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Abstract Recent advances in sensing and software technologies enable 

us to obtain large-scale, yet fine 3D mesh models of cultural assets. 

However, such large models cannot be displayed interactively on 

consumer computers because of the performance limitation of the 

hardware. Cloud computing technology is a solution that can process a 

very large amount of information without adding to each client user’s 

processing cost. In this paper, we propose an interactive rendering 

system for large 3D mesh models, stored on a remote environment 

through a network of relatively small capacity machines, based on the 

cloud computing concept. Our system uses both model- and image-

based rendering methods for efficient load balance between a server 

and clients. On the server, the 3D models are rendered by the model-

based method using a hierarchical data structure with Level of Detail 

(LOD). On the client, an arbitrary view is constructed by using a novel 

image-based method, referred to as the Grid-Lumigraph, which blends 

colors from sampling images received from the server. The resulting 

rendering system can efficiently render any image in real time. We 

implemented the system and evaluated the rendering and data 

transferring performance 

 

Keywords Huge mesh rendering, Image-based rendering, Network 

rendering 

1. Introduction 

Typically, e-Heritage digitization results in mesh models 

consisting of billions of triangles with high complexities, 

so it has been difficult to view digitized objects in real 

time on current consumer computers. First, the current 

Internet does not have the capability to download such 

mesh models in real time. Second, the usual PC on the 

client side cannot render such models in real time. As a 

solution to these problems, a process called “cloud 

computing” has been proposed to deal with large-scale 

information with minimal cost to the user. Cloud 

computing has server machines to process large data sets 

and abstract them as “clouds” for client users. Client 

users can obtain data from the cloud freely and speedily 

without the expertise and special knowledge they would 

need to manipulate a large amount of raw data. In this 

paper, we propose an online rendering system applicable 

for the cloud computing system.  

This paper proposes an efficient rendering system by 

both model- and image-based rendering as shown in 

Figure 1. Our system locates original mesh models of 

cultural assets on a remote server, in order to avoid the 

channel limitation between the server and the client. The 

server pre-renders the mesh models from various 

viewing positions, and stores these images in a 

repository based on our rendering method referred to as 

Grid-Lumigraph. At run time, the client sends a request 

to display the mesh model at a certain view position and 

specifies the viewpoint parameters. The server sends 

back the pre-rendered images necessary to calculate the 

view as well as the sparse mesh model. The client 

calculates and displays the new view by using the image-

based rendering with the set of images and the sparse 

mesh model from the server.  

This paper has the following structure. Section 2 surveys 

the related work and discusses the benefits and 

drawbacks of the methods. In Section 3 we describe 

Grid-Lumigraph, which is the image-based method for 

reconstruction of arbitrary views from sampling images. 

In section 4, we describe the construction of an LOD-

based model and a repository composed of sampling 

images. We explain the detail of our proposed server-

client rendering system in Section 5, demonstrate and 

evaluate the system in section 6, and we conclude in 

section 7.  

2. Related work 

The Level of Detail (LOD) method is proposed for 

displaying large mesh models in [14]. LOD methods 

represent 3D objects with mesh models in 

multiresolution. The Progressive Mesh presented in [7] 

records the sequence of the reduction that merges smaller 

triangles to form larger ones in the mesh structure. The 

Adaptive Tetrapuzzles proposed in [1] converts the input 

mesh into a hierarchy structure composed of nodes, 

containing smaller meshes, referred to as patches with 

multiresolution. Sending mesh data over the network is 

very expensive, though. 

The LOD methods are also used in point-based 

representations. QSplat [15] and Layered Point Cloud [4] 

are point-based rendering systems, which use points as 

the rendering primitive with a hierarchical data structure. 

Far Voxels proposed in [5] uses points and voxels with 

view-dependent color as the rendering primitives in the 

LOD hierarchy. Those methods can be extended to 
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Fig. 1  Overview of proposed rendering system. The server contains geometric data recorded in the format of an LOD hierarchy and the repository of 

sampling images of the input 3D model. The client system displays arbitrary views reconstructed by using received images and sparse 3D mesh patches. 

server-client rendering systems as proposed in [1, 4, 5, 7, 

16]. Although this point-based representation is much 

more compact than the mesh-based, depending on the 

complexity of the input model, the communication traffic 

can still be high. 

Like the geometry-based methods described above, 

image-based methods are also extended to a server-client 

method in [11]. In this approach, the server has the 

geometric model, and it renders and then sends images 

corresponding to the requests from clients. Although the 

server only needs to send an image in real time, 

rendering at the server is a costly operation, and, if too 

many requests occur, the server may break down.  

Impostor, presented in [2, 9, and 17] is the rendering 

method on the network using geometric and image 

information. This system is mainly designed for 

walkthrough environments such as urban scenes. It 

assumes that a 3D model is already established on the 

client, which is not the case in our paradigm. 

3. Grid-Lumigraph for image reconstruction 

A client machine in our system can display any arbitrary 

view of the input 3D model from the viewing location 

and direction that a user chooses, using a new image-

based method referred to as the “Grid-Lumigraph.” Our 

Grid-Lumigraph reconstructs a view with only sampling 

images near current viewpoints and a rough 3D mesh 

model.  

3.1 Grid-Lumigraph 

Our Grid-Lumigraph has the same basic idea as light 

field rendering [12], which reconstructs a view from 

color values of all rays going through the view. The 

collection of all rays for this operation is referred to as 

the “light field.”  

Constructing a view image using the light field rendering 

method is depicted in Figure 2 (a). The dotted line 

indicates one of the new rays necessary for rendering the 

image to be updated. To calculate the color of the dotted 

ray, we extract the color values on the nearest rays s1-u1, 

s1-u2, s2-u1, and s2-u2, and blend them into the new 

color value assigned to the target ray. This light field 

method requires dense sampling of s-u pairs; otherwise, 

the reconstructed image may have blurs and ghosting, as 

shown in Figure 2 (b).  

The Lumigraph [6], shown in Figure 2 (c), utilizes 

geometric information to remedy this issue. The dotted 

line indicates a necessary ray that needs to be calculated. 

The geometric information provides the nearly correct 

position of the intersection point between the ray and the 

object surface, which helps use more appropriate rays. 

This correction does not need a completely precise 3D 

model. To correct view images, our Grid Lumigraph has 

a level-of-detail (LOD) 3D mesh model on the server, 

extract coarse meshes from it, and provides clients with 

them. This supply of LOD based model enables us to 

more flexibly and efficiently maintain enough geometric 

data on clients than Lumigraph. 
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Fig. 2  Correct sampling with geometric information. (a) Extraction colors from sampled colors without geometric information. (b) The result without 

correction. (c) Extraction with geometric information. (d) The result with correction using geometric information. 

Our Grid-Lumigraph projects the sampling images on 

the 3D mesh model like texture mapping. The image 

repository stores sampling images at each viewpoint in 

3D space. Once a viewpoint is selected by a user at run 

time, the Grid-Lumigraph chooses the nearest sampling 

points around viewpoints, extracts images assigned to 

those points, and then sends and projects those images 

onto the 3D mesh model on the client. The Lumigraph 

and our Grid-Lumigraph have the same principle of 

using image-based rendering with a rough 3D mesh 

model. The Lumigraph calculates the nearest rays from 

the light field, while our Grid-Lumigraph determines the 

nearest images from the image repository constructed of 

images sampled from each grid point of the object 3D 

space. Our Grid-Lumigraph only needs texture mapping 

capabilities and is very efficient for rendering.  

3.2 Grid-Lumigraph on GPU 

The Grid-Lumigraph can be easily implemented to 

effectively use the capability of a GPU. For generation of 

a new image, the Grid-Lumigraph uses sampling images, 

typically four to twelve, around the viewpoint selected 

by a user. Then, the Grid-Lumigraph projects each 

sampling image, one by one, using the projected texture 

mapping method onto the 3D mesh model. This 

procedure can be efficiently done by the GPU’s texture 

mapping capability, shown in Figure 3. In this projection, 

shadow mapping of the GPU is also utilized to avoid 

mapping rays to back faces of the 3D mesh from the 

sampling viewpoint. These mapping results are projected 

and normalized on the current viewing image plane of 

the user, using the built-in GPU capability. 

 

4. Data construction for Grid-Lumigraph (offline 

process) 

In the offline process, our system generates and stores 

the pre-rendered image, to be sent and rendered on 

clients by Grid-Lumigraph, in the repository on a server 

machine. The Level of Detail (LOD) rendering method 

extended from Adaptive Tetrapuzzles [1] is employed for 

rapid construction of the image repository. 

4.1 Constructing LOD Hierarchy 

Our method to construct an LOD hierarchy is different 

from that of Adaptive Tetrapuzzles. The Adaptive 

Tetrapuzzles recursively divide the space and construct a 

hierarchical structure. The approach of this method is 

simple to implement and efficient to process. However, 

the number of triangles of our target 3D models is huge, 

so the recursive splitting process is time-consuming. To 

solve this problem, we perform the splitting process not 

by triangles but by small meshes. Our method defines a 

voxel space of pre-determined resolution and generates a 

group of small meshes (Step 1), forms a graph of divided 

meshes for constructing a tree structure from them (Step 

2), and then simplifies the tree structure (Step 3). We 

prefer this method for space efficiency adapted to the 

object shape in hand. 

Step1: Decomposition into voxel space. We define the 

voxel space at the finest level. Then, we decompose an 

input mesh model into smaller meshes using the voxel 

space. We sort each triangle to a single voxel that
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Fig. 3  The reconstruction of images by projective texture mapping using GPU capability. We can efficiently extract each pixel's correct color from 

sampling images by texture projections. Each nearest sampling image is projected from the sampling point to the geometric data. By accumulating the 

results in the final buffer, we can obtain the reconstructed image 

 

contains at least one of its vertices. If the vertices of a 

triangle belong to multiple voxels, it is sorted to the 

voxel that contains the most vertices of the triangle. 

Finally, we assign a group of meshes to the 

corresponding voxel. We control granularity of the voxel 

space so that each voxel contains fewer triangles than the 

predefined value Nv. 

Step2: Recursive graph partitioning. We convert a 

group of meshes, defined in Step 1, into a graph 

representation, G (V, E), for the construction of an LOD  

structure in the next step. One vertex in the vertex set, V, 

of the graph corresponds to one voxel, and one edge in 

the edge set, E, corresponds to the adjacent relation 

between two voxels. Thus, in this graph, at most, one 

vertex has six edges corresponding to six adjacent voxels. 

For splitting the graph evenly and adaptively for shapes, 

we assign a weight to each vertex and each edge. Here, a 

vertex weight is defined as the number of triangles 

belonging to the mesh. To define edge weight, first, we 

calculate the mean surface normal vector at each vertex. 

Then, an edge weight is defined as the inner product of 

two averaged vectors of the two vertices on the edge.  

We recursively partition the graph into a pair of sub-

graphs, shown in Figure 4. This recursive partitioning 

continues until the size of each sub-graph, defined as the 

number of the belonging triangles, becomes less than a 

pre-defined number Nl. In our system, this graph 

partitioning procedure is implemented by using the Metis 

library [10]. 

After this procedure, we can obtain a hierarchy structure 

in which each leaf node has a small sub-graph of the size 

Nl. Non-leaf nodes contain a larger sub-graph. At each 

node in the graph structure, we connect all meshes of 

that node into a continuous mesh patch. 

Step 3: Simplification at non-leaf nodes. We simplify a 

mesh patch at each non-leaf node in the constructed 

hierarchy. The number of triangles at each node is 

reduced to a pre-defined number Nn. We implemented 

this simplification method by using a quadric error 

metric [3]. This method iteratively collapses edges from 

the lowest edge, in ascending order of quadric errors, 

until the number of triangles becomes the desired number. 

Here the quadric error represents a rough approximation 

of the distance between original and simplified mesh 

patches.  

Each node holds the node parameters and the geometric 

data of a simplified mesh patch. The node parameters 

given by a mesh patch are eight corner positions of the 

bounding box, the range of surface normal, and the 

minimum quadric error calculated in simplification. The 

range of surface normal of the mesh is represented by 

one 3D vector of the mean normal of the mesh and one 

scalar value meaning the maximum difference of angle 

from the mean vector. And the minimum quadric error 

means the distance between the simplified mesh and the 

original mesh, and it is used to parameterize the 

resolution of the mesh rendered on the screen. The 

geometric data consists of positions and connectivity 

relations of polygonal vertices in the mesh patch. Node 

parameters will be used for traversing the hierarchical 

structure, while the geometric data is used for rendering 

the mesh patch.  

The simplification procedure ensures consistency of 

boundaries between mesh patches. Inconsistency 

between mesh patches causes holes and artifacts along 

the patch boundary on rendering. Simplification is not 

conducted on edges either along boundaries or directly 

connected to boundaries.  

4.2 Efficient 3D LOD rendering 

In order to generate a set of pre-rendered images, our 

system uses the 3D LOD structure. The rendering 

process traverses the constructed hierarchy from the root 

node along the tree structure following the depth-first 

search strategy. If the process successfully finds a mesh 

patch that satisfies necessary resolution, the process 

tracks back following the depth-first search strategy, 
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Fig. 4  Construction of Level-of-Detail hierarchy.  

(a): Recursive splitting of mesh by graph-partitioning of voxel space.  

(b): Results of partitioning into small mesh patches. 

 

while it adds the node to a list of rendering nodes. The 

necessary resolution is given by the projected quadric 

error , where ϵ and r are the quadric error at the node, 

and the distance between a viewpoint and the center of 

the mesh patch. If the procedure reaches a leaf node, it is 

also added to the list. After traversing the entire tree 

structure, the resulting list of rendering nodes is given to 

the rendering pipeline.  

Some exceptional cases occur in the tree traverse, which 

are out of screen and back-face. An out-of-screen case is 

given by a node whose bounding box is projected outside 

of the screen. In a back-face case, all triangles in the 

mesh patch of traversed node turn away from the 

viewing direction. We easily judge the back-face case by 

checking whether the viewing vector intersects with the 

range of normal. If one of these cases occurs, the traverse 

operation immediately backtracks along the tree structure 

following the depth-first strategy.  

4.3 Building a sampling repository 

The previous section described the method to traverse 

the LOD structure. In this section, we construct a set of 

pre-rendered images, referred to as a sampling repository. 

Later, a group of images from this repository will be sent 

to a client for image-based rendering. 

We sample the viewing space. In our implementation, we 

assume that the viewing space is defined as a box twice 

as large as the input 3D model, divided into regularly 

located sampling viewpoints. The granularity of 

sampling is empirically decided depending on the 

density and complexity of the input model. At each 

viewpoint, we generate an image of the object using the 

LOD model, in six directions along the axes, positive 

and negative directions of x, y, and z described in Figure 

5. We record the image viewed in each direction by a 

direction index that assigns a number from 0 to 5 to the 

direction. We set each face to one image plane, set the 

aspect ratio to 1, and set the angle of the field of view to 

90 degrees, to capture all rays passing through the 

viewpoint.  If there are no mesh patches to be rendered 

in a sampling image, we can skip recording the image 

and register an empty flag instead of an image. Sampling 

images are stored as JPEGs in the image repository.  

 

 Fig. 5  Sampling from each grid point. Viewpoints for sampling are 

located on each grid point of the voxel space surrounding the input 3D 

model. View directions are set along axes x, y, and z. The image 

repository manages sampling images in a hash table. 
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 Fig. 6  The sequence chart for the rendering pipeline on our system. If the client's cache has enough data to reconstruct the current view, the client's 

thread can display the view without requests to the server. Otherwise, the client makes requests for images and 3D meshes to the server. The data 

communication is managed by COM threads, and it is asynchronously done. The renderer updates the view whenever the data communication is finished. 

 

 
 Fig. 7  Communication of the geometric data. The server provides very sparse mesh patches depending on the client's viewpoint. The sparse mesh 

patches are chosen from the LOD hierarchy structure. 
 

Those images are retrieved using a hash table with the 

combination of grid point ID and direction index which 

can be represented by four integers as (xi, yi, zi, d).  

5. Rendering system using Grid-Lumigraph through 

the network (online process) 

Our system has a server for image repository and clients 

for view generation. This section describes the details of 

data exchange between the server and the clients over the 

network. 

5.1 Protocol for rendering 

The protocol between a server and clients for rendering 

is described in Figure 6.  

Step 1: When a user requests display of the target 3D 

model from a particular viewpoint on a client system, the 

client system sends the parameters of the current 

viewpoint to the server system. Those parameters include 

the current viewing position and the current viewing 

direction, which are represented by six floating points.  

Step 2: Once the server receives parameters of the 

current viewpoint, the system determines the set of the 

nearest sampling points. Then we can easily retrieve 

images assigned to each nearest point from the image 

repository, using a hash key as the calculated grid point’s 

ID and the viewing direction.  

Step 3: The server sends retrieved sampling images to 

the client. Before sending images, the server checks 

whether the client has already had the same image by 

using sent information from the client. The server sends 

retrieved images only if the client does not have the 

image.  

In addition, the server sends extra images to the client at 

the same time. In one process of sending images, the 

server sends not only images nearest to viewing 
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Fig. 8  Filling holes. (a) is a rendering result with some holes because of the low sampling granularity. In the interactive time, the filling procedures are 

done ad hoc by using sparse model data located on the client as shown in (b). 
 

  
Fig. 9  The parameters of input 3D models and rendering results on the clients. Some white holes in “Bayon Face” and Menandro’s house are originally 

contained in the input models, and those are unscanned parts. 

 

directions at the nearest sampling point (for example, the 

x direction at a point), but also images in other directions 

at the points (for example, the y and z directions at the 

point). The client saves received images as cache in local 

memory. The stored sampling images in the cache are 

managed in the manner of least recent used (LRU).  

Step 4: The server sends the sparse 3D model to the 

clients. The server has the sparse 3D mesh model 

formatted in the LOD hierarchy. For the initial request, 

the server sends the entire model, which is composed of 

coarse mesh patches extracted from around the top part 

of the hierarchy data structure. For the later requests, it 

sends the corresponding mesh patches visible from the 

current viewpoints, described in Figure 7. The clients 

request new mesh patches, if necessary. In particular, 

when zooming in toward the object, the number of  

(a) Rendering result with holes (b) Rendering result  

after ad hoc filling  

using geometric data 
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 Fig. 10  Rendering speed (frames per second) of pure model-based LOD method and Grid-Lumigraph.  
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 Fig. 11  Transferring data rate (megabytes per second) of pure model-based LOD method and Grid-Lumigraph 

 

vertices displayed is reduced. The client requests new 

mesh patches in a finer resolution if the projected 

quadric error of a mesh patch is less than a predefined 

value.  

5.2 Additional capabilities for better performance 

When there is a rapid change in viewpoints, the server 

and the client work asynchronously to avoid stalling. The 

client continues to send the parameters of the viewpoint, 

while it renders a new image using other images 

available in cache. The server continues to send sampling 

images corresponding to the received requests, and the 

client updates the rendered results whenever new data is 

received from the server. 

In our system, some holes may occur in reconstructed 

images from sampling images as shown in Figure 8 (a). 

The main reason is that sampling granularity is lower 

than the complexity of the input object’s shape. If the 

holes are small, we cover them by calculating shading 

effect using the surface orientation of the triangles and 

the light source direction as shown in Figure 8 (b). When 

the server is idling, the client requests the server to 

generate the current view from the current viewpoint and 

send it. The client can instantly update the displayed 

image by using it. 

6. Implementation and results 

We implemented and performed the server and client 

functions on a 2.4GHz AMD Athlon64 X2 PC with 4GB 

RAM, which has GeForce 8800GTS with 512MB of 

video memory. Our system runs on Windows XP. We 

used a 1GBit LAN between the server and the client. We  
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 Fig. 12  Comparison of the quality of images rendered by (a) highest resolution model, (b) pure Model-based LOD method, and (c) Grid-Lumigraph. 

Right bottom images are magnified views 

 

used NVIDIA Cg Toolkit for implementation of details 

in GPU processing, which include LOD rendering and 

image projection.  

We constructed the LOD structure on the server, setting 

Nv to 500, Nl to 4000, and Nn to 2000. The size of cache 

on clients is 50 MB for images and geometric data. The 

dimensions of sampling images are set to 512 by 512 

pixels.  

The rendering results on clients are shown in Figure 9. 

Those input models have large numbers of triangles, 

from one million to twenty million. We constructed the 

image repositories for those models, whose sampling 

granularity per dimension is 16 or 32, described as 

sampling grid in Figure 9. In the experiment, all models 

were efficiently rendered in real time, over 30 fps, on 

clients, even if the input model was very large.  

Additionally, we also evaluated and compared the 

rendering speed, the size of transferred data, and 

rendering quality of our proposed method with the pure 

model-based LOD method that renders images by using 

only geometric data. We used the model of “Bayon 

Face,” moving the viewpoint along a path in a certain 

time, and evaluated the rendering speed and transferred 

data.  

The result of rendering speed is shown in Figure 10. 

From this result, we observed that Grid-Lumigraph can 

constantly render faster than the pure model-based LOD 

method. The model-based method renders less data 

according to the close-up scene, but can need more 

amount of data in other complex scenes. On the other 

hand, Grid-Lumigraph uses a constant number of images 

to render views, so the rendering speed is very stable 

shown in Figure 10.  

The result of the data transferring rate is shown in Figure 

11. From this, we observed that Grid-Lumigraph can also 

render views with transfer of less data than pure model-

based LOD method. The size of data transferred in the 

model-based LOD method exceeds 500 kilobytes many 

times in the sequence. In contrast, the size of transferred 

data in Grid-Lumigraph can be kept to less than 300 

kilobytes. We can say that our system is more applicable 

for network environments than pure MBR method.  

Finally, we show the original image and images rendered 

by both methods in Figure 12. We decided the resolution 

of the MBR method and Grid-Lumigraph so that two 

methods can render images in real time and in almost 

equal speed. We observed that the image rendered by the 

model-based LOD were smooth and lost detail due to the 

simplification. On the other hand, we observed detailed 

bumpy surfaces in the Grid-Lumigraph image that were 

generated by projecting pre-rendered images. The pure 

MBR method is better than Grid-Lumigraph for 

sharpness of the silhouette, but on the whole, the image 

rendered by Grid-Lumigraph is more similar to the 

highest resolution image than pure MBR. 
 

7. Conclusion 

We proposed a view-dependent rendering system for 

large-scale 3D models located on a remote server. In our 

approach, we use a model-based rendering method for 

repository generation at the server and a novel image-

based method, referred to as the Grid-Lumigraph, for 

view generation on the client. A model-based rendering 

system on the server generates rendering images from 

various view positions using the LOD structure and 

stores these sampling images in the image repository. 

The rendering system on the client displays a requested 

view using the Grid-Lumigraph, which uses a sparse 3D 

mesh model and sampling images nearest to the 

viewpoint. The Grid-Lumigraph, a variation of the light 

field method, projects blended sampling images using 

the projective texture mapping method. The Grid-

Lumigraph can be implemented effectively on a GPU.  

Our system can display very large 3D models, which 

have a huge number of triangles, in real time with 

efficient data communication. 

For future work, we would like to extend our system to 

(a)Highest resolution (ground truth) (b)Pure model-based LOD 

rendering 
(c)Grid-Lumigraph 
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work on the practical cloud computing system, and 

evaluate the performance under different network 

environments. Therefore we will improve the image 

sampling strategy of Grid-Lumigraph depending on the 

geometric complexity and access frequency, and develop 

the compression method for efficient data 

communication. 
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