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Abstract Positioning of vehicles is important for ITS. In
a tunnel environment, most positioning solutions based on
GPS sensors or ordinary cameras will fail. For positioning
we propose a method to detect emergency telephone indica-
tors in a tunnel environment by using infrared cameras. The
proposed detection method makes use of both appearance
and motion information of the target objects. By optimizing
the detecting pipeline, the method works in real time and
produced 100 % detection rate and 0 % false alarm rate in
one of our experiments.

Keywords Object detection · Positioning

1 Introduction

Positioning of vehicles acts as a fundamental role in
autonomous driving, and is also of great importance for
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driving assistance, vehicle navigation, etc. When GPS sen-
sors function properly, the task is easy. While in a tunnel
environment, there are no GPS signals available for most of
the time. A new positioning system which functions prop-
erly in a tunnel environment is necessary [6]. In this paper
we propose an object detection method which can be used
for positioning systems in tunnels.

Our proposal is part of an automated driving system
in a NEDO project, “Development of Energy-saving ITS
Technologies”. The automated driving system is vehicle-
oriented, and an express way is the main application sce-
nario. No specific facilities are assumed to exist on road
sides, while instead, the experimental vehicles are equipped
with sensors and vehicle-to-vehicle communication sys-
tems. There are a few sensors used for positioning. For
example, sensors used to extract white road lines to esti-
mate the lateral position in the lane, GPS sensors, dead
reckoning systems, and stereo far-infrared camera systems
intended for obstacle detection. On the street, GPS sensors
can be used for positioning. While positioning in tunnels
is difficult since GPS signals are not available and no spe-
cific equipment on road sides is assumed. For positioning in
tunnels, GPS sensors are used to record the position of tun-
nel entrances, and dead reckoning systems are used to infer
position by continuously sensing the vehicles’ speed and
direction. However, errors of dead reckoning systems will
accumulate. Thus, the proposed method uses far-infrared
cameras installed on the vehicles to detect signs in the tun-
nels, which contain position information, and will be used
to eliminate the accumulated errors.

In most tunnels on the expressways in Japan, there are
many signs appearing at equal intervals. We focus on the
emergency telephone indicators, which appear every 200
meters in tunnels. The absolute coordinates of the emer-
gency telephone indicators can be obtained by the method
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of [30]. If the emergency telephone indicators can be sensed
while traveling in tunnels, and the distance from the vehicle
to the indicators can be estimated, then this information can
be used to eliminate accumulated errors of dead reckoning
systems. Detection methods, e.g., [29], based on ordinary
cameras fail due to darkness. Here we use far-infrared
cameras, which are suitable in dark environments and are
already installed on our experimental vehicles. Inspired by
a previous work [28], we propose an approach to detect
emergency telephone indicators.

Detection performance and efficiency are the two impor-
tant aspects of our method. In a tunnel environment, in
addition to the target objects, a lot of noisy objects also
appear, e.g. ordinary lights, other vehicles, and other vehi-
cles’ shadows. And some of the noisy objects cannot even
be distinguished from the target objects by appearance, as
shown in Fig. 1. The clutter property of the sensed data
makes the detection challenging. Our method meets this
challenge by making use of both appearance and tempo-
ral information of the target objects. There are two main
steps in the method. The first step deals with keypoints. It
takes original data as input, and outputs keypoint clusters
as detection hypotheses. In this step, keypoints are detected,
verified and then clustered. To detect keypoints, all points
on each frame are uniformly sampled and filtered with pre-
set intensity thresholds. Then the keypoints are verified by
a simple keypoint appearance model built by k-means. At
the end of the first step, the keypoints are clustered based on
the Euclidean distance. The second step takes the keypoint
clusters as input, verifies them by appearance and temporal
information, and outputs the keypoints which pass verifica-
tion, as detection results. In the second step, the keypoint
clusters are labeled based on appearance by an Adaboost
machine, which is trained using intensity histograms of key-
point clusters from target objects and keypoint clusters from
noisy objects. The keypoint clusters are also tracked by
temporal association through frames. Motion information

encoded in the trajectories are used to further verify the
keypoint clusters. Finally, the keypoint clusters which pass
both appearance and temporal verifications are confirmed
as emergency telephone indicators.

This pipeline is also designed with consideration for the
requirement of efficiency. The method deals with the large
amounts of information contained on one frame, following
a hierarchical manner. The later a step is, the more time-
consuming it is, and the fewer instances it deals with. From
an image containing 105 pixels, 104 points go through the
keypoint detection step of testing by intensity thresholds.
Then in average, 103 keypoints are detected, and verified,
leaving about 102 keypoints to be clustered. Afterwards,
fewer than 10 keypoint clusters are left; these are dealt
with by the very time-consuming steps of generating image
features and tracking.

The advantage of our method is its ability to give promis-
ing detection results from cluttered data in real time. In
addition, this method successfully combines bottom-up and
classification methods, as well as combines both appearance
and temporal information.

The paper is organized as follows: Section 2 reviews
related work, Section 3 proposes a pipeline for the
method, Section 4 gives experimental results, and Section 5
concludes.

2 Related Work

Most modern detection methods fall into two categories.
Some [5, 8, 10, 14, 19, 25, 27, 32] follow the sliding-
window schema, and they detect objects by considering
whether each of the sub-images contains an instance of
the target object. Classifiers are usually employed by these
methods. The other methods [1, 7, 9, 16, 20–22] infer object

Fig. 1 Original data and detection results. In (a), the red arrow points
to the target object: emergency telephone indicator, and the green
arrows point to noisy objects. In (b), red rectangles mark detec-
tion hypotheses labeled as positive using appearance information, and

green rectangles mark negative ones. Yellow trajectories mark detec-
tion hypotheses labeled as positive using temporal information, and
white trajectories mark negative ones
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centers based on local image features in a bottom-up man-
ner. The proposed method takes advantages of both frame-
works. Following the bottom-up manner, keypoints are
detected, verified, and clustered. After these steps, the key-
point clusters are considered as detection hypotheses. Then
following the sliding-window schema, the keypoint clusters
are verified by their appearance and temporal information,
using discriminative methods. Previous methods [24] also
consider the combination of the two frameworks. Detec-
tion hypotheses are gained using a Hough transform and
then verified by support vector machines in [20, 31]. The
methods in [11, 23], use randomized decision trees for
both decisions: whether local features belong to foreground
objects or not, and decisions of their Hough votes. The
method proposed in [15] describes both frameworks in the
same manner. While giving state-of-the-art detection per-
formance, these other methods can’t meet the requirement
for efficiency as our method does. Our work is also related
to feature grouping methods [31], detecting methods using
trajectories [3, 4], tracking methods [12, 17], and meth-
ods integrating appearance and temporal information [29].
Especially, compared with the method proposed in [28],
our method employs a more effective classifying machine
by setting biased weights for positive and negative training
examples, and far over-performs [28].

3 Emergency Telephone Indicator Detection

Our proposal can be considered a two-step method. The first
step deals with keypoints. It takes original data as input, and
outputs keypoint clusters as detection hypotheses. The sec-
ond step takes these keypoint clusters as input, verifies them
by their appearance and motion information, and outputs the
ones which pass verifications as detection results.

3.1 Keypoint Detection

In data collected using ordinary cameras, keypoints [2,
18] invariant to rotations, affine changes, and illumina-
tion changes are preferable. In our case, keypoint detection
is intended to provide hypotheses for emergency tele-
phone indicators. Thus intensity is of great importance. Our
method employs a simple yet useful method to detect key-
points. Firstly, points are uniformly sampled for an offset
of 6 in width, and 7 in height (the length of an emergency
telephone indicator is larger than its width). In this manner
the magnitude of instances is reduced by nearly two orders.
Then points that pass the test, which verifies them by set-
ting intensity thresholds, are considered as keypoints. Here
a Gaussian distribution is assumed for the intensities of the
points.

let{x} denote all the sampled points, Ix the intensity of
each point, and lx the label. If the point is considered as
belonging to emergency telephone indicators, lx = 1, oth-
erwise, lx = 0. By setting lower threshold, I th1

x , and higher
threshold, I th2

x , the probability that points belongs to emer-
gency telephone indicators based on their falling into this
interval is given by,

P
(
lx = 1|I th1

x ≤Ix≤I th2
x

)
= P

(
lx = 1, I th1

x ≤Ix≤I th2
x

)

P
(
I th1

x ≤Ix≤I th2
x

) .

(1)

At this step, the possibility that as few points as possi-
ble, belonging to the emergency telephone indicators, are
excluded, is also considered. The probability of one point
falling into the defined interval based on its belonging to
emergency telephone indicators is given by,

P
(
I th1

x ≤Ix≤I th2
x |lx = 1

)
= P

(
lx = 1, I th1

x ≤Ix≤I th2
x

)

P (lx = 1)
.

(2)

Points for which the intensities fall in the pre-set thresh-
olds, are detected as keypoints.

3.2 Keypoint Verification

As shown in Fig. 2b, the detected keypoints don’t just
belong to emergency telephone indicators, but also belong
to the background. For training purposes, keypoints belong-
ing to emergency telephone indicators are considered posi-
tive, all others are negative.

To verify the keypoints, the appearance of the sub-image
around each keypoint is used. Intensity histograms are used
to describe the appearance. Noisy keypoints not only come
from the wall of the tunnel, but also from ordinary lights,
other vehicles, and other vehicles’ shadows. Thus robust lin-
ear classifiers are not suitable for the verification. Here, a
general model in the form of a simple mixture is used. The
k-means method is used to cluster the intensity histograms,
{Ax, lx = 1}, of the positive keypoints, and, {Ax, lx = 0}, of
the negative keypoints.

Let
{
Ci

1, i = 1, 2, ..., n1
}

denote the intensity histogram
centers of the positive keypoints, and

{
Ci

0, i = 1, 2, ..., n2
}

the negative. For each C1, the average Euclidean distance
between

{
Ci

0, i = 1, 2, ..., n2
}

is calculated as,

Eu
(
Ci

1

)
= 1

n 2

n2∑
j=1

Euclid
(
Ci

1, C
j

0

)
. (3)

Here, Euclid(·) calculates the Euclidean distance, and
Eu(·) is an evaluation function of the positive feature cen-
ters. The positive feature centers are ranked by Eu(·), and
the 10 positive feature centers with the largest Eu(·) are
chosen and used for verification.
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Fig. 2 Keypoint detection

For verification, the intensity histogram of each key-
point’s surrounding sub-image is extracted. Then the
Euclidean distance between the extracted intensity his-
togram and its nearest positive feature center is calculated. If
this distance exceeds a threshold, Dth

Ax
, it is considered nega-

tive, otherwise it is considered positive. Here, for simplicity,
unlike [26], the same threshold is used for all components
of the mixture.

3.3 Keypoint Clustering

After the keypoint verification step, on some frames the
result is pretty good, while on other frames appearance of
the keypoints is not enough to decide whether the key-
points belong to the emergency telephone indicators or not.
Here generation of keypoint trajectories is not feasible, since
nearby keypoints are similar in appearance and the time
complexity of associating such a large number of keypoints
along the time dimension is high. So the keypoints are clus-
tered, then data association in time dimension only is needed
to deal with a small number of keypoint clusters.

To cluster the keypoints, a minimum spanning tree (mst)
is built using the pairwise Euclidean distance between two
keypoints. Then the mst is split by cutting edges larger than
a threshold. This results in a grouping of the keypoints,
denoted by, γ = {g}.

3.4 Keypoint Cluster Verification by Appearance

For each keypoint cluster, the smallest bounding rectangle
is considered a detection hypothesis, as shown in Figs. 3c
and 3d. There are three main sources of noise: ordinary
lights, other vehicles, and other vehicles’ shadows. The
global appearance of ordinary lights is different from that
of the emergency telephone indicators’. As ordinary lights
get further from the infrared camera, the intensities of
their corresponding sub-images in the collected data gets
lower. At a certain distance, the intensities of the ordi-
nary lights are almost the same as the intensities of the
emergency telephone indicators’. For ordinary lights of

which the intensities are higher than the intensities of emer-
gency telephone indicators’, the transition regions from
the lights to tunnel walls will have similar intensities as
the emergency telephone indicators’. This indicates that
although locally the emergency telephone indicators share
the same appearance with ordinary lights, globally they
can still be distinguished by appearance. As for other vehi-
cles and their shadows, their intensity range is very close
to the intensity range of the emergency telephone indica-
tors’, and they can hardly be distinguished by appearance
alone.

At this step, the keypoint clusters are verified by their
appearance, ideally excluding keypoint clusters belonging
to ordinary lights. An Adaboost machine is trained using
intensity histograms of the emergency telephone indicators
and ordinary lights. The appearance of other vehicles is
close to that of the emergency telephone indicators, and
they are not used for training the machine. For training of
the machine, labeled 32-dimensional intensity histograms
are firstly normalized. Then each weak classifier of the
machine makes a decision on one dimension of the intensity
histograms. After this step, each keypoint cluster is either
labeled as positive or negative.

In this step, to emphasize the Adaboost machine’s perfor-
mance on the positive training examples, we set the initial
weights of the positive training examples 7 times as large as
the weights of the negative training examples. Since in prac-
tice, whether each keypoint cluster is a target object or not
is decided by both appearance and motion information. The
difficulties of excluding noisy objects can be left for later
steps.

3.5 Keypoint Cluster Tracking

Not all noisy detection hypotheses can be excluded by using
appearance, as shown in Fig. 4. To distinguish keypoint
clusters belonging to other vehicles and their shadows, the
keypoint clusters are tracked through frames to generate
trajectories.

In our case of keypoint cluster tracking, the problem
is relatively simple, since no occlusion occurs. To keep
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Fig. 3 Keypoint verification
and clustering. Red circles mark
keypoints which pass the
verification, while blue marks
failed ones. Rectangles mark
keypoint clustering results

the method on-line and maintain efficiency, a pool of tra-

jectories are kept, τ =
{
T i

g , i = 1, 2, ..., n
}

, and new

detection hypotheses act as detection responses, ν ={
ni

g, i = 1, 2, ...m
}

, in tracking. The problem of tracking

is modeled by finding the best data association hypothesis,
H ∗, between the trajectory set and detection response set
as,

H ∗ = arg max
H∈η

(P (H |τ, ν))

= arg max
H∈η

⎛
⎜⎜⎝

∏
(
T i

g ,n
j
g

)
∈H

Plink

(
n

j
g|T i

g

)
⎞
⎟⎟⎠ . (4)

Let uij = 1 or 0 indicate if n
j
g is linked to T i

g or
not, and assuming each trajectory can link once, and each

detection response can only be linked once, the problem can
be modeled as,

arg max
uij

n∑
i=1

m∑
j=1

uij ln Plink

(
n

j
g|T i

g

)

s.t. : uij = 0 or uij = 1, ∀ i, ∀ j ;
n∑

i=1

uij ≤ 1 ;
m∑

j=1

uij ≤ 1 .

Here, Plink

(
n

j
g|T i

g

)
is defined by the appearance differ-

ence, the scale difference, and the time gap between the
last detection response contained in T i

g and n
j
g . While the

Hungarian algorithm [13] gives a near-optimal solution, we
follow a very simple manner for the solution by finding the
best matched pairs and excluding them until no matching
pairs can be found.

Fig. 4 Keypoint cluster
verification by appearance. Red
rectangles: positive detection
hypotheses, and green: negative
detection hypotheses
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3.6 Keypoint Cluster Verification by Motion

As shown in Fig. 5, the trajectories from keypoint clusters
belonging to emergency telephone indicators are different
from other objects’ trajectories. In this step, the temporal
information encoded in the trajectories is used to further ver-
ify the keypoint clusters. A linear model is used to fit each
trajectory, and the Pearson Correlation Coefficient(PCC) of

the fitting is the criteria for the decision. Let
(
xi

g, y
i
g

)
denote

the coordinate of the ith element belonging to a trajectory.
The linear assumption is that yi

g = a0 + a1x
i
g. The PCC of

the fitting is defined as,

r =

∣∣∣∣∣∣∣∣∣

∑
i

(
xi

g − x̄g

) (
yi

g − ȳg

)

[∑
i

(
xi

g − x̄g

)2 · ∑
i

(
yi

g − ȳg

)2
]1/2

∣∣∣∣∣∣∣∣∣
. (5)

Where r is used to decide if the trajectories of the keypoint
clusters belong to emergency telephone indicators or not.

3.7 Object Detection

For each keypoint cluster on the current frame, there exists
a label given by the Adaboost machine according to its
appearance, and the likelihood of fitting its trajectory to
a straight line. For each keypoint cluster, it is considered
an emergency telephone indicator if and only if its label -
given by the Adaboost machine - is positive, its trajectory is
longer than lth, and the likelihood of fitting its trajectory to
a straight line is larger than rth.

Each trajectory not only connects the detection
responses, but also connects the decisions for detection

responses made by their appearance and motion patterns.
The target objects and noisy objects actually appear in suc-
cessive frames, and even if we make a wrong decision on
one frame, we can expect to recover from this mistake based
on the results of other frames. The final results are based
on the trajectories of decisions. When one trajectory ends,
if more than 80 % of the decisions it connects are positive,
then this trajectory is considered positive.

4 Experimental Results

We evaluate our method based on detection performance
and efficiency.

Data To collect data, we mount an infrared camera on top
of the experimental vehicle, and then take several tours
of the Awagatake tunnel. Approximately 7,000 frames are
collected for each tour. The frame size is 640 × 480, the
intensity range is [0,255], and the frame rate is 30 frames
per second.

Implementation Settings All models are trained using data
from the same tour, while evaluated using data from another
tour.

To set intensity thresholds for keypoint detection, Gaus-
sian distribution is assumed for the points belonging to
emergency telephone indicators. Following the 3σ princi-
ple, I th1

x is set to 160 and I th2
x to 190. The approximate

sub-images of the emergency telephone indicators are man-
ually marked, and used for training the mixture model of
keypoint verification. The detected keypoints falling into

Fig. 5 Detection results
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the sub-image are marked as positive, all other points are
marked negative. Note that this model and the training
method may not be very accurate, since more accurate
marking requires more manual effort. About 30,000 inten-
sity histograms of the positive keypoints are sampled, and
about 3,000,000 of the negative. When using of k-means for
clustering the positive intensity histograms, k is set to 40; it
is set to 400 for the negative. By using these k values, both
feature sets are over-segmented. The threshold to verify key-
points Dth

Ax
is set to 0.14 for the normalized histograms. For

keypoint clustering, the threshold to split the mst is set to 40,
which is half the largest height of the emergency telephone
indicators. The Adaboost machine used to distinguish other
vehicles and their shadows is trained by intensity histograms
of positive keypoint clusters and negative keypoint clusters.
We manually mark positive and negative keypoint clusters.
If the Adaboost machine is trained by averagely weighted
training examples, its correct rate on the training examples
is overall 84 %. When trained using our bias weighted train-
ing examples, its correct rate is 94 % for the positive training
examples, and 77 % for the negative training examples. Dur-
ing keypoint cluster tracking, whether a detection response
can be linked to a trajectory or not is constrained by posi-
tion and scale changes. Here scale change limit is set to 4.
When the trajectories are fitted as lines, the linear model is
also used in associating new detection responses.

Detection Results Using an ordinary desktop computer with
Intel Core2 Quad 2.6GHz processors, the method deals with
real data at a frame rate of 41 frames per second, and this
fulfills real-time requirements.

The detection rate and false alarm rate are evaluated on
the keypoint clusters as shown in Table 1. More detection
results are shown in Fig. 5.

While evaluated on a much smaller dataset, the detec-
tion rate and false alarm rate of [28] are 90 % and 19 %
respectively. Our experiment outperforms [28], because our
sensed images are much clearer, and also because of our
more effective training of the Adaboost machine.

The results on the trajectories of decisions are also eval-
uated. The method correctly detects all of the 22 emergency
telephone indicators with no false alarms. The detection rate
is 100 %, and the false alarm rate is 0 %.

Table 1 Detection rate and false alarm rate

Total number 472

Correctly labeled 468

Miss detections 4

False alarms 22

Detection rate 99.2 %

False alarm rate 0.7 %

5 Conclusion

We propose an object detection method to detect emer-
gency telephone indicators in a tunnel environment. The
method makes use of appearance and motion informa-
tion of the target objects in a hierarchical manner. With
careful optimization of the detection pipeline, the method
gives promising results in real time. Based on the detection
results, a positioning system in a tunnel environment can be
expected.
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