + sin θ[a]× (2)

where,

a = −
nf × n

|nf × n|
(3)

θ = cos−1(nf · n). (4)

Thus, Ra is the smallest rotation that satisfies Eq. 1. We can

apply Ra to determine the refined position of the robots foot

to from the SLAM device as follows:

to = −RaR̂
−1

t̂+RaR̂
−1

tb (5)

where, R̂ and t̂ are the rotational and translational calibration

parameter between the SLAM device and the robot, respec-

tively. tb corresponds to the vector from the origin of the

robot coordinate for the calibration to the footprint of the

robot. Specifically, tb is obtained by the inner state of the

robot (See Fig. 7).

This Ra removes 2-DoF rotational error aside from a

rotation around vertical direction axis. These 2-DoF error

components increase in proportion to rx and ry rotational

error and SLAM device height h. The proposed adjustment

is effective especially when h is large like humanoid type

robots.

III. MOTION-BASED OFFLINE CALIBRATION

We introduce a motion-based offline calibration method

between the SLAM device and parts of robot where the

device is attached by considering the degree of freedom

of the robot. First, we clarify the relation between motions

for calibration and calibration parameters. Next, we describe

the mathematical formulations for a detailed understanding.

Finally, we present implementations of the motion-based

calibration based on the degrees of freedom of the robot.

A. Relation between motion and calibration parameters

The motions that can be used for the calibration are limited

by the degree of freedom of the robot. We assume that the

SLAM device is attached to a body part of the robot. When

we attach the device to a 6-DoF arm, the calibration process

exactly corresponds to hand-eye calibration. Conversely, the

device is attached to a body part, and possible motions are

generally limited. For example, in the case that we attach the

device to the head of the humanoid robot, the robot rotates

the device vertically and horizontally by swinging the neck

in addition to translating horizontally. Conversely, the rover-

type robot can rotate only in the horizontal direction and

translate horizontally.

The primitive motions include horizontal rotation, vertical

rotation, and forward translation. We do not consider any

motion that contains multiple primitive motions as afore-

mentioned for the purpose of simplicity and efficiency.

A combination of the motions should correspond to the

combination to solve all 6-DoF of the extrinsic parameters:

3-DoF translation parameter {tx, ty, tz}, and 3-DoF rotation

parameter {rx, ry, rz} around the x-axis, y-axis, and z-axis,

respectively. As shown in Fig. 4, we obtain two translation

parameters and two rotation parameters from a rotational

motion. The parameters are orthogonal to the rotation axis

(Figure 5 shows an example of calibration by horizontal

rotation). Thus, it is not possible to obtain the relative

translation and rotation information along the rotation axis.

Hence, we can estimate 6-DoF calibration parameters if the

robot rotates the SLAM device in two directions. If the

robot cannot rotate in two orthogonal directions, we use

the translation and additional information. The details are

described in the following subsections.

B. Motion-based calibration

1) Fundamentals: We estimate the relative pose X =
{R̂, t̂} between the SLAM device and robot from several

motions. Let A = {Rr, tr} correspond to the relative pose

of the robot before and after a movement. Let B = {Rs, ts}
correspond to the relative pose of SLAM device. Specifically,

A is obtained by encoders or other sensors embedded in the

robot. Additionally, B is obtained by the SLAM function.

As shown in Fig. 6, the pose of the SLAM device after the

movement is expressed in two forms AX and XB. Given

that the two transformations are identical, the following two

equations are derived

RrR̂ = R̂Rs (6)

Rr t̂+ tr = R̂ts + t̂. (7)

The relative rotation R̂ is solved via aligning rotation axes

of Rs and Rr. Let ks and kr correspond to the rotation

axes of Rs and Rr, respectively. The following expression

is obtained from Eq. 6:

kr = R̂ks. (8)

Thus, R̂ is solved by several rotations. When R̂ is given,

t̂is solved by Eq. 7. Please refer to [16], [17], and [18] for

more details.

2) Horizontal/vertical rotation: Here we consider the

calibration by horizontal rotation. We first solve the rotation

parameters. The horizontal rotation indicates that kr in Eq. 8

corresponds to the z-axis in Fig. 5. The rotation axis of the

SLAM device ks is given by the device. Rotation is one

dimensional, and thus 2-DoF rotation parameters of R̂ are

obtained by solving Eq. 8. The parameters correspond to

rotations around the axes that are orthogonal to the rotation

axis z; rx and ry are obtained.



Fig. 5. Calibration by horizontal rotation movement. Alignment of the
axes of rotation (Green arrows) gives rotational parameters rx and ry

orthogonal to the axes of rotation. Translation difference (Red arrow) also
offers rotational parameter tx and ty orthogonal to the axes of rotation.

Next, we solve the translation parameters, tx and ty .

Equation 7 is transformed as follows;

(I −Rr)t̂ = tr − R̂ts. (9)

The rank of (I−Rr) in the left term of Eq. 9 corresponds

to two because the motion corresponds to a rotation. We

decompose t̂ into kr and two unit vectors, which are

orthogonal to kr and mutually orthogonal. The unit vectors

are arbitrarily determined although they can correspond to

the x and y directions.

t̂ = akr + btx + cty, (10)

where, a, b, and c correspond to the variables. Additionally,

kr does not change when it is rotated by Rr since kr

corresponds to the rotation axis of Rr as follows:

kr = Rrkr. (11)

Therefore, Eq. 9 corresponds to the simultaneous equations

for b, c:

(I −Rr)(btx + cty) = tr − R̂ts. (12)

The translation parameters tx, ty are given by solving Eq. 12.

The vertical rotation is identical to the case of horizontal

rotation with a different rotation axis. The vertical rotation

is performed around the y-axis, and we obtain the rotation

parameters rx, rz and translation parameters tx, tz .

3) Forward translation: The rotation parameters are ob-

tained via a forward translation of the robot. Here we assume

that the robot moves straight. We can approximate Rr ≈ I .

Equation 7 is transformed as follows:

tr = R̂ts, (13)

The form of the equation is identical to Eq. 8. Therefore, we

obtain rotation parameters ry , rz when the robot moves in

the x-direction.

Pose 1 Pose 2

SLAM 
device

Robot

Pose transition

Fig. 6. Motion-based sensor calibration

Fig. 7. Robot calibration using the height of a SLAM-device

C. Implementation

1) Calibration by bi-directional rotations: As shown in

Fig. 4, we can obtain tx, ty , rx, and ry by a horizontal

rotation. We can obtain the remaining tz and rz by rotating

the device in the vertical direction. If the horizontal rotation

and vertical rotation are performed at least once, then 6-DoF

calibration parameters are obtained.

2) Calibration by horizontal rotation and translation: In

the case of a robot without the capability for vertical rotation,

we use the relations between SLAM device, robot, and the

floor. We obtain the calibration parameters other than the

translation in tz as shown in Fig. 4 via a horizontal rotation

and a translation. Specifically, we determine the remaining

parameter rz .

We use a perpendicular from the SLAM device to the

floor. As shown in Fig. 7, we assume that nf is the surface

normal of the floor and h is the height of the SLAM device

from the floor. We assume that nf and h are given by

the environmental map generated by the SLAM device. The

difference vector o between the foot of the perpendicular

from the SLAM device and foot of the robot is described as

follows:

o = hnf − R̂
−1

t̂+ R̂
−1

tb. (14)

Thus, o must be parallel to the floor and perpendicular to

nf . Therefore, the following equation holds,

nf · o = nf · (hnf − R̂
−1

t̂+ R̂
−1

tb) = 0. (15)

The remaining translation parameter in the vertical direction

is given by solving Eq. 15.



TABLE I

OBTAINED EXTRINSIC PARAMETER

x (m) y (m) z (m) angle(rad) rx ry rz

bi-directional rotation mean 0.083285 0.031271 0.129084 1.66594 0.511814 -0.49433 -0.70262
standard deviation 0.000531 0.000906 0.00169 0.000391 0.000877 0.000786 0.000232

horizontal movement mean 0.101651 0.031098 0.11713 1.642449 0.52515 -0.47133 -0.70838
standard deviation 0.004845 0.002489 0.002671 0.010782 0.015054 0.00668 0.007034
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Fig. 8. Localized position error during motion swinging Pepper head
wearing HoloLens drastically with the adjustment (Blue line) and without
it (Orange line).

IV. EXPERIMENTAL RESULTS

We use SoftBank Pepper1 as a robot and Microsoft

HoloLens2 as a SLAM device. The Robot Operating System

(ROS)3 assumes the role of a host system. HoloLens is

attached to the head of Pepper as shown in Fig. 1 (a).

First, we evaluate the accuracy of the calibration parameters

obtained by the two methods explained in Sec. III. Next, we

evaluate the online correction method by plotting the position

error when the joint of the robot moves frequently. Finally,

we demonstrate a robot navigation system in an indoor scene

using SLAM device.

A. Offline Calibration

We first plot the robot-device calibration parameters

via the proposed offline calibration methods with two-

directional rotations and horizontal rotation/translation. The

two-directional rotation method is performed via swinging

the neck twice for each in the horizontal and vertical

directions. The horizontal method attempts forward trans-

lation and horizontal rotation twice each at five different

positions for different conditions for the floor recognition.

Table I shows the average value and standard deviation of

the estimated parameters when each calibration method is

performed five times. The standard deviation of translation

parameters by the two-way rotation method is less than 2mm
and that of the rotation angle is less than 4.0×10−4 rad. The

performance of two-directional rotation method exceeds that

1https://www.softbank.jp/en/robot/
2https://www.microsoft.com/hololens
3http://www.ros.org/

of the method using horizontal rotation/translation. However,

the accuracies of both methods are sufficient for navigation.

B. Online Adjustment

We demonstrate the effectiveness of the online device-

body calibration method. We move the robots joints to create

lags in actuator control without locomotion of the robot.

Subsequently, we record the position of the robots foot in

x − y coordinate in the case with and without calibration.

We can observe the positioning errors due to the time lag

although the foot position should not change during the

movements of the joints.

Figure 8 shows the error of the online device-body calibra-

tion. The error is calculated as the distance from the initial

position. We use the two-directional rotation method for the

offline calibration. We observe a maximum error exceeding

60 cm in the case without correction. Conversely, the error of

the proposed method is less than 10 cm. The result indicates

that the proposed sensor-body calibration method absorbs

errors for accurate localization of the robot.

C. Navigation

We use a host system for managing the map and naviga-

tion. The procedures of navigation are as follows:

1) Attach HoloLens to the head of Pepper

2) Establish communication with the host system, Pepper,

and HoloLens

3) Calibrate Pepper and HoloLens

4) Run localization and navigation program

We used two-directional rotation method for offline cal-

ibration (Fig. 1 (a)). The localization program locates the

HoloLens in the global coordinate system via aligning the

map provided by the HoloLens to a pre-built 2D map with

an initial position that is given manually. The navigation

program provides a destination on the 2D map and creates

a route plan via implementing the Dijkstra method in ROSs

NavFn 4 package with a cost map [24]. We use the dynamic

window approach [25] for local route planning.

Figure 9 shows a sequence of snapshots where

the Pepper walked through a long corridor and en-

tered into a room. A movie of the navigation scene

is available on http://www.cvl.iis.u-tokyo.ac.

jp/˜ishikawa/video/ARobotNav.mp4

4http://wiki.ros.org/navfn



Fig. 9. Navigation with our system using external SLAM device. Lower sequence is floor map in GUI. First, Pepper walks along the corridor and then
turns at the corner. Finally, Pepper enters a room and reaches the destination.

V. CONCLUSION

In this paper, we proposed a navigation system with

external SLAM device with offline calibration and online

localization adjustment. Although a humanoid type robot

attached with a SLAM device is used for the demonstration,

it is possible to easily apply the proposed method to various

robots with a self-position estimation function. Although we

used pre-built 2D floor maps created in advance, The system

can be extended to navigate without a pre-built map and

three-dimensional navigation via a 3D map provided by a

SLAM device.
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