
CAPT: Category-level Articulation Estimation from a Single Point
Cloud Using Transformer

Lian Fu1, Ryoichi Ishikawa1, Yoshihiro Sato2 and Takeshi Oishi1

Abstract— The ability to estimate joint parameters is essential
for various applications in robotics and computer vision. In this
paper, we propose CAPT: category-level articulation estimation
from a point cloud using Transformer. CAPT uses an end-to-end
transformer-based architecture for joint parameter and state
estimation of articulated objects from a single point cloud. The
proposed CAPT methods accurately estimate joint parameters
and states for various articulated objects with high precision
and robustness. The paper also introduces a motion loss
approach, which improves articulation estimation performance
by emphasizing the dynamic features of articulated objects.
Additionally, the paper presents a double voting strategy to pro-
vide the framework with coarse-to-fine parameter estimation.
Experimental results on several category datasets demonstrate
that our methods outperform existing alternatives for articula-
tion estimation. Our research provides a promising solution for
applying Transformer-based architectures in articulated object
analysis.

I. INTRODUCTION

Accurate articulation estimation is essential for a wide
range of applications in robotics. Articulation estimation is
the task of obtaining the joint parameters and joint states of
the objects from visual input, as depicted in Fig. 1. With the
development of Deep Learning, related methods have now
shifted from instance level toward estimating category-level
articulation parameters from videos [1] or pairs of images
[2].

Even so, category-level articulation estimation based on
a single static point cloud remains a challenging task. The
category prior provides only an ambiguous indication of an
object’s kinematic constraints, instead of clear information
about the spatial structure as in a CAD model. Moreover, as
dynamic properties, articulation parameters are not explicitly
stored in static point clouds. Previous research has commonly
approached this task by dividing it into multiple stages [3]
or incorporating post-optimization algorithms [4]. However,
such methods require relatively complex training procedures.
The performance of a latter-stage model relies on a cor-
responding former-stage model, where a poor result in the
former stage usually causes an even worse final estimation
[2].

To address these challenges, we propose CAPT: category-
level articulation estimation based on a single point cloud
using Transformer. We introduce an end-to-end Transformer-
based architecture for articulation estimation based on a

1The authors are with The Institute of Industrial Science,
The University of Tokyo, Japan. {lianfu, ishikawa,
oishi}@cvl.iis.u-tokyo.ac.jp

2The author is with Faculty of Engineering, Kyoto University of Ad-
vanced Science, Japan. sato.yoshihiro@kuas.ac.jp

Input:
Single Point Cloud

Output: Segmentation Joint Position
Joint Direction Joint State

Robot Application

Fig. 1. Articulation estimation aims to estimate joint parameters and states
from visual information. In our case, we propose to infer from only a single
static point cloud. This task could be applied in virtual/augmented reality,
robot interaction, etc.

single point cloud. To emphasize the dynamic nature of
articulated objects, we also propose a motion loss approach
to restore the dynamic features. Additionally, we design a
high-accuracy double voting strategy to determine the final
predicted parameter values. To the best of our knowledge,
this is the first work that utilizes a Transformer-based archi-
tecture for the estimation of joint parameters of articulated
objects.

Experimental results from several category datasets
demonstrate that our methods achieve better performance
than previously published alternatives for articulation estima-
tion. Our methods accurately estimate the joint parameters
of various articulated objects with high precision and robust-
ness. This work opens new opportunities for the application
of Transformer-based architectures in the field of articulated
object analysis and control.

The main contributions of this paper are summarized as
follows:

• Proposal of an end-to-end category-level articulation
estimation model using Transformer

• Proposal of a motion loss approach that improves ar-
ticulation estimation performance by emphasizing the
dynamic character of articulated objects

• Design of a high-accuracy double voting strategy to
decide the final predicted parameters

• Experiments on a synthetic dataset to demonstrate the
high accuracy of our methods

II. RELATED WORK

A. Articulation Estimation

Existing articulation estimation methods can be grouped
into three categories based on the input type: interaction-
based, multi-view-based, and single-view-based. Interaction
methods provide sufficient dynamic information for ar-
ticulation estimation, as made clear in numerous studies
[5][6][7][8]. Related methods focus on using the differences

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

in the observations before and after the interaction to help
estimate an initial guess of the articulation model [9] or build
up an implicit neural-representation of the object [2]. Multi-
view methods infer the articulations from multiple obser-
vations [10][11][12], with recent works including ScrewNet
[1], CAPTRA [13], DUST-net [14] and CLA-NeRF [15].
Compared with the other two types of methods, single-
view methods require as little information as a single point
cloud or a depth image [16][17][18]. To achieve single-
view estimation, existing methods usually approach this task
with multi-stage networks. RPM-Net [16] first predicts a
temporal sequence of pointwise displacements using recur-
rent neural network before estimating articulation. ANCSH
[4] predicts the articulation parameters with the help of
articulation-aware normalized coordinate space hierarchy and
post-optimization. Related research also combines manipula-
tion with articulation estimation, including FlowBot3D [19].
Recently, Liu et al. [18] proposed a semi-weakly supervised
approach using a Graph Neural Network (GNN) which
takes pre-segmented point clouds as input. While single-
view methods seem to be the most useful and practical, their
performance remains in need of improvement.

B. Transformer for Point Clouds

Ever since its proposal by Vaswani et al. [20], Transformer
has become the most popular neural model not only in
natural language processing (NLP) but also in computer
vision (CV). Vision-Transformer (ViT) [21] brought the
Transformer into vision tasks and pushed performance in
many CV tasks to new heights. The permutation-equivariance
of the self-attention mechanism fits the inherently unordered
point cloud data structure well. Transformer allows for the
capture of global contextual information, compared with the
limited receptive field in convolutional methods. Such global
capture can be useful in understanding the overall structure
of the point cloud. Guo et al. [22] and Zhao et al. [23]
proposed Point Cloud Transformer and Point Transformer,
respectively; both demonstrate the potential of Transformer
in the field of Deep Vision. Transformer has been adopted in
various point cloud processing tasks, including point cloud
completion [24], denoising [25], and registration [26][27].
We believe that it is appropriate to apply an attention-based
approach to articulation estimation.

III. CATEGORY-LEVEL ARTICULATION ESTIMATION
FRAMEWORK

In this section, we first clarify the problem formulation.
Next, we introduce the structure of our framework, including
a Transformer-based encoder and a multi-branch decoder.
The encoder is identical to that of PCT [22], but for better
understanding, we briefly explain it in Sec. III-B. The overall
architecture of CAPT is shown in Fig. 2.

A. Problem Formulation

Given an articulated object O from a known category with
nJ joints and nL links, a partial point cloud with n points
Q = {pi ∈ Rd |i = 1, . . . ,n} may be obtained from a single

observation. The dimension d = 3 if the space coordinates
x,y,z are used for each point, which is the case in our method.
However, d could certainly be higher if more information is
added to each point, such as color space r,g,b (where d = 6)
[28] or normal vector space vx,vy,vz (where d = 6) [29].

The expected outputs of the method are the segmentation
of Q into nL links, parameters, and states for all nJ joints.
Point-wise segmentation predicts a segmentation label for
each point C = {c(pi) ∈ 1, . . . ,nL|i = 1, . . . ,n}. Here, joints
with one degree of freedom (DoF) are considered, since
they are the most common joints. For joint Jk(k = 1, ...,nJ),
one property is joint direction, denoted by unit vector
φ dir

k ∈ R3. Although joint axes are usually considered to
be directionless, we manually define a direction for each
joint under a consistent rule. We also consider joint position,
denoted as a point on the axis named pivot φ

pivot
k ∈R3. Joint

state is represented in radians, φ s
k ∈ (−π,π], and assigned a

predefined zero state for each category.

B. Input embedding and Encoder

As a disordered data structure, a point cloud needs no
position embedding as does Transformer in NLP [20] or
patch embedding as does ViT [21]. However, as discussed in
[30], adopting local feature embedding and neighbor feature
embedding improves feature extraction performance. The
encoder aims to extract high-dimensional features from 3D
point clouds, so as to provide sufficient information for
attached decoders to estimate targets. Our model adopts the
same encoder as [22]. The encoder consists of four self-
attention layers, which are used to process the point cloud
data in a hierarchical manner. A feature map of Fe ∈Rn×4de

is finally outputted by the encoder and fed into the decoder.

C. Multi-branch Decoders

Multi-branch decoders, attached downstream from the en-
coder, execute several tasks. The decoders consist of articu-
lation branch Ωarti

θ
and segmentation branch Ω

seg
θ

. The output
channel number is determined by the category property,
including the part number, joint number, and joint type for
each sample in the category dataset. Within a given category,
the link number and joint number are not always fixed.

Here we adopt a fully prepared strategy, which considers
the number of parts nL and the number of joints nJ for the
output channels to represent the maximum number for the
whole category dataset. For those samples whose numbers
of parts or joints are below the maximum, we set the output
of the extra channels to zero.

The segmentation branch predicts a point-wise segmenta-
tion mask for each link, i.e.,

Ω
seg
θ

(Fe)→ Ĥ(Q) ∈ Rn×nL , (1)

where Ĥ(Q) is the possibility distribution for each point in
Q belonging to each part. The joint axis direction may be
defined by a unit direction vector φ dir

k ∈R3. The joint position
may be represented by any point in the point cloud pi ∈ Q; a
unit vector φ

pdir
k (pi) ∈R3 starting from pi and perpendicular

C

Transformer Encoder Articulation Branch

State

P-Distance

Direction

Mask

Segmentation Branch

Input Output

P-Direction

Decoder Head
w/o Voting

Decoder Head
w/ Voting Embedding

Layer
Self-Attention

Layer

CConvolution
Fuse Layer

Concatenation

1D Conv Layer
(Along Features)

Linear
Layer

Coarse Voting Fine Voting

Fig. 2. Our CAPT (category-level articulation estimation from a point cloud using Transformer) architecture. n is the number of points, d is the origin
feature dimension of each point and de is the embedded feature dimension. In the output, as in all figures in this paper, the red arrow represents the
predicted joint, while the green arrow represents the ground truth joint.

Rotate Along
Predicted Joint

Rotate Along
Ground Truth Joint

Moved point cloudInput point cloud

1. Move

2. Compare

Fig. 3. Diagram of motion loss calculation. Motion loss of kth joint is
calculated in two steps. (1) Move: Moving the part point cloud Pk along
predicted joint Ĵk and ground truth joint Jk to obtain rotated point clouds
P̂′

k and P′
k , respectively. (2) Compare: Get motion loss by comparing P̂′

k and
P′

k . The total motion loss is the sum of each joint’s motion loss.

to the joint Jr
k; and the distance φ

pdir
k (pi) ∈ R3 between pi

and Jr
k.

To take better advantage of the global receptive field of
Transformer, the articulation branch conducts a point-wise
prediction of all articulation parameters:

Ωarti
θ

(Fe)→ Φ̂k(p), (2)

Φ̂k(p) = {φ̂ dir
k (p), φ̂ dist

k (p), φ̂ pdir
k (p), φ̂ s

k (p)}. (3)

Φ̂k(p) consists of joint direction φ̂ dir
k (p) ∈R3, point-to-joint

distance φ̂ dist
k (p) ∈ R, point-to-joint direction φ̂

pdir
k (p) ∈ R3,

and joint state φ̂ s
k (p) ∈ R3.

The predicted joint pivot of each point is computed as

φ̂
pivot
k (p) = p+ φ̂

dist
k (p) · φ̂ pdir

k (p). (4)

IV. LOSS DESIGN AND OPTIMIZATION

We next explain the proposed motion loss approach, which
recovers dynamic features of joints from static input. We
also describe the total loss design and the double voting
strategy, which inherits the coarse-to-fine inference paradigm
in estimating articulation model parameters.

A. Motion Loss

Articulation is a dynamic property of objects that is not
explicitly expressed by a single static point cloud. However,
restoring explicit dynamic information is made possible by
using additional constraints. The intuitive idea behind motion
loss is to move the point cloud of parts separately according
to the predicted and ground-truth joints and then compare the
moved point clouds. A diagram of this calculation is shown
in Fig. 3.

Formally, given point cloud Q = {pi ∈ R3|i = 1, . . . ,n},
the model provides a prediction of the joint direction φ̂ dir

k
and pivot φ̂

pivot
k of a joint Jk. We also know the ground truth

direction φ dir
k , pivot position φ

pivot
k of Jk, and segmentation

label C for loss computation. We first obtain the part point
cloud for the kth link Pk = {pi if C(pi) = k}, which is the
child link of Jk. Denote the point number of Pk as nk.
A rotated point cloud P′

k may be obtained by using the
Rodrigues rotation formula [31], which rotates points Pk
along an arbitrary 3D axis decided by direction φ dir

k and any
point on the axis φ

pivot
k , by an amount α , i.e.,

P′
k = ΨRodrigues(Pk,φ

dir
k ,φ

pivot
k ,α). (5)

We set rotation angle α as π/2. P̂′
k may be obtained similarly

by rotating the part point cloud Pk along predicted joint axis.
The motion loss is then calculated as

Lmotion(P′
k, P̂

′
k) =

nL

∑
k

nk

∑
i

∥p′
k,i − p̂′

k,i∥
nL ·nk

, (6)

where p′
k,i ∈ P′

k, p̂
′
k,i ∈ P̂′

k. In our case, we choose the least
squared error loss (L2 loss) as the per-point space distance
function Compare.

B. Total Loss

The total loss is composed of the losses for segmentation,
joint direction, joint position, and joint state. For segmenta-
tion, we compute the cross-entropy loss as

Lseg =−
n

∑
i

nL

∑
k

yi · log(Ĥ(pi)), (7)

where yi = 1 if C(pi) = k, otherwise yi = 0.

For joint direction prediction, we compute the cosine
similarity distance as

Ldir =
nJ

∑
k

nk

∑
i

1−Ψcossim(φ̂
dir
k (pi),φ

dir
k (pi))

nJ ·nk
, (8)

where Ψcossim(u,v) represents the cosine similarity between
d-dim vectors u and v as

Ψcossim(u,v) =
∑

d
i=1 ui · vi√

∑
d
i=1 u2

i ·
√

∑
d
i=1 v2

i

. (9)

For joint position prediction, we again compute the cosine
similarity distance as

Lpdir =
nJ

∑
k

nk

∑
i

1−Ψcossim(φ̂
pdir
k (pi),φ

pdir
k (pi))

nJ ·nk
, (10)

and the L2 loss for point-to-joint distance as

Ldist =
nJ

∑
k

nk

∑
i

∥φ̂ dist
k (pi)−φ dist

k (pi)∥
nJ ·nk

, (11)

Joint state prediction loss is computed as least absolute
deviations loss (L1 loss), i.e.,

Ls =
nJ

∑
k

nk

∑
i

|φ̂ s
k (pi)−φ s

k (pi)|
nJ ·nk

. (12)

The overall loss is computed as

L = [Lseg,Ldir,Lpdir,Ldist,Ls,Lmotion] ·WT. (13)

We roughly set the weight combination W used in this paper
to be W = [1,1,1,1,1,0.1], considering a balanced learning
rate for each target.

C. Double Voting

The decoder gives per-point prediction Φ̂k(p) for the
parameters and state of joint Jk. Points at different distances
from Jk usually contain different amounts of information;
such differences should not be ignored. Furthermore, points
around or on the axis give poor predictions, since the normals
of such points may be unstable due to the articulation
structure. In order to rule these points out, we propose double
voting, a coarse-to-fine voting strategy for accurately and
robustly deciding the target estimated parameter values. As
in the operation described in [2], a coarse voting is first
conducted, i.e.,

Φ̄k =
n

∑
i

Φ̂k(pi)

n
, (14)

where all points are weighted equally. Coarse voting assumes
that all points contain the same amount of information about
Jk, but this assumption holds only if the object lies fully
along the joint axis. To focus on the points that probably
contain more information and are more likely to give good
predictions of joint parameter values, we conduct a subse-
quent round of fine voting. We first compute the distance to
the coarsely voted joint Jk for each point as

φ̂
dist
k (p) = Ψdist(p, φ̂

pivot
k , φ̂ dir

k), (15)

where

Ψdist(p,q,u) = ∥((p−q) ·uT) ·u− (p−q)∥. (16)

We set a simple distance threshold, i.e.,

pi → Qf
k if φ̂

dist
k (pi) ∈ [ω0,ω1] ·β (Φ̂dist

k), (17)

where Qf
k is a subset of Q after removing points far from

estimated joint Ĵk. β (x) indicates the median value of x.
ω0 and ω1 are hyperparameters for adjusting the range of
points involved in fine voting. A larger ω0 value means that
more distant points also contribute to the final result, while
a smaller value means that only very close points participate
in the fine-voting round. ω1 performs just the opposite role,
controlling how close a point may be and still being counted
in the fine voting round. Finally, the estimated parameters
after fine voting are computed as

Φ̄
f
k = ∑

q∈Qf
k

Φ̂k(q)
nf

k
, (18)

where nf
k is the number of points in Qf

k.

V. EXPERIMENTS

A. Datasets

Several articulated object datasets have been proposed
recently [17][32][33][34], but Shape2Motion [3] is still the
most used and most appropriate for articulation estimation
tasks. We used four subsets for quantitative evaluation. We
also conducted a qualitative evaluation of the other subsets
to demonstrate that our methods could achieve good perfor-
mance on other synthetic categories.

Here we briefly summarize the data used in our ex-
periment. After considering the diversity, representative-
ness, and feasibility of the test set, we selected laptop,
washingmachine, oven, and eyeglasses for quantitative eval-
uation experiments. Scissors and bike were also used for
qualitative experiments. The joint numbers of these objects
(1, 1, 1, 2, 2, and 4, respectively) cover various kinematic
structures. The numbers of models in each category are 86,
62, 42, 43, 26, and 63, respectively.

Point clouds of articulated objects with annotation labels
were generated through simulation in Pybullet [35]. Each
joint was set to random initial states within the motion
limits. Data were further augmented through random rotation
along the x-axis, y-axis, and z-axis, with Rx,Ry,Rz ∈ [−π,π];
random translation along each axis with range [−1,1]; and
scaling by ratios with range [0.8,1.2]. We split the dataset
into training, validation, and test data sets with a volume
ratio of 7:2:1, respectively. We ensured that all inputs were
unseen objects with random states and points of view during
testing.

B. Baselines

We compared our methods with a simple PCT approach
that combines CAPT-plain and ANCSH [4]. This simple
PCT approach shares the same encoder structure as our
method but uses a single-branch multilayer perceptron as

the decoder and directly regresses the joint parameters. This
approach was used as a control to determine whether a
powerful Transformer encoder alone is sufficient for satis-
factory completion of the articulation estimation task. AN-
CSH also estimates category-level articulation parameters
from single-point-cloud input. However, ANCSH requires
a post-optimization process, unlike our end-to-end method.
To determine the effects of motion loss and double voting,
we also used CAPT-plain for comparison, which is CAPT
without motion loss and double voting.

C. Evaluation Metrics

We used the following metrics to evaluate our method.
We used per-point accuracy (PA) and mean intersection over
union (mIoU) to evaluate the segmentation result for each
point. For joint position, we use average Euclidean distance
(AED) between the predicted joint axis and the ground truth
joint axis. For joint direction, we used mean error in degrees
(MED) between the predicted joint axis direction and the
ground truth joint axis direction. We again used mean error in
degrees to evaluate joint state estimation accuracy. To assess
the stability of the evaluated method, we used the proportions
of results with joint position error values below 0.05 and
below 0.01 (reported as AP5 and AP10, respectively, under
the joint position columns), the proportions of results with
joint direction error below 5 degrees and below 10 degrees
(reported as AP5 and AP10, respectively, under the joint
direction columns), and the proportions of results with joint
state error values below 5 degrees and below 10 degrees
(reported as AP5 and AP10, respectively, under the joint state
columns).

D. Experimental Results

Evaluation results are summarized in Table I. Qualitative
results are visualized in Fig. 6.

For segmentation, our methods achieved a high segmenta-
tion accuracy: >98% in all subsets. Moreover, our methods
achieved top performance in three of the four estimation
categories. Even in the eyeglasses category, our methods ob-
tained results comparable with those of the best-performing
alternative method.

We also determined the influence of motion loss and
double voting: for joint parameter estimation, a direct re-
gression method such as PCT might achieve a result slightly
better than that of ANCSH, a PointNet- and RANSAC-based
method. The comparison of the results between PCT and
CAPT-plain shows that a voting-based multi-head decoder
is necessary in order to obtain joint parameter estimation
of high accuracy and stability. However, CAPT with motion
loss and double voting further enhanced precision, especially
for joint direction prediction. Double voting also boosted the
exactness of the estimation to some extent.

The advantage of double voting was strengthened in some
hard cases, as shown in Fig. 4. It was particularly difficult
to conduct successful articulation estimation on objects with
such tiny links. These tiny links resulted in (1) few points
in the link, thus few structural features, and (2) degenerate

(a) (b) (c) (d) (e)

Fig. 4. Comparisons between (a) ANCSH (b) PCT (c) CAPT-plain (CAPT
without double voting and motion loss) (d) CAPT without double voting
and (e) CAPT with double voting. Here the object has thin arms, which can
make naive PCT unmanageable. On the other hand, our method successfully
predicted joint parameter values with relatively high accuracy whether or
not double voting was used. Double voting yielded an even better result.

(a) (b) (c) (d) (e) (f)

Fig. 5. Direct sim-to-reality result. (a) Real scene, (b) extracted point
cloud, (c) naive PCT, (d) without motion loss, (e) without double voting,
and (f) our methods. The results indicate that our category-level articulation
estimation from a single point cloud using Transformer (CAPT) methods
successfully captured the category features of noisy real-world articulated
objects despite being trained with only a synthetic dataset.

surface normals, since each link was reduced to a line with
no effective surface. PCT failed in this case, while our
method achieved good estimation despite the difficulty. Dou-
ble voting here filtered out some of the less trustable points,
thus obtaining a better result than CAPT-plain. However, we
note that the two double voting hyperparameters ω0andω1
sometimes needed to be carefully examined before inference
in order to avoid loss of accuracy.

E. Time Consumption

The average time Consumption for each input is shown
in Table II. Since CAPT’s end-to-end structure required
no further post-optimization processing, it took a relatively
shorter time compared with the multi-stage method. Notably,
the inference time consumption of CAPT was relatively
insensitive to the joint number of the subset. The increase
in inference time between the single-joint laptop subset and
the multiple-joint eyeglasses subset was only 13% for CAPT
but was up to 2 times more for ANCSH.

F. Direct Simulation-to-reality Result

Direct simulation-to-real experiments indicated that the
CAPT model exhibits promising performance in real-world
articulation estimation, even in the absence of fine-tuning
on real-world datasets. This finding is demonstrated by the
direct simulation-to-reality results presented in Fig. 5. Prior
to inputting the real-world point cloud data into the model,
we conducted a series of pre-processing steps, including
the use of RANSAC to fit and remove the ground plane;
statistical outlier removal to denoise the point cloud; and
point cloud normalization [36].

TABLE I
EVALUATION RESULTS FOR FOUR TEST DATA SETS: PA refers to per-point accuracy. mIoU refers to mean intersection over union. APx refers to average
precision (the proportion of results with error below x). MED refers to mean error in degrees. AED refers to average Euclidean distance. Values for each

joint are represented as multiple values in a single cell for the multiple joints category.

Dataset Method Segmentation Joint Direction Joint Position Joint State
AP↑ mIoU↑ MED↓ AP5↑ AP10↑ AED↓ AP1↑ AP5↑ MED↓ AP5↑ AP10↑

Eyeglasses

PCT - - 7.74, 6.98 0.29, 0.38 0.73, 0.79 0.05, 0.04 0.12, 0.14 0.53, 0.60 11.3, 11.1 0.27, 0.26 0.52, 0.50
ANCSH 0.89 0.73 6.35, 6.37 0.48, 0.49 0.84, 0.84 0.09, 0.11 0.08, 0.01 0.37, 0.27 13.9, 13.2 0.04, 0.05 0.11, 0.12

CAPT-Plain 0.97 0.90 6.86, 5.83 0.35, 0.48 0.83, 0.90 0.04, 0.04 0.15, 0.17 0.62, 0.70 10.14, 10.49 0.26, 0.26 0.52, 0.49
CAPT (ours) 0.95 0.87 5.15, 4.26 0.54, 0.72 0.95, 0.96 0.03, 0.03 0.21, 0.20 0.81, 0.82 6.58, 6.84 0.51, 0.49 0.79, 0.79

Laptop

PCT - - 5.40 0.54 0.94 0.02 0.30 0.92 10.90 0.26 0.51
ANCSH 0.52 0.33 9.06 0.48 0.71 0.50 0.01 0.01 12.10 0.02 0.03

CAPT-Plain 0.98 0.95 2.13 0.95 0.99 0.01 0.50 0.98 9.38 0.30 0.55
CAPT (ours) 0.98 0.95 2.20 0.95 0.99 0.01 0.53 0.98 9.80 0.59 0.54

Oven

PCT - - 4.64 0.73 0.92 0.03 0.21 0.73 7.46 0.49 0.72
ANCSH 0.69 0.46 7.11 0.51 0.74 0.31 0.02 0.02 26.50 0.08 0.17

CAPT-Plain 0.98 0.94 4.27 0.64 0.92 0.03 0.22 0.75 6.99 0.49 0.77
CAPT (ours) 0.98 0.94 4.22 0.74 0.94 0.03 0.20 0.76 5.58 0.60 0.87

Washing
Machine

PCT - - 6.77 0.44 0.85 0.04 0.22 0.77 10.40 0.36 0.63
ANCSH 0.83 0.56 19.10 0.21 0.35 0.30 0.04 0.05 22.60 0.11 0.23

CAPT-Plain 0.99 0.97 5.84 0.52 0.91 0.03 0.24 0.95 8.35 0.49 0.75
CAPT (ours) 0.99 0.97 5.93 0.53 0.90 0.03 0.25 0.81 8.85 0.44 0.73

Mean

PCT - - 6.31 0.48 0.85 0.04 0.20 0.71 10.23 0.22 0.37
ANCSH 0.73 0.52 9.60 0.43 0.70 0.26 0.03 0.14 17.66 0.04 0.09

CAPT-Plain 0.98 0.93 4.99 0.59 0.91 0.03 0.26 0.80 9.07 0.26 0.41
CAPT (ours) 0.98 0.93 4.35 0.70 0.95 0.03 0.28 0.84 7.53 0.33 0.43

TABLE II
AVERAGE TIME CONSUMPTION FOR EACH INPUT: CAPT w/o DV means
CAPT without using double voting. Laptop represents single-joint objects,

while eyeglasses represent multiple-joint objects.

Dataset ANCSH (s) CAPT w/o DV (s) CAPT (s)

Laptop 1.00 0.035 0.036
Eyeglasses 3.33 0.040 0.041

VI. CONCLUSION
In this paper, we proposed a set of articulation estimation

methods: articulation point transformer, with a motion loss
approach to recover dynamic features from a single static
point cloud, and coarse-to-fine double voting to achieve
high accuracy in category-level articulation estimation. We
demonstrated better performance for these methods than for
existing alternative methods or for baseline performance on
a multi-category articulated object data set. The end-to-end
structure of our study distinguishes it from previous work
in which post-optimization or multi-stage networks were
used. Future work will focus on cross-category articula-
tion estimation with less or no prior kinematic constraint
knowledge required. We are also working on the deployment
of this articulation estimation system in real-scene robot
manipulation, as a promising application.

ACKNOWLEDGMENT
This work was partly supported by the social cooperation

program ”Technology for IoT sensing and analysis,” spon-
sored by UTokyo and Air Water.

M
od
el
s

M
od
el
s

R
es
u
lt
s

R
es
u
lt
s

Fig. 6. Qualitative results for six categories: eyeglasses, laptop, washing
machine, oven, bike, and scissors. The models are provided for reference
only. The point clouds of washing machine and oven are merged from
multiple observations to show the inner structures.

REFERENCES

[1] A. Jain, R. Lioutikov, C. Chuck, and S. Niekum, “ScrewNet: Category-
Independent Articulation Model Estimation From Depth Images Using
Screw Theory,” in 2021 IEEE International Conference on Robotics
and Automation (ICRA), 2021, pp. 13 670–13 677.

[2] Z. Jiang, C.-C. Hsu, and Y. Zhu, “Ditto: Building Digital Twins of Ar-
ticulated Objects From Interaction,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022, pp.
5616–5626.

[3] X. Wang, B. Zhou, Y. Shi, X. Chen, Q. Zhao, and K. Xu,
“Shape2Motion: Joint Analysis of Motion Parts and Attributes From

3D Shapes,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 8876–8884.

[4] X. Li, H. Wang, L. Yi, L. J. Guibas, A. L. Abbott, and S. Song,
“Category-level articulated object pose estimation,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, 2020, pp. 3706–3715.

[5] K. Hausman, S. Niekum, S. Osentoski, and G. S. Sukhatme, “Active
articulation model estimation through interactive perception,” in 2015
IEEE International Conference on Robotics and Automation (ICRA),
May 2015, pp. 3305–3312.

[6] J. Sturm, C. Stachniss, and W. Burgard, “A Probabilistic Framework
for Learning Kinematic Models of Articulated Objects,” Journal of
Artificial Intelligence Research, vol. 41, pp. 477–526, Aug. 2011.

[7] J. Bohg, K. Hausman, B. Sankaran, O. Brock, D. Kragic, S. Schaal,
and G. Sukhatme, “Interactive Perception: Leveraging Action in Per-
ception and Perception in Action,” IEEE Transactions on Robotics,
vol. 33, no. 6, pp. 1273–1291, Dec. 2017.

[8] D. Katz, M. Kazemi, J. A. Bagnell, and A. Stentz, “Interactive segmen-
tation, tracking, and kinematic modeling of unknown 3d articulated
objects,” in 2013 IEEE International Conference on Robotics and
Automation. IEEE, 2013, pp. 5003–5010.

[9] R. S. Hartanto, R. Ishikawa, M. Roxas, and T. Oishi, “Hand-Motion-
guided Articulation and Segmentation Estimation,” in 2020 29th IEEE
International Conference on Robot and Human Interactive Communi-
cation (RO-MAN). IEEE, 2020, pp. 807–813.

[10] L. Yi, H. Huang, D. Liu, E. Kalogerakis, H. Su, and L. Guibas, “Deep
Part Induction from Articulated Object Pairs,” ACM Transactions on
Graphics, vol. 37, no. 6, pp. 1–15, Dec. 2018.

[11] E. Colleoni, S. Moccia, X. Du, E. De Momi, and D. Stoyanov, “Deep
Learning Based Robotic Tool Detection and Articulation Estimation
With Spatio-Temporal Layers,” IEEE Robotics and Automation Let-
ters, vol. 4, no. 3, pp. 2714–2721, July 2019.

[12] N. Heppert, T. Migimatsu, B. Yi, C. Chen, and J. Bohg, “Category-
Independent Articulated Object Tracking with Factor Graphs,” in 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Oct. 2022, pp. 3800–3807.

[13] Y. Weng, H. Wang, Q. Zhou, Y. Qin, Y. Duan, Q. Fan, B. Chen,
H. Su, and L. J. Guibas, “CAPTRA: CAtegory-Level Pose Tracking
for Rigid and Articulated Objects From Point Clouds,” in Proceedings
of the IEEE/CVF International Conference on Computer Vision, 2021,
pp. 13 209–13 218.

[14] A. Jain, S. Giguere, R. Lioutikov, and S. Niekum, “Distributional
Depth-Based Estimation of Object Articulation Models,” in Proceed-
ings of the 5th Conference on Robot Learning. PMLR, Jan. 2022,
pp. 1611–1621.

[15] W.-C. Tseng, H.-J. Liao, L. Yen-Chen, and M. Sun, “CLA-NeRF:
Category-Level Articulated Neural Radiance Field,” in 2022 Interna-
tional Conference on Robotics and Automation (ICRA), May 2022, pp.
8454–8460.

[16] Z. Yan, R. Hu, X. Yan, L. Chen, O. van Kaick, H. Zhang, and
H. Huang, “RPM-Net: Recurrent Prediction of Motion and Parts from
Point Cloud,” ACM Transactions on Graphics, vol. 38, no. 6, pp. 1–15,
Dec. 2019.

[17] L. Liu, H. Xue, W. Xu, H. Fu, and C. Lu, “Towards Real-World
Category-level Articulation Pose Estimation,” IEEE Transactions on
Image Processing, vol. 31, pp. 1072–1083, 2022.

[18] G. Liu, Q. Sun, H. Huang, C. Ma, Y. Guo, L. Yi, H. Huang, and R. Hu,
“Semi-Weakly Supervised Object Kinematic Motion Prediction,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023, pp. 21 726–21 735.

[19] B. Eisner, H. Zhang, and D. Held, “Flowbot3d: Learning 3d ar-
ticulation flow to manipulate articulated objects,” arXiv preprint
arXiv:2205.04382, 2022.

[20] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is All you Need,” in
Advances in Neural Information Processing Systems, vol. 30. Curran
Associates, Inc., 2017.

[21] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

[22] M.-H. Guo, J.-X. Cai, Z.-N. Liu, T.-J. Mu, R. R. Martin, and S.-M. Hu,
“Pct: Point cloud transformer,” Computational Visual Media, vol. 7,
no. 2, pp. 187–199, 2021.

[23] H. Zhao, L. Jiang, J. Jia, P. H. Torr, and V. Koltun, “Point trans-
former,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2021, pp. 16 259–16 268.

[24] J. Lin, M. Rickert, A. Perzylo, and A. Knoll, “PCTMA-Net: Point
Cloud Transformer with Morphing Atlas-based Point Generation
Network for Dense Point Cloud Completion,” in 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
Sept. 2021, pp. 5657–5663.

[25] X. Xu, G. Geng, X. Cao, K. Li, and M. Zhou, “TDNet: Transformer-
based network for point cloud denoising,” Applied Optics, vol. 61,
no. 6, pp. C80–C88, Feb. 2022.

[26] Y. Wang and J. M. Solomon, “Deep Closest Point: Learning Represen-
tations for Point Cloud Registration,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019, pp. 3523–3532.

[27] X. Yu, L. Tang, Y. Rao, T. Huang, J. Zhou, and J. Lu, “Point-
BERT: Pre-Training 3D Point Cloud Transformers With Masked Point
Modeling,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022, pp. 19 313–19 322.

[28] J. Park, Q.-Y. Zhou, and V. Koltun, “Colored Point Cloud Registration
Revisited,” in Proceedings of the IEEE International Conference on
Computer Vision, 2017, pp. 143–152.

[29] W. Wu, Z. Qi, and L. Fuxin, “PointConv: Deep Convolutional
Networks on 3D Point Clouds,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp.
9621–9630.

[30] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning
on point sets for 3d classification and segmentation,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 652–660.

[31] H. Cheng and K. C. Gupta, “An Historical Note on Finite Rotations,”
Journal of Applied Mechanics, vol. 56, no. 1, pp. 139–145, Mar. 1989.

[32] F. Michel, A. Krull, E. Brachmann, M. Y. Yang, S. Gumhold, and
C. Rother, “Pose estimation of kinematic chain instances via object
coordinate regression.” in BMVC, 2015, pp. 181–1.

[33] F. Xiang, Y. Qin, K. Mo, Y. Xia, H. Zhu, F. Liu, M. Liu, H. Jiang,
Y. Yuan, H. Wang, L. Yi, A. X. Chang, L. J. Guibas, and H. Su,
“SAPIEN: A SimulAted Part-Based Interactive ENvironment,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 11 097–11 107.

[34] R. Hu, W. Li, O. Van Kaick, A. Shamir, H. Zhang, and H. Huang,
“Learning to predict part mobility from a single static snapshot,” ACM
Transactions on Graphics, vol. 36, no. 6, pp. 227:1–227:13, Nov. 2017.

[35] E. Coumans and Y. Bai, “Pybullet, a python module for physics sim-
ulation for games, robotics and machine learning,” http://pybullet.org,
2016–2021.

[36] J. Guo, L. Fu, M. Jia, K. Wang, and S. Liu, “Fast and Robust Bin-
picking System for Densely Piled Industrial Objects,” in 2020 Chinese
Automation Congress (CAC), Nov. 2020, pp. 2845–2850.

