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Abstract

This paper presents a new flying sensor system to cap-

ture 3D data aerially. The hardware system, consisting of

a omni-directional laser scanner and a panoramic camera,

can be mounted under a mobile platform (e.g., a balloon or

a crane) to achieve the aerial scanning with high resolution

and accuracy. Since the laser scanner often requires sev-

eral minutes to complete an omni-directional scan, the raw

data is distorted seriously due to the unknown and uncon-

trollable movement during the scanning period. To over-

come this problem, 1) we first synchronize the two sensors

and spherically calibrate them together; 2) our approach

then recovers the sensor motion by utilizing the spacial

and temporal features extracted both from the image se-

quences and point clouds; and 3) finally the distorted scans

can be rectified with the estimated motion and aligned to-

gether automatically. In experiments, we demonstrate that

the method achieves a substantially good performance for

indoor/outdoor aerial scanning in the applications such as

Angkor Wat 3D preservation and manufacturing 3D survey

with respect to other state-of-the-art methods.

1. Introduction

Many applications in science and industry, such as her-

itage preservation, 3D documentation, urban modeling and

manufacturing survey, rely on aerially capturing the 3D

shape of scenes. Since the data missing always happens

on top of the scans captured by the sensors on ground (as

an example shown Fig. 1 (a)), the aerial scanning is often

required to capture the top missing part. In this paper, we

design a new flying range sensor extend from our previous

work in [4] to achieve aerial scanning, as shown in Fig. 1

(b) and (c).

3D laser scanners using Time-of-Flight (ToF) methods

which measure the laser flying time (or phase difference)

that it takes for an object, provide the most accurate shape

recovery compared to the passive or physical techniques [5].

(a)

(d) (e)

(b) (c)

Figure 1. (a) Data missing from the top part of the tower. (b) Pro-

posed aerial scanning system mounted under a balloon. (c) Close-

up of (b).(d) Raw data with distortion obtained by balloon scanner.

(e) Our method: Rectified data by removing the distortion.

Many 3D laser scanners in the market, such as Z+F Imager

5010 [2], achieve the accuracy at 0.1-5mm according to the

distances and materials, and have been shown to produce

the most accurate depth information over the distance from

1m to 120m. In this paper, we focus on laser scanning tech-

niques adopted in aerial scan.

No matter how accurate and detailed data the laser scan-

ners can capture, it usually takes several minutes for one

scan under the moderate resolution. Thus, different from

the scans on the ground, unfortunately the aerial scans are

often distorted due to the unknown and uncontrollable sen-

sor motion, as an example shown in Fig. 1(d) which is cap-

tured from the balloon as shown in Fig. 1 (b) and (c) where

the sensor often shakes due to the physical disturbance such

as wind.

We present an approach for removing the data distortion

by estimating the sensor motion as shown in Fig. 1 (e). we

first synchronize the two sensors by a UTC time clocker

such as that each 3D point and image frame can be associ-
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ated with UTC time. Second we calibrate the two sensors

by assuming that each of them is associated with a spheri-

cal coordinate system and then a 6-parameters transforma-

tion is estimated for aligning coordinate systems. Third we

extract image features which are tracked through 2D image

sequence and scanned by the laser, and recover the sensor

motion by utilizing the spacial and temporal features ex-

tracted both from the image sequences and point clouds.

This paper makes the following contributions.

• To our knowledge, we are the first to build an aerial

scanning system using a high-resolution and omni-

directional laser scanner.

• We propose a simple but accurate and automatic

method to spherically calibrate the two sensors.

• We develop a new approach that estimates sensor mo-

tion. Different from the previous methods which inde-

pendently relies on the visual odometry, Lidar odome-

try or a third-party positioning sensor such as GPS or

IMU, we explored the sensor-fused features extracted

from both range and color images.

• After the aerial scans are rectified, our method

achieves the fully automatic registration by utilizing

the correspondences between scans, since each 3D

point is associated with a pixel on a image frame.

2. Related Work

The study of 3D sensing technologies in a mobile plat-

form can be traced back to related studies in the following

streams:

Camera system Image based methods are common for

state estimation [26]. While the stereo camera systems,

such as [22, 18], help determine scale of the motion pro-

vided by the baseline reference between two cameras, the

monocular camera systems (e.g., [10, 15, 21, 9, 16]), gener-

ally does not solve the scale of motion without aiding from

other sensors or assumptions about motion. These method

have shown impressive results but the precision and resolu-

tion is still far from the level of the laser scanners.

RGB-D camera system The introduction of RGB-D cam-

eras provides an efficient way to associate visual images

with depth. Motion estimation with RGB-D cameras [20,

30, 8, 28] can be conducted easily with scale. A number of

RGB-D SLAM methods are also proposed showing promis-

ing results [12, 11, 14]. While the real-time RGB-D sen-

sor is good for motion tracking, the low Light Concentra-

tion Ratio (LCR) [19] leads to the low signal-to-noise ratio

(SNR). On the other hand, laser scanning systems concen-

trate the available light source power in a smaller region, re-

sulting in a largest SNR [19]. Also RGB-D cameras usually

do not have the shooting range as long as laser scanners.

Robotics: SLAM The motion estimation methods with

images or/and additional depth sensor (e.g., 1-axis lidar)

are well designed for SLAM system in robotics, such

as[31, 8, 28, 12, 11, 14]. However, our method is designed

to utilize depth information from a 2-axis laser scanner. It

involves features both on images and 3D point clouds in

solving for motion.

Laser scan gets large signal-to-noise ratio, but require

long acquisition times, which leads to the motion distortion

present in point clouds as the scanner continually ranges and

moves. One way to remove the distortion is incorporating

other sensors to recover the motion. For example, Scherer

et al. provide navigation system [25, 7] using stereo vi-

sual odometry integrated with an IMU to estimate the mo-

tion of a micro-aerial vehicle. Distorted clouds are rectified

by the estimated motion. In comparison to these method,

our method only focuses on the visual information obtained

from both camera and laser scanner to capture the RGB-D

data without using the third-party positioning sensor.

Laser scanner-only system The stop-and-go scanning

manner is suitable for the static laser scanner, e.g., Kon-

ica Minolta Vivid 9 adopted in [13]. It has also shown that

state estimation can be made with 3D lidars only. For ex-

ample, Tong et al. match visual features in intensity images

created by stacking laser scans from a 2-axis lidar to solve

for the motion [27]. The motion is modeled with constant

velocity and Gaussian processes. However, in most cases of

the aerial scanning, the velocity is not able to assume to be

constant.

Laser scanner + Camera system The recent work, such as

[23], combing lidar with RGB camera for indoor/outdoor

3D reconstruction which enhance the robustness for sen-

sor motion estimation, but however these techniques cannot

reach the resolution and precision required for the applica-

tions such as heritage object preservation. The work such

as [6, 32] adopted similar sensors to build the scanning sys-

tem, however laser scanner works on 1-axis scanning and

faces the problem of horizontal movement. The most re-

lated work to our method are the studies [4, 24] that con-

sider mounting the laser scanner sensor and camera under a

balloon. While the method in [4] supposes the sensor mo-

tion is in C2 smooth, the method in [24] supposes the 3D

priors are known by ground acquisition in advance. In con-

trast, our method is not limited in such assumptions.

3. Method

Fig. 2 shows the overview of our method. Input data is

generally captured from two hardware sensors: a laser sen-

sor and a panoramic image sensor. While the scanner is a 2-

axis rotating laser scanner which captures a 3D point cloud

in omni-directions, and the camera captures panoramic im-

age sequences during scanning. Since the range sensor

works usually at a high resolution mode, it usually spends
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Figure 2. Method overview. From left to right: the inputs are previously synchronized and calibrated 3D point cloud and 2D image

sequence; the sensor motion is estimated by using 2D/3D features; and the distorted data can be rectified according to the sensor motion.
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Figure 3. Sensors synchronization: UTC time clocker sends UTC

time information to the range sensor and the PC recording images.

The range sensor sends a pulse trigger to camera when the laser is

fired to capture the point.

several minutes for a complete scan. Thus the input raw

data is often distorted (as shown in Fig. 2 left most) due to

the unknown sensor movement in the air.

In our hardware system, we adopted a laser scanner:

Z+F Imager 5010C [2] and a panoramic camera: Point-

Grey Ladybug 3 [1] which are fixed onto a board as shown

in Fig. 1(c). To eliminate the occlusion between the two

sensors, we fix the panoramic camera next to the scanner to

guarantee both of them can capture the much more overlap

in the scene.

The problem addressed in this paper is to estimate the

motion of the laser scanner and camera system, and then

reconstruct the 3D point cloud of the scanned environment

with the estimated motion, as shown in Fig. 2 right part. In

this section, we present the system design including sensor

synchronization, spherical calibration and the motion esti-

mation used for removing the distortion.

3.1. Sensor synchronization

As pre-process, synchronization guarantees that the laser

scanner and the camera work simultaneously such as that

p2d
Proj(Rp3d+T)

R,T

Figure 4. Calibration: the relative pose and position between cam-

era and scanner is 6-DoF transformation including rotation R

and translation T. Since both the panoramic image and omni-

directional scan can be projected onto a sphere, the transformation

can be estimated by minimizing the differences between the cor-

respondences on both sphere.

the capturing time of each point can be known to correspond

to the frame captured at same time.

As shown in Fig. 3, a UTC time clocker consisting of a

GPS receiver and a high-accuracy internal clocker sends the

UTC time to both laser scanner and a PC for image storage,

so as that each 3D point and image frame can be associated

with UTC time. Also, once the scanner fires the first laser

to start scan, it sends single pulse trigger to activate camera

for capturing images. In this paper, we ignore the time delay

caused by hardware which should be within 10ms.

3.2. Calibration

Calibration aims to find the relative pose and position

between the two sensors. In this paper, we suppose this

relative relation is 6-parameter transformation including a

rotation matrix R and a translation vector T.

To figure out the 6-parameter transformation between the

two sensors, we suppose a spherical coordinate system is as-

sociated with each sensor (see, Fig. 4). Suppose the spheri-

cal systems Ol and Oc are originated at the optical centers

of laser scanner and camera respectively, once this the 6-



Figure 5. An example shows that after calibration, the pixels on

different image frames can be mapped to the corresponding 3D

points.

parameter transformation is known, Ol can be aligned to

Oc together by the following transformation:

p2d = Proj(Rp3d +T) (1)

where p2d ∈ Oc is a pixel on a unit spherical image cap-

tured by camera; p3d is the corresponding point in the orig-

inal 3D coordinate system of the laser scanner; and function

Proj(·) projects the 3D point p3d transformed by R and T

onto a unit sphere, i.e., Proj(Rp3d +T) ∈ Ol.

Therefore the calibration problem can be viewed as solv-

ing out R and T through a minimization:

arg min
R,T

N∑

i

ρi ‖ p
2d
i − Proj(Rp3d

i +T) ‖ (2)

where ρi is a loss function using the Huber for robust es-

timation. This minimization of the spherical project error

over 6 parameters can be solved by the non-linear optimiza-

tion such as Levenberg-Marquardt algorithm.

Now, the problem becomes how to find the 2D-3D cor-

responding pairs between panoramic images and 3D point

cloud. Many previous methods such as the 3D texture map-

ping method [3] proposed to manually select 2D/3D points

on images and point clouds. However error often remains

when doing the pixel or 3D point selection manually.

Fortunately, the reflectance information can be obtained

from almost all the laser scanners, and thus the reflectance

(intensity) associated with each 3D point can be projected

onto a unit sphere to form a reflectance spherical image.

In this paper, we present an automatic calibration method

by matching the correspondence between two spherical im-

ages: reflectance image and RGB image. To this end, 1)

we first wrap a panorama into several perspective images

sampled in various directions as proposed in [29]; 2) then

we extract corner points encoded with DoP descriptor [33]

on each perspective images; 3) We wrap feature points back

onto the spherical images and then find the matches between

two images. Note, since this calibration should rely on the

number of matches in the static scene, in practice we put

checker boards into the scene to achieve better performance.

However even the point-to-pixel correspondences can be

solved out by calibration, data distortion often remained for

aerial scan as shown in Fig. 5. Since at any time, the relative

pose and position between two sensors do not change, and

suppose the distortion of point cloud captured within the

time taken for capturing one frame can be ignored, each 3D

point can be associated with a pixel on the corresponding

frame. However the colored point cloud is distorted due to

the unknown sensor motion.

3.3. Motion estimation

To remove the distortion of data, as shown in Fig. 5, the

physical motion of the sensor has to be known. In this sec-

tion we present an approach for robust motion estimation.

To this end, we first track temporal 2D-3D features on both

images and point clouds, and then the relative geometric

relation can be estimated between two consecutive frames

using the features.

3.3.1 Temporal 2D-3D feature tracking

Given the synchronized and calibrated data from the two

sensors, a temporal 2D-3D features can be tracked using

the following three steps:

2D feature tracking: The 2D correspondences along the

image sequence are required to geometrically relate consec-

utive frames using KLT tracker [17]. Fig. 6 illustrates that

the k-th 2D feature on frame i: xk
i can be tracked from the

last frame shown in same color.

3D feature correspondence: Within the exposure time

(ti, ti + ∆Te) for the i-th frame, we search the 3D corre-

spondence X(td) captured at time td and closest to xk
i on

the frame:

td = arg min
t∈(ti,ti+∆Te)

‖ Proj(RX(t) +T)− xk
i ‖ . (3)

For easy description, we re-denote the 2D-3D correspon-

dence pair xk
i and X(td) as: x

j
i and X

j
i , namely the j-th

feature tracked on frame i.

Remove feature outliers : Sometimes features on image

are not “stable”, e.g., the features detected from leafs of

trees, which cause mismatches in the range image. In order

to remove such features, we check the temporally neigh-

bor points around X(td). That is, we remove the features

whose neighboring 3D points in the cloud have a variance

larger than a threshold:
∂‖X(td)‖

∂td
> To. Also the features

which are associated with low reflectance obtained from

laser scanner are also removed.
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Figure 6. Motion estimation: the relative motion between two

frames can be recovered by rectifying the shared features.

3.3.2 Consecutive pose estimation

Since the extrinsic parameters between the camera and laser

scanner are calibrated, this allows us to use a single coordi-

nate system for both sensors, namely the sensor coordinate

system. For simplicity of calculation, we choose the sensor

coordinate system to coincide with the camera coordinate

system Oc and all laser points in Ol are projected into the

camera spherical coordinate system upon receiving. World

coordinate system Ow is the coordinate system coinciding

with Oc at the starting position. Therefore, the pose esti-

mation problem can be stated as: Given images and point

clouds perceived inOc, determine the pose of eachOc with

respect to Ow and map the traversed environment in Ow.

Triangulation: To factorize the rotation and translation be-

tween two consecutive panoramic frames, our triangulation

method utilizes both of the 2D-3D feature tacks obtained by

the method described above.

Suppose that, as shown in Fig. 6, on two consecutive

frames i and i + 1, the j-th feature track is known in both

frames as: x
j
i and x

j
i+1, and the temporally 3D correspon-

dence at frame i is found as X
j
i . While the k-th feature track

is same, the 3D correspondence is found at frame i+1. The

triangulation between the two frames is worked out by min-

imizing the projection errors as:

{Ri+1,Ti+1}

= arg min
{R,T}

∑

j

‖ Proj(RT(Xj
i −T))− x

j
i+1 ‖2,

+
∑

k

‖ Proj(RXk
i+1 +T)− xk

i ‖2 . (4)

We apply the Levenberg-Marquardt method for solving the

non-linear optimization problem.

Now the triangulation for whole image sequence can be

viewed as: suppose frames 1, 2, . . . , n have been worked

out (aligned to world coordinates Ow), then the (n + 1)-th

frame can be triangulated as minimization

{Rn+1,Tn+1}

= arg min
{R,T}

n∑

i=1

∑

j

‖ Proj(RT(Xj
i −T))− x

j
n+1 ‖2,

+
n∑

i=1

∑

k

‖ Proj(RXk
n+1 +T)− xk

i ‖2 . (5)

Therefore our motion estimation method can be summa-

rized by Alg. 1.

Algorithm 1: Motion estimation

Data: 2D feature tracks x
j
i and their 3D

correspondences X
j
i

Result: Motion of each frame {Ri,Ti} in Ow

1 Select frame m who owns the largest number of

feature pairs, and add it into the list {L} ← m;

2 for frames not in {L} do

3 Select the frame n who shares most features in

previous frames in {L} ;

4 Do triangulation between frame n and previous

frames {L} using Eq. (5);

5 Add n into frame list: {L} ← n;

6 end

3.4. Automatic scan alignment

Our method benefit for the scan alignment without need

the manually initial alignment before doing the interac-

tive closest point (ICP) registration, since the 3D corre-

spondences can be easy to find from the two sets of im-

ages. Given the 2D feature tracks {xj
i}ij which have been

found the 3D correspondences {Xj
i}ij in each laser scan,

the problem for aligning the two scans can be solved by

steps: 1) finding the matches between two sets of 2D feature

tracks, where each feature can be encoded with a descriptor

(e.g. [33]); and 2) calculating rigid transformation between

two scans by minimizing the Euclidean distance between

the two sets of 3D correspondences.

4. Experiments

We quantitatively and qualitatively evaluate our method

based on two applications: 1) a large-scale outdoor scan-

ning for Angkor Wat 3D preservation and 2) a indoor man-

ufacturing scanning. While the former mounted our system

under a balloon and the latter mounted it under a crane, but

both of these aerial scanning face the problem caused by

unknown sensor movement.

We adopted the main hardware components as: 1) laser

scanner: Z+F Imager 5010C [2], 2) Panoramic camera: La-

dybug 3 [1], and 3) UTC time clocker: U-blox EVK-6T



(a) (b) (c) (d)

Figure 7. Comparison on data rectification: (a) raw data captured by laser scanner. (b) rectification using motion calculated by visual

odometry [10]. (c) flying range sensor rectification [4] (d) our result.

evaluation took kit. The laser scanner has the field of view

320◦×360◦ working at resolution: 2544×1111 points and

50s/scan. The panoramic camera captures the data in res-

olution 5400 × 2700 and 16fps. The stitching mode is set

as 20m and 10m for outdoor and indoor scene respectively.

UTC time clocer send UTC time at 1 PPS.

The data was online recorded by the internal memory

of laser scanner and PC for camera. The offline rectifica-
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Figure 8. Accuracy comparison: (a) illustration of the aerial data

in red aligned with the data captured from ground. (b) Histogram

of closest-point distance error resulted from three methods.

tion process has been done with a modern PC: Intel Core

i7 @ 3.4G, 16 memory. Rectifying one scan needs around

30 minutes using Matlab and C++, not including the data

convention.

4.1. Comparison on reconstruction accuracy

Since there is difficulty for obtaining the ground truth for

sensor motion, we evaluate the accuracy of our method by

comparing aerial scans with ground scans of a same scene.

Then we evaluate our method against two baselines: 1) 3D

reconstruction from the motion calculated by visual odom-

etry (or structure from motion) [10] and 2) Bannon et al.’s

method [3] proposed for their flying sensor system. How-

ever the hardware system of Banno et al. was designed with

perspective camera and scanner, in comparison we adopt

their algorithm framework to our omni-directional scan.

In Fig. 7 shows the results compared with the two bases

lines above. Fig. 7 (a) shows the original data with dis-

tortion captured by the laser scanner; Fig. 7 (b) shows the

result using the motion calculated by the structure from mo-

tion (SfM) [10]; Fig. 7 (c) shows the result obtained by the

method in [4]; and Fig. 7 (d) shows our result. We can

see that, while the SfM method got “high-frequency” in-

stability on the data reconstructed, Banno et al.’s method

shows “low-frequency” instability on the reconstruction re-

sult, which might be caused by the second order smoothness

constraint in their algorithm. Our method shows better ro-

bustness than the two baseline methods.

Fig. 8 shows the comparison when the ground truth can

be captured from a sensor on ground. After the aerial

and ground data are aligned together, the distribution of

histogram of the closest point distance error can be ob-

tained. Fig. 8 (b) shows that our method get better accuracy

than the other two method SfM in [10] and Banno et al.’s

method [4].

4.2. Angkor Wat 3D reconstruction

Angkor Wat, as one of the largest religious monuments

in the world, was built in the early 12th century and lo-

cated in north of the modern town, Siem Reap, Cambodia.

(a) (b)

(a') (b')

Figure 10. Comparison on with and without aerial scans. (a) and

(b) are two different locations captured from the sensor on ground

show data missing on the top, and which are merged with aerial

scans is shown in (a’) and (b’) respectively.

Angkor Wat owns several tall towers including the central

one in 65m height. Unfortunately Angkor Wat faces the

problem of deterioration due to natural or man- made breaks

and thus need preservation immediately. Fig. 9 shows the

result of entire build: a) entire data including the captured

from ground and balloon, b) the aerial data using balloon.

However due to the images were captured at different time,

the color shows unnatural at some locations.

Fig. 10 shows the aerial scanning plays an important role

in Angkor Wat reconstruction that large missing data are

with the scans only captured from ground as shown Fig. 10

(a) and (b). Fig. 10 (a’) and (b’) show that the missing parts

can be filled by aerial scanning.

4.3. Manufacturing 3D modeling

As shown in Fig. 11 (a), we mount our system under

a crane for the indoor scanning. Since the hook is usu-

ally shaking during the scanning, the scans are distorted as

shown in Fig. 11 (c) and (d). Our method shows the ro-

bustness shown in (c’) and (d’). However, little distortion

remains due to the motion blur happened on the image (see

Fig. 11 (b)), which makes the feature tracking uncorrected

in several pixels.

5. Discussion

This paper presented a general solution for aerial scan-

ning system. It shows there is space for enhancing the per-

formance, if the frame rate of camera and scanning reso-

lution of scanner can be increased. The sensor system is

possible to support various mobile platform. With the emer-

gency of small type of laser scanner and panoramic camera,

it is potentially applicable for a UAV system.



(a) (b)

Figure 9. Entire view of 3D Angkor Wat: (a) and (b) with and without ground data included respectively. (b) shows point cloud with color

captured in different time.

(a) (b) (d) (d')

(c) (c')

Figure 11. Manufacturing scan: (a) Our system is mounted under a crane for aerial scan, where the hook usually shakes due to the

uncontrollable mechanic disturbance. (b) One panoramic frame captured by camera. (c) The original scan with distortion, and whose

rectified result is shown in (c’). (d) and (d’) the close-ups associated with (c) and (c’) respectively.
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