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Abstract— LiDAR-camera systems have become increasingly
popular in robotics recently. A critical and initial step in
integrating the LiDAR and camera data is the calibration of
the LiDAR-camera system. Most existing calibration methods
rely on auxiliary target objects, which often involve complex
manual operations, whereas targetless methods have yet to
achieve practical effectiveness. Recognizing that 2D Gaussian
Splatting (2DGS) can reconstruct geometric information from
camera image sequences, we propose a calibration method that
estimates LiDAR-camera extrinsic parameters using geometric
constraints. The proposed method begins by reconstructing
colorless 2DGS using LiDAR point clouds. Subsequently, we
update the colors of the Gaussian splats by minimizing the
photometric loss. The extrinsic parameters are optimized dur-
ing this process. Additionally, we address the limitations of the
photometric loss by incorporating the reprojection and triangu-
lation losses, thereby enhancing the calibration robustness and
accuracy.

I. INTRODUCTION

LiDAR-camera fusion plays a critical role in autonomous
driving and robotics. By integrating accurate depth measure-
ments from LiDAR with dense optical scans provided by
cameras, we can develop robust solutions for various tasks,
including object detection [1], simultaneous localization and
mapping (SLAM) [2], and 3D reconstruction [3]. However,
for effective sensor fusion, it is crucial to represent data from
different sensors in a unified coordinate system.

Sensor calibration is an important preliminary step in in-
tegrating measurements from multiple sensors. The extrinsic
calibration process attempts to determine the relative pose,
encompassing translation and rotation between the sensors.
Calibration among different sensors is typically challenging
caused by variations in the density, sensor modalities, field
of view, and resolution. Therefore, most traditional LiDAR-
camera calibration methods use auxiliary calibration target
objects, such as textured plane objects [4], [5], [6], [7].
However, these methods can be complex to set up and require
laborious manual operations.

In the past decade, targetless calibration methods have
emerged, beginning with techniques that use appearance cor-
respondences, such as edges [8], [9] and intensities [10], [11]
between LiDAR and camera frames. These methods have
been followed by approaches that leverage deep learning
techniques [12], [13]. Geometric constraints have also proven
effective [14], [15], particularly with dense 3D reconstruction
from images [16]. Recent advances in 3D reconstruction
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Fig. 1. Overview of the proposed method. The proposed method uses Li-
DAR frames to reconstruct the geometric properties of 2D Gaussian splatting
and optimizes the LiDAR-camera extrinsic parameters while updating the
colors of the 2D Gaussian splats.

methods, such as neural radiance fields (NeRF) [17] and
Gaussian splattings (GS) [18], have further refined this
approach [19], [20]. These studies solve the domain gap
between LiDAR and camera by aligning the geometry infor-
mation measured from both sensors. However, the robustness
of these methods depends on the differentiability of the
underlying representation, and their accuracy is influenced by
the rendering quality; thus, further improvement are required.

Thus, we propose a LiDAR-camera calibration method
to enhance robustness and accuracy using 2D Gaussian
Splatting (2DGS), which leverages differentiability and high-
quality rendering [21]. The proposed method is based on
the concept of Implicit Neural Fusion (INF) [19], which
aligns 3D scenes constructed by LiDAR scans with the
geometry information inferred from the camera images.
The proposed method begins by applying 2DGS to the
LiDAR frames and then refines the Gaussian colors through
photometric loss backpropagation from the camera images
(Fig. 1), thereby enabling the simultaneous optimization
of the LiDAR-camera extrinsic parameters. Meanwhile, we
identified certain limitations in relying exclusively on pho-
tometric loss; thus, we introduced reprojection and triangu-
lation loss terms to overcome these issues.

Our primary contributions are summarized as follows:
• We propose a targetless LiDAR-camera calibration

method that consolidates various geometric constraints
based solely on the 2DGS representation.

• We provide a mathematical analysis of the limitations
inherent to the 2DGS for calibration and propose cor-
responding loss functions to address these limitations.

• We propose a depth weight uncertainty during the 2DGS
reconstruction process to enhance the accuracy.

We conduct experiments using the KITTI odometry
dataset [22], to demonstrate the robustness and accuracy of
the proposed method.



II. RELATED WORK

This section briefly reviews LiDAR-camera calibration
methods, 3D and 2D Gaussian splatting techniques, and
simultaneous pose estimation algorithms used in 3D recon-
struction process.

A. Targetless LiDAR-camera Calibration Methods

Conventional appearance-based methods estimate relative
poses using corresponding visual features. The most practical
and widely used methods [8], [9], [23], [24] align image
edges with geometric edges in LiDAR data. [10] and [11]
focused on maximizing the mutual information of intensity
values between camera images and projected LiDAR points.
In some studies [12], [13], [25], [26], neural networks were
employed for feature matching. The above methods have
certain limitations: the domain gaps between the 2D and 3D
features reduce the accuracy and robustness, neural network
(NN)-based methods require prior knowledge, and the capa-
bility to generalize NN-based methods remains unclear.

Motion-based methods [27], [14] rely on hand-eye cali-
bration and estimate the extrinsic parameters by aligning the
motion patterns of both sensors. These approaches require
each sensor to independently estimate the relative poses
across multiple frames. Additionally, motion-based methods
depend on particular sensor movements to solve linear sys-
tems, which can be a significant limitation for certain robotic
systems.

To address these limitations, geometry-based methods
have been increasingly investigated [28], [15]. These ap-
proaches minimize the reprojection error to align LiDAR
data with the geometry of multiview stereo cameras. Re-
cent techniques have incorporated LiDAR-camera calibration
within the process of 3D reconstruction [19], [29] using
NeRF [17]. These methods bridge the domain gap by using
the geometric consistency among sensors; however, their
performance is highly dependent on the quality of the 3D
reconstruction. The proposed method aligns with this line of
research and employs 2DGS for scene representation.

B. Pose Estimation with Differentiable 3D Representations

3D reconstruction methods based on differentiable repre-
sentations, such as NeRF, can estimate or improve camera
poses in the optimization process. If we have sufficient
input images, we can determine the shape and camera
poses simultaneously according to the Structure from Motion
(SfM) theorem [30]. This theorem can also be applied to
NeRF; thus, there are various methods to estimate camera
poses [31], [32], [33]. In addition, by leveraging consistent
geometric information across sensors, some studies have
achieved extrinsic calibration between LiDAR and cam-
eras [19], [29], [34]. However, NeRF often faces challenges
related to insufficient reconstruction quality, resulting in low
calibration accuracy.

3DGS and the following 2DGS overcome these limitations
by using explicit 3D Gaussian splats for scene representation.
While Gaussian splatting is not globally continuous like

implicit neural representations (e.g., NeRF), it maintains lo-
cal continuity and differentiability. However, existing works
have not fully leveraged these advantageous properties for
pose estimation. Instead, current approaches simply treat
Gaussian splats as discrete points: Jiang et al. [35] and Sun et
al. [36] apply traditional Perspective-n-Point (PnP) methods,
while Herau et al. [20] use a hash-encoded MLP [37] to
generate 3DGS properties. While these methods have shown
promising results, they primarily treat Gaussian splats as
point features, leaving the potential benefits of their local
continuity yet to be explored.

The proposed method leverages 2DGS because the pre-
cision and efficiency of Gaussian splatting can significantly
improve the accuracy and speed of the calibration process.
Additionally, we demonstrate that the continuity of Gaussian
splatting can be effectively used by introducing geometric
constraints, which is detailed in Sec. V.

III. OVERVIEW AND PRELIMINARY

Our objective was to estimate LiDAR-camera extrinsic
parameters throughout the 3D reconstruction process. In this
section, we first outline the problem definition and provide
an overview of the proposed method. Then, we introduce
2DGS as preliminary knowledge.

A. Problem Definition and Overview

As illustrated in Fig. 2 , we use multiple sequential LiDAR
frames {FL

1 ,FL
2 , . . . ,FL

N} with known corresponding poses
{PL

1 ,PL
2 , . . . ,PL

N} and camera frames {FC
1 ,FC

2 , . . . ,FC
N}

captured simultaneously as the input, where N is the number
of frames. The LiDAR and camera are mounted on a rigid
joint, which ensures that the extrinsic parameters between
them remain consistent across all sequences. We represent
the LiDAR-to-camera pose matrix as Te ∈ R4×4, defined as
follows:

Te =

(
Re te

01×3 1

)
, (1)

where Re ∈ R3×3 is the extrinsic rotation matrix and
te ∈ R3 is the extrinsic translation vector. An initial rough
estimate of Te is provided as input, with rotation parameters
that allow partial overlap between the LiDAR point cloud
projections and the camera’s field of view. It will then be
refined by our program. Additionally, we assumed that the
scene does not contain dynamic objects because all frames
were used to reconstruct a static 2DGS.

In the proposed approach, we begin by using LiDAR
frames and their corresponding LiDAR poses to train 2DGS,
and we optimize only the geometric parameters. After op-
timizing these geometric parameters, we fix them and then
use the camera frames to update the colors of the splats.
Throughout this process, we simultaneously estimate the
extrinsic parameters between LiDAR and the camera. Fig. 2
illustrates the workflow of the proposed method.

B. Preliminary: 2DGS

2DGS [21] represents a scene as a collection of 2D
Gaussian splats with the following learnable parameters:
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Fig. 2. Workflow of the method. The right panel illustrates how the LiDAR frames were used to supervise the geometric properties of the 2DGS. As
shown in the left panel, we freeze the geometric properties and update only the color properties during the calibration process. In addition to photometric
loss, we also employ two interframe losses: triangulation loss and reprojection loss.

center position pk ∈ R3(1 < k ≤ Nk), opacity ok ∈ [0, 1],
principal tangential unit vectors luk ∈ R3, lvk ∈ R3, and scale
factors suk ∈ R, svk ∈ R, where Nk is the total number of
splats. We define a 2D Gaussian in a world space with the
2D coordinates u = (u, v) on the tangential plane as follows:

P (u) = pk + suk l
u
ku+ svkl

v
kv. (2)

Each splat also has an RGB color ck ∈ R3. The alpha value
at the point u is given by the Gaussian function Gk(u) and
the opacity of the splat as follows:

αk(u) = okGk(u). (3)

To render a 2D splat at a camera pose PC ∈ R4×4 with an
intrinsic projection matrix K3×3 expanded to a 4× 4 matrix

as K =

(
K3×3 03×1

01×3 1

)
, the 2D Gaussian P is projected

into the camera screen space as follows:

PC(u) = KPCP (u) = (xz, yz, z, 1)T. (4)

Here, x = (x, y) represents the 2D image coordinate, and z
is the depth in the camera space. Please refer to the original
paper for the inverse-calculation u from x: u(x). Finally, the
color c at pixel x is rendered by alpha blending as follows:

c(x) =

N∗
k∑

k=1

ωkck, (5)

ωk = αk(u(x))

k−1∏
j=1

(1− αj(u(x))) . (6)

N∗
k denotes the total number of 2D splats intersected with

the ray of x. 2DGS optimizes the above learnable parameters
using the loss between the rendered color and the color from
the input image.

IV. GEOMETRIC 2DGS FROM LIDAR FRAMES

Unlike SfM with cameras, LiDAR provides absolute scale
and precise depth measurements. Thus, we first optimize the
geometric properties of 2DGS (pk, l

u
k , l

v
k, s

u
k , s

v
k, ok, ϵk)

Nk

k=1
using only the LiDAR frames {FL}. ϵ is an additional
parameter representing the depth uncertainty, which is used

in the photometric loss (Sec. V). We assume that the corre-
sponding LiDAR poses {PL} are known, as there are many
off-the-shelf point cloud registration methods available [38],
[39]. We use the downsampled LiDAR points as the seeds of
the Gaussian splats (see details in Sec. VI-A) and introduce
a depth-specific splats adaptation method to enhance the
quality of surface representation and reduce number of
unnecessary.

A. Depth-supervised 2DGS

We optimize the geometric parameters of the 2DGS by
using the geometric loss Lg, which is composed of the depth
loss Ld, depth uncertainty loss Lunc, depth distortion loss
Ldist, and normal consistency loss Lnorm:

(pk, lk, sk, ok, ϵk)
Nk

k=1 = argmin
(p,l,s,o,ϵ)

(Lg), (7)

Lg = Ld + Lunc + λdLdist + λnLnorm, (8)

where λd and λn are weight paramters. The definitions of
Ldist and Lnorm follow [21].

1) Depth loss: The depth loss is the difference between
the LiDAR depth and the rendered depth from 2DGS. The
rays were sampled at all LiDAR points. The ray is cast from
the LiDAR position, and its depth is represented as zLi . The
depth loss is defined using the L1 loss between the LiDAR
depth and the rendered depth z̄i:

Ld =
1

Nr

Nr∑
i

|z̄i − zLi |, (9)

where Nr is the total number of rays. The rendered depth
z̄ for a LiDAR ray is calculated as the weighted sum of all
intersected Gaussian splat depths [21] as follows:

z̄ =

Nk
∗∑

k=1

ωkzk/

(∑
k

ωk

)
, (10)

where zk is the ray-splat intersection depth calculated by Eq.
(4), and ωk is the weight of each splat calculated by Eq. (6).



2) Depth uncertainty loss: To evaluate the errors caused
by incorrectly defining the geometry of the 2DGS, we
introduce depth uncertainty. The depth error for each ray
can be rendered by alpha blending as follows:

ēi =

Nk
∗∑

k=1

ωkϵk. (11)

(ϵk)
Nk

k=1 is updated based on the depth error of each ray,
which is calculated as ei = |z̄i − zLi |. The uncertainty loss
is described using the following L1 loss function:

Lunc =
1

Nr

Nr∑
i

|ēi − ei|. (12)

Note that the gradient of Lunc will not be passed to αk.
Fig. 3 shows an example of the rendered depth error map.
The depth errors are relatively large along the depth edges,
which is consistent with our expectations.

B. Splats Adaptation

The original 3DGS and 2DGS splats were split and cloned
based on the cumulative gradients (errors) of the existing
splats. This approach generates new splats only around
existing splats and does not guarantee correct propagation
of the isolated surfaces.

Thus, the proposed method directly places splats around
LiDAR points according to the depth error. If a LiDAR
point is detected in a close range that differs significantly
from the rendered depth (z̄i − zLi > θ1(> 0)), we infer that
there are insufficient splats near this LiDAR point; thus, we
add a splat at that location. The initial surface normal of
these splats aligns with the view direction. Conversely, if
the LiDAR point is located behind the rendered depth, the
existing foreground splats will adjust accordingly; thus, no
further action is required.

V. LIDAR-CAMERA CALIBRATION WITH 2DGS

After optimizing the geometric 2DGS, the colors ck are
estimated from the camera images. Because the camera poses
are unknown, we jointly optimize the camera poses

(
P̄C
i

)N
i=1

with the colors. However, we only need to find the relative
pose Te between the camera and LiDAR because they are
fixed. Thus, the poses of the camera frames

(
P̄C
i

)N
i=1

can be
estimated with: P̄C

i = Te · PL
i .

A. Color and Pose Joint Optimization

The joint optimization of ck and Te seeks to minimize the
correspondence loss, Lc, which comprises the photometric
loss Lph, triangulation loss Ltr, and reprojection loss Lrepr:

Te, (ck)
Nk

k=1 = argmin
Te,{ck}

Lc, (13)

Lc = Lph + λtLtr + λrLrepr. (14)

Fig. 2 illustrates the optimization process. The photometric
loss is defined as the L2 distance between the measured pixel
color cLi and the rendered color c̄i according to Eq. (6).
However, the geometric error influences the optimization of

Rendered Depth Map

Rendered Depth Error

Fig. 3. Example of the rendered depth error. A lighter color indicates a
larger value. The depth error map emphasizes the edge components.

the relative pose Te; thus, we incorporate depth uncertainty
weights as follows:

Lph =
1∑
wi

Nr∑
i

wi

(
c̄i − cL

)2
, (15)

wi = exp(−ēi). (16)

As described in [19] and [29], the photometric loss opti-
mizes Te while updating {ck}. However, the photometric
loss alone does not provide a sufficient update direction
to effectively optimize the relative pose. Therefore, in the
following sections, we closely examine the limitations of the
photometric loss and propose solutions by incorporating the
triangulation loss Ltr and the reprojection loss Lrepr.

B. Limitation of Photometric Loss

Because we use the first-order gradient descent method for
optimization, we can examine the update directions to Te in
each iteration by inspecting ∂Lph

∂Te . We denote the matrix dot
product using the Frobenius inner product ⟨·, ·⟩ [40]. Refer to
Appendix for the detailed derivation. By applying the chain
rule of the derivatives, we can derive the following equation:

∂Lph

∂Te
[mn]

=

N∗
k∑
i

〈
∂Lph

∂ui
,

∂ui

∂Te
[mn]

〉
+

N∗
k∑
i

〈
∂Lph

∂vi
,

∂vi
∂Te

[mn]

〉
,

(17)
where (ui, vi) represents the intersected point with i-th 2D
splat, as in Eq. (4). The subscript (·)[mn] denotes the element
at the m-th row and the n-th column. We omit the factor
wi/

∑
wi in the above equation because it is trivial for the

analysis.
1) Robustness against initial pose error: Because ∂Lph

∂ui

and ∂Lph

∂vi
are scalars, the spatial update directions are given

by ∂ui

∂Te and ∂vi

∂Te . Applying the chain rule, we derive the
following equation:

∂Lph

∂Te
[mn]

=

Nk
∗∑

i

〈
hi,

∂p̂i

∂Te
[mn]

〉
,

hi =
∂Lph

∂ui
· lui

sui

+
∂Lph

∂vi
· lvi
svi

,

(18)

where p̂i represents the intersection of the 2D splat with the
camera ray, relating to ui and vi as per Eq. (2). This implies
that each intersection point’s update direction, denoted by hi,
is restricted to its respective splat plane. A key issue with
this approach is that the gradients are limited to the local
region within each splat’s size. If the error in Te is large



TABLE I
CALIBRATION RESULTS OF THE PROPOSED METHOD AND COMPARISION METHODS. TRANSLATION ERROR∗ IS CALCULATED WITH SUCCESS CASES.

Near Far
Method Success Rate % Rotation Error (◦) Translation Error∗ (cm) Success Rate % Rotation Error (◦) Translation Error∗ (cm)
Edge [9] 0 127.96 ± 34.21 — 0 119.14 ± 33.50 —

Intensity [11] 63 1.07 ± 1.11 14.2 ± 9.1 10 21.10 ± 32.42 61.2 ± 65.9
Motion [14] 0 129.79 ± 62.42 — 0 131.18 ± 69.93 —

INF [19] 53 5.74 ± 16.33 15.3 ± 8.7 23 6.17 ± 5.92 20.0 ± 17.1
MOISST* [29] 10 3.37 ± 2.37 31.1 ± 14.0 0 11.78 ± 6.12 —

Ours w. Colmap 97 0.39 ± 0.28 9.9 ± 3.1 97 0.43 ± 0.45 10.2 ± 4.3
Ours w. SS 100 0.36 ± 0.15 8.7 ± 3.2 100 0.39 ± 0.18 8.8 ± 3.4

and the camera ray displacement significantly deviates, the
update directions of the Gaussian splats may lose relevance.

We address the instability caused by local gradients by
applying a reprojection loss (Sec. V-C), which directly re-
trieves the update direction from 2D image pixels rather than
from 3D local spaces.

2) Instability in translation estimation: Let us take a
closer look at the extrinsic translation vector te. Here, we
denote ni as the normal vector of i-th Gaussian splat, RC

as the rotation matrix of the estimated camera pose, and
r as the ray direction in the camera space. We obtain the
following equation:

∂Lph

∂te[m]

=

Nk
∗∑

i

hi[m] −
〈
RCr,hi

〉
⟨RCr,ni⟩

ni[m], (19)

where (·)[m] is the m-th element in the vector.
We find that the update direction of the camera pose

includes components that are parallel and perpendicular to
the splat surface. However, the coefficient of the normal
vector direction is affected by the camera ray direction. As
described in [41], surfaces nearly parallel to camera rays
are unreliable. Thus, valid Gaussian splats should ideally be
angled relative to the view direction, minimizing the perpen-
dicular component’s coefficient in Eq. 19. Nonetheless, as
discussed in [15], the normal vector direction is critical for
photometric loss, especially when there is minimal rotation
in LiDAR-camera motion, such as in autonomous driving.
In this case, the photometric loss alone is insufficient for
accurate translation estimation.

Thus, we propose the use of the triangulation loss, which
is described in detail in Sec. V-D.

C. Reprojection Loss

We incorporate the reprojection loss Lrepr to enhance
the robustness of the proposed method, particularly for
optimizing the rotation component. Although errors in the
ray direction can cause significant disparities in the inter-
sected Gaussian splats, the reprojected pixels exhibit minimal
displacement in the camera space, which facilitate accurate
gradient computation. The displacement decreases further
with increasing distance.

For a pixel vi ∈ R2 in the n-th camera image, we
reproject it to the (n + 1)-th camera image to obtain the

pixel coordinate wi ∈ R2 using the following equation:(
wi

1

)
zwi = z̄iR

n−→n+1K−1

(
vi

1

)
+ tn−→n+1, (20)

where Rn−→n+1 and tn−→n+1 represent the rotation matrix
and the translation vector from the n-th to the (n + 1)-th
camera space; z̄i is the rendered depth value of pixel vi from
its original camera viewpoint, whereas zwi is the reprojected
depth. We then use a bilinear interpolation function C(·)
to approximate the color of wi based on the four nearest
pixels. To ensure robustness, we initially downsample the
image pixels and progressively reduce the downsampling rate
during training. The reprojection loss is defined as follows:

Lrepr =
1

Nr

Nr∑
i

(C (wi)− C (vi))
2
. (21)

To handle occlusion when projecting from one camera
view to another, we first render the depth maps from view-
points TC

1 and TC
2 . Then, we reproject the rendered depth

from one view to another using Eq. (20) and compare zwi
and the rendered depth z̄wi from the corresponding viewpoint.
If the difference between these values exceeds a threshold
value θ2, such points are excluded from the reprojection loss
calculation.

D. Triangulation Loss

We propose applying the triangulation loss to the cali-
bration with 2DGS. We assume that we can retrieve M
corresponding feature points in a sequential frames with
coordinates (qi

n)
M
i=1 and (qi

n+1)
M
i=1, where each qi

n,q
i
n+1 ∈

R2 is from the n-th camera image and the (n+1)-th camera
image, respectively. For simplicity, we omit the superscript i
in the following equations. Given qn and qn+1, we can find
the intersection point Q ∈ R3 at which the rays from their
respective camera positions in the world space intersect by

Q = TC
nK

−1

(
qn

1

)
z̃n = TC

n+1K
−1

(
qn+1

1

)
z̃n+1, (22)

where z̃n and z̃n+1 are the two z-depths in the camera space
from the camera position to Q. Denoting the m-th row of a



GT Ours w. SS INF Intensity GT Ours w. SS INF Intensity GT Ours w. SS INF Intensity

0.2° / 6cm 6.5° / 1.5mError: 0.3° / 3cm 0.7° / 13cm 0.8 ° / 17cm Error: Error: 3.6° / 61cm0.4° / 5cm 0.9° / 24cm0.4° / 13cm

Fig. 4. Ground truth image with LiDAR points projected using the resulting extrinsic parameters. An error of several degrees can cause significant
displacement, whereas even an error of 20 cm does not result in noticeable displacement. Among the compared methods, the proposed method demonstrated
robust results.
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Fig. 5. Rendered RGB and depth maps using proposed method and INF. The rendering quality of 2DGS (Ours) was much higher than that of MLP
(INF). Because volume rendering samples points within a certain range along a ray, points in distant areas are not sampled, resulting in those areas being
unseen in the INF rendered image.

matrix as ·[m], we can formulate as follows:

Rn−→n+1
[1] K−1

(
qn

1

)
z̃xn + tn−→n+1

[1]

Rn−→n+1
[3] K−1

(
qn

1

)
z̃xn + tn−→n+1

[3]

= (K−1)[1]

(
qn+1

1

)
.

(23)
We can derive z̃xn from the above equation, which provides
an example of how to use the x-coordinates to determine the
depth z̃n. Similarly, we can formulate another equation by
using the second row ·[2] instead of the first row ·[1] of the
matrices to use the y-coordinates to calculate the z-depth,
denoting as z̃yn.

We describe the triangulation loss by comparing the cal-
culated z̃n with rendered depth z̄i, as follows:

Ltr =
1

2
· 1

Nr

Nr∑
i

(T (z̃xn, z̄i) + T (z̃yn, z̄i)) , (24)

where T (·, ·) denotes the Tukey robust function, which
mitigates the influence of outliers. The threshold of Tukey
loss is set to 1 m in this experiment. Because z̃n and z̄i are
functions of the extrinsic parameters Te, the gradients are
backpropagated through both quantities.

VI. EXPERIMENTS

A. Dataset and experimental settings

We used 30 sequences in the KITTI odometry dataset [42],
each comprising 50 sequential LiDAR-camera pairs without
dynamic objects. The extrinsic parameters in Te are ex-
pressed using the Lie algebra in se3. To simulate different
levels of the initial calibration error, we introduced a ”far”

initial bias by adding 0.2 to all the se3 parameters, resulting
in an error of 16.84◦/29.25cm. The scalar rotation error is
defined as the magnitude of the error represented by the
rotation vector. Additionally, we applied a ”near” initial bias
by adding 0.1 to the translation parameters while leaving
the rotation parameters unchanged, leading to an error of
0◦/14.68cm. On an RTX4090 GPU, our method required 2.0
and 6.8 minutes for geometry optimization and calibration,
respectively. For more results on other dataset, please refer
to the Appendix.

In the process of generating geometric Gaussian splats
from the LiDAR frames, we begin by separating the ground
points from nonground points. The ground points were
downsampled using a 0.5 m voxel grid, while the remaining
points were downsampled using a finer 0.15 m voxel grid.
These downsampled points serve as the initial Gaussian
splats. We densify the points by cloning them four times
in the final RGB rendering. We set the threshold value θ1
for splats adaptation to 0.5 m and θ2 for occlusion handling
to 0.05 m. We set weight parameters λd, λn, λt, and λr to
1e4, 1e−1, 1, and 200, respectively.

We employed the Adam optimizer [43] for the optimiza-
tion process. The learning rates of the Gaussian properties
were set in accordance with the original 2DGS [21]. To
address the sensitivity of the translation parameters to the
initial rotation errors, we initialized the learning rate for the
rotation parameters at 1e−2 and for the translation parameters
at 5e−4. Once the rotation change was less than 0.1◦ over the
last 500 iterations, we adjusted the learning rates, setting the
rotation to 1e−3 and the translation to 1e−2. The learning rate
is halved when the change rate of translation falls below 1e−5
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Fig. 6. Success rate and calibration error with respect to different initial biases. Here, we illustrate how the target LiDAR point cloud is reprojected onto
the camera image relative to the initial rotation error: the gray background denotes the camera image area, and the yellow foreground denotes the target
LiDAR area. The proposed method does not work if the target LiDAR points are initially not visible.

and 5e−6. We uses 15000 iterations for both the geometric
2DGS generation and joint optimization processes.

B. Evaluation of Calibration Accuracy

We present the results of our calibration method using two
feature extraction and matching approaches for triangulation
loss Ltr: Colmap features and matching, denoted as ”Ours
w. Colmap,” and SuperPoint [44] with SuperGlue [45],
denoted as ”Ours w. SS.” To evaluate calibration accuracy
and robustness, we compared our method with the following
approaches:

• Edge [9]: Align the projected LiDAR edges with the
camera edges.

• Intensity [11]: Maximize the mutual information be-
tween the reflectivity of the LiDAR scans and the inten-
sity of the camera images. In the ”near” experiment, we
only applied the refinement process described in [11];
in the ”far” experiment, we applied the automatic initial
guess in [11].

• Motion [14]: Estimate camera motion with LiDAR
point cloud and extrinsic parameters using hand-eye
calibration.

• INF [19]: Optimize the pose during NeRF [17] recon-
struction.

• MOISST⋇ [29]: Optimize the pose during Instant-
NGP [37] reconstruction. Implemented ourselves.

Because rotation errors can heavily affect translation, we
considered results with rotation errors under 1◦ as successful
and excluded failures from the translation error calcula-
tion. ∗ indicates errors calculated only for successful cases.
Thus, the translation and rotation errors represent accuracy,
whereas the success rate reflects robustness. Table I provides
the detailed results, and Fig. 4. shows a qualitative repro-
jected example.

The results demonstrate that the proposed method outper-
forms existing approaches. Appearance-based methods face
challenges with the domain gap between LiDAR and cam-
era RGB data because LiDAR reflectivity does not always
correlate with RGB intensity, and depth or normal edges
in LiDAR scans differ from texture edges in RGB images.
Additionally, the KITTI dataset is noisy and lacks structure;
thus, edge-based methods are difficult to extract meaningful
features. Motion-based calibration requires rotational motion

in multiple directions, which hinders convergence when the
data includes large linear motions. INF [19] exhibits low
reconstruction quality (see Fig. 5), while hash encoding
methods like [29] struggle with large initial rotation errors.
In contrast, the proposed method demonstrate robust per-
formance even with initial errors, and the translation errors
remained within acceptable limits.

C. Ablation Study on Losses

In this section, we demonstrate the effectiveness of the
triangulation loss, reprojection loss, and depth uncertainty
weights. We conducted ablation studies by removing each
of these components in the optimization process, starting
with the ”far” initial extrinsic parameters. Table II lists
the results. The rows, from top to bottom, represent the
calibration results for: our method without triangulation loss,
using Colmap feature points for triangulation loss, without
reprojection loss, without depth uncertainty weights, and
using SuperPoint-SuperGlue feature points for triangulation
loss.

We can notice that the results highlight the critical role
of reprojection loss, where its removal leads to a significant
drop in robustness, reducing the success rate to 30%. The
triangulation loss and depth uncertainty weights improve the
accuracy by minimizing the translation errors. Interestingly,
the translation error remained largely unchanged whether the
Colmap-matched points are used or the triangulation loss
is entirely omitted. This outcome aligns with the analysis
in Sec. V-B, where the focus is on points on surfaces,
whereas the Colmap features are predominantly edge points,
which are often filtered out by the Tukey loss due to the
instability of the depth in edges. Additionally, we conducted
experiments using 3DGS as the base representation, with
detailed results presented in the Appendix.

D. Evaluation of the Calibration Robustness

To account for the sensitivity of the initial rotation error
to the axes, we separately evaluated the impact of the initial
rotation errors along each axis on the calibrated rotation pa-
rameters. For rotation errors, we define success cases as those
with an error within 1◦, as in the previous experiments. For
the translation results, errors within 20 cm were considered
to be successful. Fig. 6 shows the results. In our experiment,



TABLE II
ABLATION EXPERIMENT RESULTS WITH DIFFERENT EXPERIMENT

SETTINGS.

Method Success Rotation Translation
Rate % Error (◦) Error∗ (cm)

Ours wo. triangulation 97 0.44±0.38 11.18±3.4
Ours colmap 97 0.44 ± 0.45 10.16 ± 4.34

Ours wo. reprojection 30 9.28±12.06 11.67±3.14
Ours wo. weights 100 0.40±0.16 9.93±4.22

Ours full 100 0.39 ± 0.18 8.79 ± 3.40

our method successfully converged to the correct pose from
the initial errors of 20◦ (roll), 15◦ (pitch), 40◦ (yaw), and
60 cm in translation. In addition, we achieved a 90% success
rate for initial errors within 60◦ (roll), 17◦ (pitch), 70◦ (yaw),
and 80 cm in translation.

VII. CONCLUSIONS

This paper presents a LiDAR-camera calibration method
that uses 2D Gaussian Splatting (2DGS). The proposed
method begins by constructing the 2DGS geometry from
the LiDAR scans, thereby creating a geometric scene rep-
resentation. The calibration is then integrated into the 2DGS
colorization stage to align the LiDAR data with the captured
camera images. We analyzed the limitations of 2DGS in
the pose estimation task and addressed them by introducing
triangulation and reprojection losses, along with a depth
uncertainty weighting scheme to enhance the calibration sta-
bility. We validated the proposed method on the challenging
KITTI odometry dataset. The results demonstrated that the
proposed method improves alignment accuracy and robust-
ness, outperforming existing methods in terms of precision
and handling of complex scenarios.
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APPENDIX

A. Derivation of Gradients

Following the notation in Section V-B, we use Frobenius
inner product < ·, · > to denote matrix dot product. Follow-
ing Eq. (17), the update direction for Te is determined by
weighted sum of ∂ui

∂Te and ∂vi

∂Te .
In the following equations, we use the subscript (·)[mn]

to denote the element at m-th row and the n-th column.
Similarly, the subscript (·)[m] denotes the element at m-th
row for one-column vector or the element at m-th column
for one-row vector. Since ∂ui

∂Te and ∂vi

∂Te are symmetric, we
will only give a detailed look into ∂ui

∂Te .

∂ui

∂Te
[mn]

=

〈
∂ui

∂p̂i
,

∂p̂i

∂Te
[mn]

〉

=

〈
lui

sui

,
∂p̂i

∂Te
[mn]

〉
.

(25)

p̂i means the intersection point in world space for the 2D
splat the the camera ray and ui is can be calculated by

ui = (p̂i − pi) ·
lui

sui

. (26)

Frobenius inner product has property that

a ⟨A,B⟩ = ⟨aA,B⟩ (27)

for a real number a. And ∂Lph

∂ui
is a real scalar number. Thus,

we can write〈
∂Lph

∂ui
,

∂ui

∂Te
[mn]

〉
=

〈
∂Lph

∂ui
· lui

sui

,
∂p̂i

∂Te
[mn]

〉
. (28)

vi part can be derived in the same way:〈
∂Lph

∂vi
,

∂vi
∂Te

[mn]

〉
=

〈
∂Lph

∂vi
· lvi
svi

,
∂p̂i

∂Te
[mn]

〉
. (29)

Thanks to the property of Frobenius inner product that

⟨A+B,C⟩ = ⟨A,C⟩+ ⟨B,C⟩ , (30)

we can derive Eq. (18):

∂Lph

∂Te
[mn]

=

Nk∑
i

〈
hi,

∂p̂i

∂Te
[mn]

〉
,

where hi =
∂Lph

∂ui
· lui

sui

+
∂Lph

∂vi
· lvi
svi

Then, we will only examine the extrinsic translation vector
te[m]. We can express the intersected point in another way:

p̂i = tC +RCrz, (31)

where tC denotes translation vector of the camera pose, RC

denotes the rotation matrix of the camera pose, and r denotes
the ray direction in camera space. Note that only tC is related
with te by

tC = te +RetL. (32)

𝐡𝒊𝐧"

𝐫, 𝐧" → 0 𝐫, 𝐡𝒊 → 0

Fig. 7. An illustration of dot product of camera ray with hi or ni.

Thus,
∂tC

∂te
= 1. (33)

As mentioned in the paper, z can be derived from〈
tC +RCrz − pi,ni

〉
= 0

p̂i = tC +RCr

〈
pi − tC ,ni

〉
⟨RCr,ni⟩

,
(34)

where ni and pi denote the normal vector and the center
position of the i-th Gaussian splat, respectively. Thus, we
can obtain

∂p̂i

∂tC[m]

= 1−
(RCr) · ni[m]

⟨RCr,ni⟩
, (35)

and by leveraging the property for real matrices:

⟨A,B⟩ = ⟨B,A⟩ , (36)

we can obtain:〈
hi,

∂p̂i

∂tC[m]

〉
= ⟨hi,1⟩ −

ni[m]

⟨RCr,ni⟩
·
〈
RCr,hi

〉
. (37)

Finally, we can derive Eq. (19):

∂Lph

∂tC[m]

=

Nk∑
i

hi[m] −
〈
RCr,hi

〉
⟨RCr,ni⟩

ni[m]. (38)

As shown in Fig. 7, Gaussian splats that are perpendicular

to the camera ray yield smaller values of ⟨RCr,hi⟩
⟨RCr,ni⟩ . In con-

trast, Gaussian splats that are parallel to the camera rays have
larger values. However, the more a Gaussian splat is parallel
to the camera ray, the less reliable it is, as even a slight
displacement of the camera ray can lead to a completely
different intersection point on the splat. Additionally, in the
backpropagation implementation, to avoid NaN or infinite
gradients, the intersection point values are clipped if they are
touching a Gaussian splat that is too parallel to the camera
ray, resulting in zero gradients for those points. Therefore,
Gaussian splats that are parallel to the camera rays are less
reliable and should ideally contribute less to the gradients.

B. Perpendicular Direction for Photometric Loss

In Section V-B, we mentioned that the authors in [15]
emphasized the importance of the direction perpendicular to
the surface for pose estimation tasks. Here, we will explain
how this aligns with our problem settings.



𝐭!"

Surface

𝐭!"

Surface

(a) (b)

Fig. 8. An example of the influence of an incorrect extrinsic translation
vector on the intersection point is shown in the following scenarios: In
(a), the translation error is perpendicular to the surface, causing different
intersection points. In (b), the translation error is parallel to the surface,
resulting in the intersection points of the two rays still being on the surface.

In our problem setting, we assume that the world-to-
LiDAR poses PL

i and PL
i+1 are known for the i-th and

(i + 1)-th frames. By using the LiDAR-to-camera extrinsic
parameters, the world-to-camera pose is estimated as follows:

P̄C
i = TePL

i = T̃ePC
i . (39)

We denote the error in the extrinsic parameter as ·̃, and PC
i

represents the ground truth camera pose. Similarly, for the
(i+ 1)-th frame, we can write ¯PC

i+1 = T̃ePC
i+1.

When the camera poses are correct, a target point q in 3D
space will be projected to the point KPC

i+1q on the (i+1)-th
camera image and to the point KPC

i q on the i-th camera
image. Since they correspond to the same 3D point, they
will have the same colors. In this way, the Gaussian splat
containing q will be updated to the corresponding color.

However, when the camera poses are incorrect, the camera
space point PC

i q will lie on a different ray in world space,
as shown below:

ri(x) =
(
R̃eRC

i

)−1 (
PC
i qx− R̃etCi − t̃e

)
,

ri+1(x) =
(
R̃eRC

i+1

)−1 (
PC
i+1qx− R̃etCi+1 − t̃e

) (40)

In most cases, these two incorrect rays will not intersect
each other on the original Gaussian splat, leading to incorrect
color updates for the Gaussian splats. This results in the
colors of the Gaussian splats becoming blurred due to the
displacement of the camera rays, causing photometric loss.
The gradients will then lead the intersection points to move
along the Gaussian splats towards more accurate positions.
This photometric error will not be reduced unless the camera
poses are correct.

However, there is a case when ri(x) and ri+1(x) will
intersect a certain Gaussian splat at the same position.
Consider the scenario where the rotation error R̃e has already
been corrected, leaving only the translation error:

ri(x) = qx+
(
RC

i

)−1 (
tCi (x− 1)− t̃e

)
,

ri+1(x) = qx+
(
RC

i+1

)−1 (
tCi+1 (x− 1)− t̃e

) (41)

Originally, ri(1) = ri+1(1) if the extrinsic parameters are
correct. However, ri(1) = ri+1(1) can still hold true if the
following condition is satisfied:(

RC
i

)−1
t̃e =

(
RC

i+1

)−1
t̃e. (42)

(a)

(b)

(c)

Fig. 9. Visualization of pixel reprojection under a 16.8◦ rotation error. (a)
Original image points from the first camera view. (b) Points reprojected
onto the second camera view. (c) Difference map between (a) and (b),
demonstrating larger pixel displacements for nearby points and smaller
displacements for distant points due to perspective projection.

This condition always occurs in driving datasets such as
KITTI [42], where most echo-poses between inter-frames
do not involve rotation. Furthermore, as long as the error
term t̃e is parallel to the surface, the intersection point can
still lie on the surface, as shown in Fig. 8. In Fig. 8(b), if
the translation error is parallel to the surface, the two rays
still intersect at the same point on the surface. Consequently,
the colors of the intersected Gaussian splats will be updated
to the color of q, and there will be no photometric loss
due to translation error. However, as mentioned in Eq. (19),
during the backpropagation process, few gradients are given
when the camera ray direction is perpendicular to the surface,
leading to insufficient directions for pose updating.

C. Detail for Reprojection Loss

As discussed in Section V-B, the gradient from photo-
metric loss is constrained within individual splats, which
creates inherent limitations in handling large pose errors.
This becomes particularly problematic when dealing with
large errors in extrinsic parameters Te, especially in the
rotation component Re, as these errors result in significant
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Fig. 10. (a) Rendered depth image with 3DGS. (b) Rendered depth image with 2DGS. (c) Normal map calculated from (a). (d) Normal map calculated
from (b).

TABLE III
CALIBRATION RESULTS USING 3DGS AS BASE REPRESENTATION.

Success Rotation Translation
Rate % Error (◦) Error∗ (cm)

Near 30 4.45±3.71 52.71±23.24
Far 10 10.42±10.19 45.26±2.86

displacements for distant points. We estimate the displace-
ment magnitude by d = 2r sin(θ/2), where r is the distance
to the rotation center and θ is the rotation error. For example,
a 10◦ rotation error causes a displacement of approximately
1.74m for points 10m away. Given Gaussian splats with di-
ameters of about 0.4m, this means the incorrectly intersected
splat and the correct splat position may be separated by four
or more splats, creating a significant gap in the gradient
propagation path.

The photometric loss mechanism operates by updating
splat colors based on camera views, following the principle
of color consistency across different viewpoints. When the
pose estimation is incorrect, intersected splats receive color
information from incorrect pixels across different views,
leading to erroneous color updates. In the case of a 10◦ rota-
tion error at 10m distance, this results in color mixing across
a wide range of splats, where each splat receives color in-
formation from pixels that should correspond to significantly
different surface points. This color mixing creates noise in
the optimization process, as the gradients computed from
these mixed colors may point in arbitrary directions. While
having a small portion of splats with unreliable gradients
wouldn’t significantly impact the overall optimization, the
problem becomes critical when the extrinsic error is large.
In such cases, a substantial proportion of splats, especially
those at greater distances, suffer from this issue. When the
majority of splats provide unreliable or misleading gradients,
the optimization process may fail to converge to the correct
pose.

On the other hand, in the 2D projection space, following
the basic principles of perspective projection, distant points
occupy smaller areas on the screen. The pixel displacement
∆p for a point under rotation error can be approximated

Fig. 11. An illustration of the camera viewed Gaussian splat.

TABLE IV
CALIBRATION ERRORS ON TWO INDOOR SCENES.

Indoor1
Translation (cm) & Rotation(◦) Error
x y z r

INF [19] 0.5 0.6 2.0 0.299
Ours 0.2 0.6 3.1 0.401

Indoor2
Translation (cm) & Rotation(◦) Error
x y z r

INF [19] 0.4 1.0 0.9 0.385
Ours 1.5 0.3 0.7 0.211

as ∆p ∝ fθ/z, where f is the focal length, θ is the
rotation error, and z is the depth. This relationship shows
that despite larger 3D displacements, distant points (larger z)
actually result in smaller pixel displacements, as illustrated in
Fig. 9. This characteristic of perspective projection makes the
reprojection loss particularly effective in compensating for
the limitations of 3D space gradients generated by individual
splats, as it provides a more controlled gradient signal
that naturally scales with depth. The reprojection loss thus
serves as a complementary guidance for pose optimization,
especially effective for correcting rotation errors affecting
distant points where photometric loss struggles.

D. Experiment on 3DGS

We have conducted additional experiments using
3DGS[18] instead of 2DGS.

1) Preliminary: 3DGS use Nk 3D Gaussian splats to
represent a scene. Each splat contains: center position pk ∈
R3, opacity ok ∈ [0, 1], scale factors Sk ∈ R3 and a rotation
Rk with quaternion parameterization. 3D covaraince for each
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Fig. 12. Qualitative results of our method. Fisrt row: Indoor1 data; Second row: Indoor 2 data. (a) Rendered depth map with 2DGS after calibration.
(b) Rendered color image after calibration. (c) & (d) Reprojected LiDAR points on the images using our calibrated extrinsic parameters and the reference
extrinsic parameters.

Gaussian splat is calculated by

Σk = RSSTRT . (43)

Σk is projected to 2D screen space by

Σ′
k = JWΣkW

TJT , (44)

where W and J are the view transfomation and the Jacobian
matrix that represents the local linear approximation of the
projective transformation. Denoting the projected 2D screen
space coordinate of pk as xk, the Gaussian value of a pixel
u intersecting k-th Gaussian splat could be calculated with

Gk(u) = e−
1
2 (u−xk)

TΣ′
k
−1(u−xk). (45)

Finally, we can calculate each αk(u) = okG(u). The alpha-
blending for colors is the same with Eq. 6.

However, we need to notice that the official implementa-
tion of 3DGS calculates the expected inverse depth of a pixel
using:

1

z̄
=

N∗
k∑

k=1

ωk
1

zk
, (46)

where zk represents the depth of the intersected Gaussian
splat’s center position. In our experiment, we follow this
implementation.

2) Experimental Results: In our implementation, we did
not include the depth distortion loss λdist (because depths
are not calculated as the intersected point) and the normal
consistency loss λnormal (because normal vector is not defined
for 3D sphere).

Our comparative experiments using 3DGS as the base
representation (Table III) revealed decreased robustness and
accuracy compared to our 2DGS pipeline.

3) Discussion: Intuitively, we can expect this result be-
cause a correct surface representation (2DGS) should be
more suitable for pose estimation task than an approximate
surface representation (3DGS). In detail, we identified two
primary limitations.

a) Depth Reconstruction Reliability: The fundamental
issue of 3D Gaussian splat is that the intersection of a
Gaussian splat and a ray produces a 1-D Gaussian function,
making precise depth determination theoretically impossible.
What’s more, the original 3DGS algorithm’s approach of
accumulating Gaussian centers’ depths leads to imprecise
depth calculations. In contrast, 2DGS treats each element
as a splat and calculates depth at the intersection point,
enabling more accurate depth determination. Furthermore,
3DGS is incompatible with λdist and λnormal. Without normal
regularization, relying solely on depth loss gradients proves
insufficient for proper splat orientation. While various works
attempt to regularize 3DGS surfaces, 2DGS offers a more
theoretically sound approach. The geometry comparison is
shown in Fig. 10.

b) View-Dependent Projection Issues: A secondary but
crucial limitation is that 2D projections of 3D Gaussian splats
don’t precisely represent the actual surface. As illustrated in
Fig. 11, when a 3D Gaussian splat approximates a surface, its
cross-section on the camera view plane varies with camera
position and viewing direction. This view-dependency means
that the same surface appears different from various view-



points, introducing additional complexity to our calibration
pipeline.

E. Experiments on Indoor Dataset

We have conducted additional experiments using the
indoor dataset from INF [19], which provides a distinct
scenario from the outdoor large-scale KITTI scenes.

1) Imeplementation Details: For these indoor scenes, we
processed the data as follows: First, we stacked multiple
LiDAR scans using their provided poses. The combined point
cloud was then downsampled with 2cm voxels, and these
downsampled points served as the initial positions for Gaus-
sian splats. Each splat was initialized with a radius of 1cm.
The first stage, LiDAR-supervised 2DGS geometry con-
struction, required 1000 iterations and took approximately
31±1 seconds. The second stage, the calibration process,
needed 3000 iterations and took about 2.8±0.1 minutes. All
experiments were conducted using an RTX4090 GPU.

The dataset contains 30 frames of synchronized LiDAR
scans and camera images. Since all data were captured with
static poses, there are no motion distortion effects to consider.
We used the reference LiDAR poses provided by [19], and
all camera images were undistorted to follow the perspective
camera model. Following the setup in [19], we initialized our
algorithm by assuming the LiDAR and camera were at the
same pose.

2) Experimental results: The quantitative evaluation of
our method is presented in Table IV, which shows the
LiDAR-camera extrinsic calibration errors for two indoor
scenes. When compared with INF, our method achieves
similar levels of accuracy across both translation and rotation
parameters. It’s important to note that the reference extrinsic
parameters themselves have an inherent precision limit of 1-2
cm. Given this measurement uncertainty in the ground truth,
the performance of both methods demonstrates satisfactory
calibration accuracy for indoor scenarios.

We also provide qualitative results in Fig. 12 to visually
demonstrate our calibration performance. In particular, the
reprojection results shown in Fig. 12 (c) and (d) compare
our calibrated parameters with the reference calibration. The
close visual alignment between LiDAR points and image
features confirms the accuracy of our calibration results. In
Fig. 12 (a) and (b), we present the rendered depth maps and
color images from our 2DGS representation. While these
renderings show some empty spaces due to the inherent
limitations of LiDAR data - specifically, scan sparsity and
occlusions - these visualization artifacts do not affect the
calibration accuracy.

As our primary goal is precise sensor calibration rather
than high-quality rendering, we have not implemented addi-
tional techniques to fill these gaps in the visualization.


