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Variational Fisheye Stereo
Menandro Roxas1 and Takeshi Oishi2

Abstract—Dense 3D maps from wide-angle cameras is benefi-
cial to robotics applications such as navigation and autonomous
driving. In this work, we propose a real-time dense 3D map-
ping method for fisheye cameras without explicit rectification
and undistortion. We extend the conventional variational stereo
method by constraining the correspondence search along the
epipolar curve using a trajectory field induced by camera motion.
We also propose a fast way of generating the trajectory field
without increasing the processing time compared to conven-
tional rectified methods. With our implementation, we were
able to achieve real-time processing using modern GPUs. Our
results show the advantages of our non-rectified dense mapping
approach compared to rectified variational methods and non-
rectified discrete stereo matching methods.

Index Terms—Omnidirectional Vision, Mapping

I. INTRODUCTION

W IDE-ANGLE (fisheye) cameras have seen significant
usage in robotics applications. Because of the wider

field-of-view (FOV) compared to the pinhole camera model,
fisheye cameras pack more information in the same sensor area
which are advantageous especially for object detection, visual
odometry, and 3D reconstruction. In applications that require
3D mapping, using fisheye cameras have several advantages
especially for navigation and autonomous driving. For exam-
ple, the wide FOV allows for simultaneous visualization and
observation of objects in multiple directions.

Several methods have addressed the 3D mapping problem
for fisheye cameras. The most common approach performs
rectification of the images to perspective projection which
essentially removes the main advantage of such cameras - wide
FOV. Moreover, information closer to the edge of the image
are highly distorted while objects close the center are highly
compressed, not to mention adding unnecessary degradation of
image quality due to spatial sampling. Other rectification meth-
ods that retain the fisheye’s wide FOV involve reprojection on
a sphere, which suffers from similar degradation especially
around the poles.

We address these issues by directly processing the distorted
images without rectification and undistortion. We embed our
method in a variational framework, which inherently produces
smooth dense maps in contrast to discrete stereo matching
methods. However, directly applying existing variational stereo
methods on unrectified and distorted fisheye images is not
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Fig. 1. Non-rectified variational stereo method result on a fisheye stereo
camera.

straightforward. The main obstacle is that solving the image
gradient that guides the linearized correpondence search needs
to be constrained along the epipolar curves instead of lines.
This requires finding the function of the curve in every
optimization step as determined by the camera projection and
distortion model. Furthermore, adapting the gradient calcula-
tion to be restricted along the curve is also not simple since
the gradient can only be estimated (in discretized form) along
the tangential of the curve and this direction is valid only if
the distance between corresponding pixels is very small.

Instead of solving for the epipolar curve function, we
propose to use a trajectory field which represents the direction
of the epipolar curve for every pixel. We also propose a
fast way of generating the trajectory field that does not
require additional processing time compared to conventional
variational methods.

One advantage of using a trajectory field image is that it
allows us to use simple linear interpolation to approximate the
tangential of the epipolar curve which is faster than performing
a direct calculation. Furthermore, since our method is founded
on a variational framework, it produces smooth and dense
depth maps and has high subpixel accuracy.

Our results show additional accurate measurements when
compared to conventional rectified methods, and more accu-
rate and dense estimation compared to non-rectified discrete
methods. Finally, with our implementation, we were able to
achieve real-time processing on a consumer fisheye stereo
camera system and modern GPUs.

II. RELATED WORK

Dense stereo estimation in perspective projection consists of
a one-dimensional correspondence search along the epipolar
lines. In a variational framework, the search is akin to lin-
earizing the brightness constancy constraint along the epipolar
lines. In [1], a differential vector field induced by arbitrary
camera motion was used for linearization. However, their
method, as with other variational stereo methods in perspective
projection such as [2], requires undistortion and/or rectification
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(in case of binocular stereo) to be applicable for fisheye
cameras [3].

Instead of perspective rectification, some methods reproject
the images to spherical or equirectangular projection [4] [5]
[6] [7]. However, this approach suffers greatly from highly
distorted images along the poles which makes estimation less
accurate especially when using the variational framework.
Similar to our image linearization approach, [6] generates
differential vectors induced by variations on a 2-sphere in
which the variational stereo method was applied. However,
their graph-based formulation is a solution to the self-induced
problem arising from reprojecting the image on a spherical
surface. In contrast, our method does not require reprojection
on a 2-sphere and works directly on the distorted images
without undistortion, reprojection or rectification. We do this
by evaluating the variations directly from the epipolar curve.

Other methods also directly work on the distorted fisheye
images. In [8], the unified camera model [9] was used to
determine the path of the search space, which are incremen-
tally shifted (akin to differential vectors) from a reference
pixel to the maximum disparity. At each point, the projection
function is re-evaluated which the authors claim was costly
compared to linear search. However, their mapping method,
while real-time, only produces semi-dense depth maps. In [10],
a similar parameterization of the epipolar curve was done, but
only applied on window-based stereo matching. Other methods
adapts linear matching algorithms to omni-directional cameras
such as semi-global matching [11], plane-sweeping [12] and
a variant called sphere-sweeping [13]. Sparse methods were
also adapted to handle fisheye distortion such as [14] among
others. Since our method is based on a variational framework,
it produces smoother and denser disparity map and has an
inherent subpixel accuracy compared to direct matching and
sparse methods.

III. VARIATIONAL FISHEYE STEREO
In this section, we will first introduce the problem of image

linearization in fisheye camera systems in Sec. III-A. We will
then propose our trajectory field generation method in Sec.
III-B. Finally, we will show our warping technique in III-C.

A. Image Linearization Problem in Fisheye Cameras

Classical variational stereo methods consist of finding a
dense disparity map between a pair of images that minimizes
a convex energy function which includes a data term and a
smoothness or regularizer term. This energy is often expressed
as:

E(u) = Edata(u) + Esmooth(u) (1)

where u ∈ R is the one-dimensional disparity that indicates
the Euclidean distance (in pixels) between two corresponding
points in an image pair. For fisheye cameras, these correspon-
dences are constrained along the epipolar curve, γ : R →
R2 and finding them constitutes a one-dimensional search
[8][11][12] along γ. In our case, we solve the correspondences
in a variational framework.

In general, the data term penalizes the difference in value
(e.g. brightness, intensity gradient, non-local transforms [15],

etc.) between the corresponding pixels through a residual
function ρ. Given two images, I0 and I1, with known camera
transformation (non-zero translation) and intrinsic parameters,
we can express the set of corresponding pixels along the
epipolar curve as {(x, π(exp(ξ̂1) ·X(x, u)) : x ∈ R2}, where
π : R3 → R2 is the projection of the 3D point X on the image
plane Ω1 ∈ R2 of I1. The camera pose ξ1 ∈ R6 is the pose
of I1 relative to I0 such that the twist ξ̂1 ∈ se(3) represents
the 4x4 matrix parameterized by the exponential coordinates
ξ1. The residual is then defined as:

ρ(x, u) = I1

(
π
(

exp(ξ̂1) ·X(x, u)
))
− I0 (x) (2)

Assuming that I0 and I1 is linear along the curve,
we can approximate Eq. (2) with ρ̄ using the first-
order Taylor expansion. Using a simplified notation
I1

(
π
(

exp(ξ̂1) ·X(x, u)
))

= I1(x, u), the residual can
be expressed as:

ρ̄(x, u) = I1(x, uω) + (u− uω)
d

du
I1(x, u)

∣∣∣∣
uω

− I0(x) (3)

where uω is a known disparity (solved from a prior iteration).
Minimizing Eq. (3) results in the incremental disparity which
we will designate from here on as δuω = (u− uω).

Since the linearity assumption for I is only valid for a small
disparity, we embed Eq. (3) in an iterative warping framework
[16]. That is, for every warping iteration ω, we update uω+1 =
uω + δuω .

Solving Eq. (3) also requires the evaluation of the derivative
d
duI1(x, u) which can be expressed as the dot product of the
gradient of I1(x, u) and a differential vector at x:

d

du
I1(x, u) = ∇I1(x, u) · d

du
π
(

exp(ξ̂1) ·X(x, u)
)

︸ ︷︷ ︸
differential vector

(4)

However, in practice, we directly solve for the variations of
I1 along the epipolar curve. In discrete form, we can express
this as:

d

du
I1(x, u) = I1(x+γ′)− I1(x) (5)

where the differential vector is simplified as γ′. For small dis-
parities, this differential vector is equivalent to the tangential
vector of the epipolar curve γ′ = ∇γ.

This formulation for minimizing the residual raises two
issues when used in a fisheye camera system.
• First, the warping technique requires a re-evaluation of
γ at every iteration to find the tangential vectors ∇γ
at uω . While this process can be performed using an
unprojection-projection step such as in [8], we argue
that this is unnecessarily time consuming and tedious
depending on the camera model used.

• Second, even if we assume that the image is perfectly
linear along the epipolar curve, ∇I will only be valid
along the direction of the tangential vectors. In a perspec-
tive projection, this is not a problem since the tangential
vectors indicates the exact direction of the epipolar lines.
In our case, the gradient will need to be evaluated exactly
along the curve.
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Fig. 2. Calibration (left) and trajectory (right) field for a binocular fisheye
stereo.

In the following sections, we will elaborate on our approach
to address these two issues.

B. Trajectory Field Representation for Epipolar Curves

As pointed out in the previous section, one way to estimate
the differential vectors is to solve for the tangent of the
epipolar curve at the exact point in the image determined
by uω . This is necessary because the disparity uω does not
point exactly to a pixel (non-integer value). However, since
the function of the curve is already fixed at known points,
i.e. pixels, why not solve for it once and then interpolate the
values in between?

With that said, we propose to generate a trajectory field
image that represents the tangential vectors γ′ at every pixel
x. As a result, γ′ at the next iteration step can be simply solved
using bicubic interpolation.

First, instead of solving for the parameterized curve function
for every pixel as in [17], we programmatically generate the
trajectory field. We first assume a known transformation ξ1
between two camera positions with non-zero translation (|t| 6=
0) and known projection π. Note, however, that our method is
not restricted on any type of camera model [9] [18] [19] and
is adaptable as long as the projection function π is defined.

Using π, we project a surface of arbitrary depth onto the
two cameras: x0 = π(X), x1 = π(exp(ξ̂1) ·X) which gives
us the exact correspondence w(x0,x1) = x1−x0. Note that
in a perspective projection, this mapping or the optical flow
already signifies the slope of the epipolar lines. Assuming pre-
rotated images, i.e. R=identity, the direction of the optical
flow, w

|w| , will be dependent only on the direction of the
camera translation t and independent of its magnitude |t| and
the surface depth |X|. However, for fisheye projection, w

|w| is
still also affected by the camera distortion.

To handle the distortion, we can represent the optical flow
as the sum of the tangential vectors along the path of the
epipolar curve between the two corresponding points. Let the
parameterization variable for γ be s = [0, 1]. In continuous
form, we can express w(x0,x1) as:

w(x0,x1) =

∫ c

0

γ′(s)ds

∣∣∣∣
c=1

(6)

By scaling the camera translation such that |t| → 0, the
projected surface produces an optical flow field with very small

magnitudes. In this case, the left hand side of (6) approaches
0. It follows that the right hand side becomes:

lim
c→0

∫ c

0

γ′(s)ds = γ′(0) (7)

which finally allows us to approximate γ′(0) ≈ w
|w| . In short,

w
|w| gives us the normalized trajectory field. An example
trajectory field image generated for a binocular stereo system
is shown in Figure 2.

C. Warping Technique

The iterative warping framework requires the determi-
nation of I1(x, uω) in Eq: (3) with the given uω . The
direct way of solving this is to find the 2D coordinate
π
(

exp(ξ̂1) ·X(x, uω)
)

which requires unprojection to find
X(x, uω) and then reprojecting X to I1 using π.

As an alternative, we can instead use the trajectory field to
find the warping vector or the optical flow, wω . In this case,
we can find the warped I1 using I1(x, uω) = I1(x+wω). To
do this, we need to understand how the trajectory field relates
to the optical flow.

The trajectory field discretizes the epipolar curve by assign-
ing finite vector values for every pixel. We can think of this
approach as decomposing the epipolar curve as a piecewise
linear function (see Figure 3) which allows us to express the
disparity u as:

u =

N∑
ω=0

δuω (8)

where N is the total number of warping iterations.
Clearly, we can better approximate the epipolar curve by

making the incremental δuω small. We can do this by setting
a magnitude limit such that δuω = min(δuω, δu

max). By
assigning a limiting value δumax, we prevent missing the
trajectory of the correct epipolar curve (see Figure 3). This
approach consequently solves the problem of constraining the
image linearization along the curve and allows us to continue
using the discrete derivative for I1 in Eq. (5).

The warping vector wω can now be defined as the sum
of the vectors whose magnitudes are equal to the incremental
disparities and directions as the tangent of the epipolar curve.
We can express this as:

w =

N∑
ω=0

wω =

N∑
ω=0

δuωγ
′
ω (9)

IV. IMPLEMENTATION

In this section, we discuss our implementation choices
to achieve accurate results and real-time processing, which
includes image pre-processing, large displacement handling
and our selected optimization parameters and hardware con-
siderations.
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Fig. 3. Epipolar curve as a piecewise linear function. Large incremental δuω
results in wrong tracked curve.

A. Anisotropic TGV-L1 Optimization

Our proposed algorithm can be applied on any regularized
variational stereo method that uses the image linearization
step described in Sec. III-A such as [1][2] and [20] among
others. In this work, we followed the anisotropic tensor-guided
total generalized variation (TGV) regularizer with L1 data
penalty term described in [2]. We chose this method because
it produces smooth surfaces while maintaining sharp object
boundaries and can be implemented in real-time. The TGV-
L1 energy term is summarized as:

E(u) =λ

∫
Ω

|ρ(x, u)| d2 x+

α0

∫
Ω

|∇v| d2 x+α1

∫
Ω

∣∣∣T 1
2∇u− v

∣∣∣ d2 x (10)

where T
1
2 is an anisotropic diffusion tensor. Eq. (10) allows

the disparity u to be smooth by imposing a small variation
(∇v) through the relaxation variable v while maintaining the
natural object boundaries described by the image gradients and
guided by the diffusion tensor.

We can minimize Eq. (10) using primal-dual algorithm,
which consists of a gradient-ascent on the dual variables p
and q, followed by a gradient-descent and over-relaxation
refinement step on the primal variables u and v : R2. The
dual variables p and q compose the convex sets P and Q,
respectively, such that:

P = {p ∈ R2 : |p|∞ ≤ 1}
Q = {q ∈ R4 : |q|∞ ≤ 1} (11)

The primal-dual algorithm can be summarized as:

pk+1 = P
(
pk + σpα1(T

1
2 ∇ūk − v̄k)

)
qk+1 = P (qk + σqα0(∇v̄k))

uk+1 = (I + τu∂G)−1(un + τudiv(T
1
2 pk+1))

vk+1 = vk + τv(divqk+1 + pk+1)

ūk+1 = uk+1 + θ(uk+1 − ūk)

v̄k+1 = vk+1 + θ(vk+1 − v̄k)

(12)

where P(φ) = φ
max(1,‖φ‖) is a fixed-point projection operator.

The step sizes τu > 0, τv > 0, σu > 0, σv > 0 are solved using
a pre-conditioning scheme following [21] while the relaxation
variable θ is updated for every iteration as in [22]. The tensor
T

1
2 is calculated as:

T
1
2 = exp(−β |I0|η)nnT + n⊥n⊥T (13)

where n = ∇I0
|∇I0| and n⊥ is the vector normal to ∇I0, while β

and η are scalars controlling the magnitude and sharpness of
the tensor. This tensor guides the propagation of the disparity
information among neghboring pixels, while considering the
natural image boundaries as encoded in n and n⊥.

The so-called resolvend operator [22] (I + τu∂G)−1(û) is
evaluated using the thresholding scheme:

(I + τu∂G)−1(û) = û+


τuλIu if ρ̄ < −τuλI2

u

−τuλIu if ρ̄ > τuλI
2
u

ρ̄/Iu if |ρ̄| ≤ τuλI2
u

where Iu = d
duI1(x, u). In our tests, we used the parameter

values: β = 9.0, η = 0.85, α0 = 17.0 and α1 = 1.2.
The solved disparity is converted to depth by triangulating
the unprojection rays using the unprojection function π−1.
This step is specific for the camera model used, hence we
will not elaborate on methods to address this. Nevertheless,
some camera models have closed-form unprojection function
[9] [18] while others require non-linear optimizations [19].

B. Pre-rotation and calibration

We perform a calibration and pre-rotation of the image pairs
before running the stereo estimation. In the same manner as the
trajectory field generation, we create a calibration field which
contains the rotation information as well as the difference in
camera intrinsic properties (for binocular stereo case).

Again, we project a surface of arbitrary depth on the two
cameras with projection function π0 and π1 while setting the
translation vector t = 0. We then solve for the optical flow
w = x1−x0. In this case the optical flow exactly represents
the calibration field (see Figure 2). In case where π0 6= π1,
such as in binocular stereo, the calibration field will also
contain the difference in intrinsic properties. For example, the
difference in the image center results in the diagonal warping
on our binocular camera system as seen in Figure 2. Using the
calibration field, we warp the second image I1 once, resulting
in a translation only transformation.

C. Coarse-to-Fine Approach

Similar to most variational framework, we employ a coarse-
to-fine (pyramid) technique to handle large displacement.
Starting from a coarser level of the pyramid, we run N
warping iterations and upscale both the current disparity and
the warping vectors and carry the values on to the finer level.

One caveat of this approach on a fisheye image is the
boundary condition especially for gradient and divergence
calculations. To address this, we employ the Neumann and
Dirichlet boundary conditions applied on a circular mask that
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rejects pixels greater than the desired FOV. Specifically:

∇xI =


Ix+1,y − Ix,y if (x, y) ∈M and(x+ 1, y) ∈M
Ix,y − Ix−1,y if (x, y) ∈M and(x+ 1, y) /∈M
0 otherwise

∇yI =


Ix,y+1 − Ix,y if (x, y) ∈M and(x, y + 1) ∈M
Ix,y − Ix,y−1 if (x, y) ∈M and(x, y + 1) /∈M
0 otherwise

∇ · I =

{
Ix,y − Ix−1,y + Ix,y − Ix,y−1, if (x, y) ∈M
0 otherwise

(14)

where M indicates the region inside the circular mask. The
mask is scaled accordingly using nearest-neighbor interpola-
tion for every level of the pyramid. Moreover, by applying a
mask, we also avoid the problem of texture interpolation with
a zero-value during upscaling when the sample falls along the
boundary of the fisheye image. We summarize our approach
in Algorithm 1.

D. Timing Considerations

We implemented our method with C++/CUDA on an i7-
4770 CPU and NVIDIA GTX 1080Ti GPU. We fix the
iteration values based on the desired timing and input image
size. For an 800x800 image, we found that the primal-dual
iteration of 10 is sufficient for our application, with pyramid
size = 5 and scaling = 2.0 (minimum image width = 50).

For the warping iteration, we plot the trade-off between
accuracy and processing time in Figure 4 with respect to the
percentage of erroneous pixels > 1 px with fixed δumax =
0.2 px. From the plot, we can see that the timing linearly
increases with the number of iterations, but the accuracy
exponentially decreases. Choosing a proper value for N needs
careful considerations according to the application and scene.

Algorithm 1 Algorithm for variational fisheye stereo.

Require: I0, I1, ξ̂1, π
Generate calibration field (Sec. IV-B)
Generate trajectory field (Sec. III-B)
Warp I1 using the calibration field
ω = 0, wω = 0, uω = 0, pyrlevel= 0
while pyrlevel<pyrLevels do

while ω < N do
Warp I1 using wω

while k <nIters do
TGV-L1: primal-dual optimization (12)

end while
Clip δuω (Sec. III-C)
uω+1 = uω + δuω
wω+1 = wω + δuωγ

′
ω

end while
Upscale uω , wω , ω = N

end while
Output: u
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Fig. 4. Trade-off between accuracy and processing time for choosing the
warping iteration (better viewed in color)

V. RESULTS AND COMPARISON

We present our results in the following sections. First, we
show the effect of limiting the magnitude of the incremental
disparity solution per warping iteration to the accuracy of the
estmation. Then, we present the advantage and disadvantages
of using the trajectory field compared to actually solving the
epipolar curve for each pixel in every warping iteration. We
also compare our method with an existing rectified variational
stereo method and a discrete non-rectified stereo matching
method.

For our comparisons, we use both synthetic and real datasets
with ground truth depth. The synthetic dataset consists of
a continuous sequence with 300 frames and four arbitrary
stereo pairs re-rendered from [24] using Blender [25]. The
real dataset consists of 144 image pairs with arbitrary camera
motion (randomized rotation and non-zero translation) taken
using a FARO Focus S 3D laser scanner [26] from a mixture
of indoor and outdoor scenes. We also show some sample
qualitative results on a commercial-off-the-shelf stereo camera
fisheye system. Our dataset is available from our project page:
https://www.github.com/menandro/vfs.

A. Limiting Incremental Disparity

To test the effect of limiting the incremental disparity, we
measure the accuracy of our method on varying warping itera-
tion and disparity limits. In Figure 5, we show the photometric
error (absolute normalized intensity difference between I0 and
warped I1) when δumax = 1.0 px and δumax = 0.2 px. From
the images, we can see that the photometric error is larger
in areas with significant information (e.g. intensity edges and
occlusion boundaries) when δumax = 1.0 px compared to
δumax = 0.2 px. This happens because it is faster for the
optimization to converge in highly textured surfaces which
results in overshooting from the tracked epipolar curve, as
shown in Figure 3.

However, limiting the magnitude of δu has an obvious draw-
back. If the warping iteration is not sufficient, the estimated δu
will not reach to its correct value which will result in higher
error. We show this effect in Figure 6 where we plot various
warping iterations N and show the accuracy of estimation with
increasing δumax using percentage of erroneous pixel measure
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Input Depth Photometric Error

Fig. 5. Depth image and photometric error (absolute normalized intensity difference between I0 and warped
I1) for varying values δu. Limiting the magnitude of δu per warping iteration reduces the error around sharp
image gradients and occlusion boundaries.
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Fig. 6. Accuracy of disparity (percent-
age of erroneous pixels, τ > 1 px) with
limiting the magnitude of δu for different
warping iteration values N .
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Fig. 7. Comparison between [2] with different field-of-view (90◦ and 165◦)
and our method. We compare the disparity error [23] as well as percentage
of accuracy improvement by using our method.

(τ > 1 px) [23]. Clearly, increasing the iteration N and using
smaller δumax results in a more accurate estimation.

B. Trajectory Field Sampling vs. Epipolar Curve

Using the trajectory field allows us to perform GPU texture
sampling and take advantage of hardware interpolation speed.
In this section, we compare the trajectory sampling method
(VFS) with actually solving the epipolar curve for every
warping iteration with different camera models such as the uni-
fied camera model with [9](VFS-ucm) and without distortion
[27] (VFS-ucmd), Kannala-Brandt model [19] (VFS-kb) and
the equidistant model (VFS-eq). For analysis, we reduce the
enhanced unified camera model [18] to VFS-ucm by assuming
a spherical projection surface.

1) Time Consumption: The function defining the epipolar
curve is dependent on the camera model being used which

TABLE I
ADDITIONAL TIME CONSUMPTION (PER 100 WARPING ITERATIONS)

USING THE EPIPOLAR CURVE WITH DIFFERENT MODELS W.R.T.
TRAJECTORY FIELD SAMPLING .

Method Time(ms)

VFS-ucm +20.4
VFS-ucmd +139.6

VFS-kb +219.6
VFS-eq +30.4

needs to be calculated per warping iteration. We do this by
first unprojecting the 2D pixels of I0 to an arbitrary 3D
surface and then reprojecting the 3D points onto I1 after
applying the camera transformation. Methods that have closed
form unprojection function such as VFS-ucm and VFS-eq are
straightforward and fast, but do not handle real-world fisheye
distortions [27].

On the other hand, more complete models such as VFS-
ucmd and VFS-kb that discretely model the distortion are
significantly slower due to the non-linear optimization needed
in solving the unprojection function. In our implementation,
we perform a few iteration of the Newton’s method for VFS-
ucmd and VFS-kb and achieved a convergence error (variation
in the final value) of less than 2%. In our experiments, we
observe a convergence around the inner regions of the image
after four iterations. We show the additional consumed time
compared to trajectory field sampling VFS per 100 warping
iterations in Table I.

2) Accuracy: While the trajectory sampling approach al-
lows us to perform a fast linear interpolation to determine the
subpixel tangential vectors, it will still introduce additional
errors because the path connecting two pixels is a curve and
not a line. We determine this additional error experimentally
by comparing VFS and VFS-eq. We use the equidistant
model for comparison to remove the dependency on calibration
accuracy when using other models and limit the resulting error
to come only from the interpolation.
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Fig. 8. Sample results on real and synthetic data with [12] and our method with disparity error [23].

TABLE II
AVERAGE DISPARITY ERROR (% OF ERRONEOUS PIXELS > 3PX), MEAN ABSOLUTE ERROR AND STANDARD DEVIATION COMPARISON ON REAL AND

SYNTHETIC DATASET WITH RECTIFIED, NON-RECTIFIED, AND OUR METHOD.

syn-4 syn-Seq real
method Out-Noc% MAE σ density% Out-Noc% MAE σ density% Out-Noc% MAE σ density%

rectified [2] 7.23 1.05 7.30 44.44 0.58 0.18 0.45 84.03 - - - -
planesweep [12] 2.19 0.77 1.01 95.92 0.51 0.31 0.54 90.88 11.86 1.75 1.41 45.03

VFS 0.89 0.32 0.55 100.00 0.20 0.18 0.29 100.00 10.13 1.30 1.31 100.00
VFS-eq 0.88 0.28 0.54 100.00 0.17 0.17 0.28 100.00 8.24 1.11 1.33 100.00

For comparison, we use both the synthetic and real dataset
and summarize the results in Table II. For the synthetic dataset,
VFS-eq is expectedly more accurate than VFS. For the real
dataset, VFS-eq also has lower mean absolute error (MAE)
compared to VFS but with slightly higher standard deviation
(0.02 px) which is acceptable since the MAE is lower by
0.19 px.

C. Comparison with Rectified Method

We first compare our proposed approach with an existing
rectified stereo method. To achieve a fair comparison, we use
the same energy function and parameters in our implemen-
tation, except that we apply them in a rectified image. This
rectified stereo approach is similar to the method presented
in [2], except that we use intensity values instead of the
census transform. We also explicitly applied a time-step pre-
conditioning step and a relaxation after every iteration.

We compare our method with varying FOV for [2] on the
synthetic dataset. We use the same erroneous pixel measure
from the previous section and summarize the result in Table II
using an FOV of 165◦ for [2]. We also compare the disparity
error [23] as well as the improvement additional accurate
pixels (see Figure 7) using the full 180◦ for our method and
a FOV of 90◦ and 165◦ for [2]. We select these FOV’s to
highlight the compression problem when using rectification
method and how it affects the estimation using the variational
methods.

To better visualize the comparison, we transform the recti-
fied error back to the original fisheye form. From the results,

extreme compression around the center with ultra-wide angle
(165◦ and higher) rectification results in higher error especially
for distant objects. With larger image area coverage, our
approach do not suffer from this compression problem and
maintains uniform accuracy throughout the image. Moreover,
with the lower compression around the center (90◦), the
rectified method have increased error around the edges for
closer objects (ground) due to increased displacement. This
observation is arguably scene dependent. However, we believe
that this type of scenario is ubiquitous to outdoor navigation
especially in autonomous driving where objects close to the
center of the camera are far away and objects close to the
edge are nearby. Moreover, this highlights the importance of
directly using the fisheye instead of performing rectification
and undistortion.

Additionally, we found no significant difference in process-
ing time because the warping techniques are both run in a
single GPU kernel call and consumes the same texture memory
access latency.

D. Comparison with Non-Rectified Method

In this section, we compare our method with planesweep
implemented on a fisheye camera system [12] on real and
synthetic scenes. The images were captured from two arbi-
trary camera location with non-zero translation. We show the
sample results in Figure 8 and Table II.

One of the advantages of variational methods is the inherent
density of the estimated depth when compared to discrete
matching methods. In our experiments, we found that while
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our method is denser and significantly smoother than [12], it is
more prone to miss very thin objects such as poles. Moreover,
because our method is built upon a pyramid scheme, very large
displacements are difficult to estimate which is visible in the
results when the object is very close to the camera (nearest
ground area).

Nevertheless, we show in Table II that our method is overall
more accurate compared to [12] even after we removed the am-
bigous pixels due to occlusion and left-right inconsistency. (In
Table II, we use only the valid pixels in [12] for comparison).

E. Real-World Test

We tested our method on a laptop computer with NVIDIA
GTX1060 GPU and an Intel RealSense T265 stereo camera,
which has a 163± 5◦ FOV, global-shutter 848x800 grayscale
image and a 30fps throughput. We show the sample results
in Figure 1. We were able to achieve a 10fps with 5 warping
iterations on a full image, and 30fps with 20 warping iterations
on a half-size image. This system can be easily mounted on
medium sized rover for SLAM applications.

VI. CONCLUSION AND FUTURE WORK
In this paper, we presented real-time variational stereo

method for fisheye cameras without explicit image rectification
and undistortion by generating a trajectory field induced by
camera motion. From our results, we showed that our approach
is denser, smoother and more accurate compared to non-
rectified discrete methods and handles larger FOV compared
to rectified methods while improving accuracy and without
increasing processing time.

Because of the wider FOV of fisheye cameras, the disad-
vantage of most variational methods, which is handling large
displacement (wide baseline or near objects), is highlighted.
However, this can be overcome by using large displacement
techniques or initialization with discreet methods (such as
planesweep). Moreover, since the trajectory field can be gen-
erated by projecting an arbitrary surface to the camera images
using a projection function, we can say that any projec-
tion model (spherical, equirectangular, and even perspective)
should, at least theoretically, work with our method.
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