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Abstract—In this paper, we present a method for estimating
a dense depth map from a sparse LIDAR point cloud and an
image sequence. Our proposed method relies on a directionally
biased propagation of known depth to missing areas based on
semantic segmentation. Additionally, we classify different object
boundaries as either occluded or connected to limit the extent
of the data propagation. At the regions with large missing point
cloud data, we depend on estimated depth using motion stereo.
We embed our method on a bounded interpolation strategy which
also considers pixel distance, depth difference and color gradient.
We then perform an optimization step based on tensor-based
TGV-L2 denoising. Our results show that directional propagation
and semantic boundary classification can improve the accuracy
of interpolation along the edges for different types of objects.
Moreover, our motion stereo scheme increases the reliability of
extrapolated depth at the regions with large missing point cloud
data. Finally, we show that our implementation strategy can
achieve reliable results in real time.

Index Terms—List of keywords (Mapping, Object Detection,
Segmentation and Categorization, RGB-D Perception)

I. INTRODUCTION

DEPTH estimation is an integral part of many applications
including robot navigation, autonomous driving and 3D

modeling. Most of these applications require the depth map
to be dense, accurate, and solved in real time. For example,
in outdoor robot navigation and autonomous driving, detecting
distant objects such as humans or traffic signs is difficult when
using low resolution depth. In 3D modeling, dense depth maps
are used for reconstructing an accurate and detailed 3D map
of the environment.

Generally, depth maps can be estimated in two ways de-
pending on the type of sensor used - passive (image-based)
and active (3D sensors). Image-based methods (stereo, motion
stereo, structure-from-motion) can generate a dense depth map
from a pair of images, or image sequences. However, these
methods are largely dependent on accurate image correspon-
dences, pose estimation (for motion stereo) and sufficient
baseline (for stereo, in general) and are insufficient when
mapping distant objects.

In contrast to passive sensing, active sensors such as
RGBD cameras and LIDAR can measure the depth in a more
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Fig. 1. Overview of our proposed dense depth estimation method using
LIDAR, image sequence, semantic information, and motion stereo.

straightforward manner. However, for outdoor applications,
RGBD cameras are insufficient because of their short range
and inaccuracy due to sunlight. LIDAR sensors, on the other
hand, have long range capabilities and are mostly unaffected
by the ambient lighting. However, the inherent sparsity of
the measurement points, which is limited by the number of
simultaneous firing lasers, makes LIDARs undesirable when
dense depth maps are required.

In this work, we utilize the advantages of both active and
passive sensing by estimating a dense depth map using an
image sequence and LIDAR point clouds as input. Like in
methods such as [1] and [2], we also embed our method in
a data upsampling framework with improvement on handling
boundaries and extrapolation. We utilize both the information
that can be extracted from an image sequence (color, gradient,
visual object recognition, structure-from-motion) and LIDAR
data (accurate depth values), and combine them into one
framework that generates a dense depth map in real-time.

In our method, we use the LIDAR data as anchor points
upon which the depth values of unknown pixels are based. We
design this basis to be dependent on several properties such
as geometry, color, motion and semantic segmentation. We
also improve the handling of object boundaries by using our
proposed boundary class labeling which adjusts the effects of
the neighboring depth value based on the relationship between
semantic classes.

We also propose a directional propagation scheme that
relates the direction of the sequential data interpolation and
extrapolation based on the semantic classes. Additionally, in
parts where there are very few LIDAR points, we use the
motion stereo depth to make the extrapolation more reliable.
Finally, we perform a global optimization scheme to further
smooth the resulting depth and refine the object boundaries
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using the visual edge information.

II. RELATED WORK

Several work have been presented that address the sparsity
of LIDAR data. In [3], an interpolation method based on
partial differential equations applied an energy minimization
on sparse point clouds to achieve a smooth upsampled depth
map. To improve on boundary conditions, bilateral filter-based
approach [4] was proposed which can estimate depth while
preserving edges. In [5], a multilateral filter was used in
addition to semantic segmentation of point clouds that further
improves handling of object boundaries. Recently, deep neural
network based interpolation methods have been proposed such
as in [6]. In general, point-cloud-only methods are superior
to methods that require calibration and synchronization such
as RGBD image pairs. Nevertheless, these methods conduct
interpolation with smoothness assumption and lacks strict
boundary handling.

Since a camera image often has higher resolution than a
LIDAR depth map, image-guided point cloud interpolation
have been also explored. High resolution images are used to
refine rough boundary information from low resolution depth
maps. This interpolation is usually performed using various
approach such as filtering [7], [8], [9], geodesic distance [10],
anisotropic total generalized variation [11], autoregressive
model [12], and semantic information [2]. Some methods also
take temporal information into consideration [13], [14] while
others use neural network for further depth map enhancement
[15], [16].

Aside from having a higher resolution, a camera image
can also cover a wider area and can be used as a guide
for extrapolation or inpainting. In [17], a color image was
used to extract structural information and used for depth map
inpainting. On the other hand, edge information and semantic
segmentation was used to extrapolate the LIDAR data points
to missing regions in [2], which results in reliable depth along
object boundaries. However, the use of semantic segmentation
results in over-dominant extrapolation in areas with no LIDAR
points clouds.

III. DENSE DEPTH MAP ESTIMATION

Our method requires a calibrated sparse depth map and
an image sequence. The sparse depth map can come from
different sources such as LIDAR point clouds. In this paper,
we assume that a pair of images from a single-camera system
is given in real-time, but our method is easily extendable on
multiple images and/or multiple camera system (binocular or
multi-view stereo). Our goal is to estimate a complete and
dense depth map by interpolating the known depth map in
areas with a little gap between known points, and extrapolate
at the areas where depth is completely unknown. Using the
information that can be extracted from the image pair, such
as color gradient, semantic classes, and motion stereo, our
proposed scheme can propagate the known depth to missing
areas. After propagation, we perform a global optimization
step to further improve the appearance of the resulting depth
map. We show the overview of our method in Figure 1.

Fig. 2. Classifying boundaries (Connected, Occlusion) based on semantic
labels.

A. Propagation

Our propagation method is dependent on a geodesic
distance-based data interpolation scheme, which solves the
depth of an unknown pixel based on the nearby known values.
Given an image I : Ω → R+ of the image sequence S,
with corresponding sparse depth map Dp, our aim is to find
D = Dp ∪De where Dp ∩De ≡ ∅ and De is the combined
interpolated and extrapolated depth. In order to solve for De,
we define the depth dx ∈ De for every pixel x in the image
domain Ω ∈ R2 of I as:

dx = (1− wm)

∑
y∈N wlwdwcwsdy∑
y∈N wlwdwcws

+ wmdmx (1)

where dy ∈ Dp corresponds to known-depth pixels in the
N ∈ R2 nearest neighborhood of x and dmx is the depth at x
solved using motion stereo between frames I and Ī ∈ S and
I 6= Ī . The weights wl, wd, wc, ws, and wm are calculated
form five properties – pixel proximity, depth difference, image
gradient, semantic labels and motion stereo, respectively.

1) Pixel proximity (PP): This weight depends on the
Eucledian distance between the estimated pixel x and the
known-depth pixel y. As the distance between the two pixels
increases, the contribution of y to the depth value of x
decreases. We define the weight as:

wl =
1

βl + ‖x− y‖2
(2)

The parameter βl is used for normalization.
2) Depth (DE): We define the depth weight as:

wd =
1

βd + |dg − dy|
(3)

where wd is dependent on the difference between depth values
of y and the nearest known depth to pixel x. We find the
nearest depth, dg, as the value at pixel g with smallest local
geodesic distance from x. The local geodesic distance is
dependent on the difference in proximity and color similarity
of the estimated pixel and the candidate known-depth pixel.
We define this distance as:

G = λl‖x− y‖2 + λc‖I(x)− I(y)‖2 (4)

where λl and λc are normalization weights.
3) Image gradient (IG): Natural object boundaries are often

indicated by the difference in color or intensity of adjacent
pixels. We utilize this assumption to further weight a pixel
based on the similarity of its appearance to the estimated pixel.
To do this, we find the maximum normalized image gradient,
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İmax along the path between x and y and define the color
weight as:

wc =
1

βc + İmax

(5)

The image gradient can be solved using edge detection tech-
niques such as SED [18].

4) Semantic boundary labels (SB): We use semantic seg-
mentation to further identify object boundaries. We classify
different object boundaries as either Connected or Occlusion
as shown in Figure 2. Connected boundaries usually exist
along the edges between the ground and objects on it such
as buildings, cars, or trees, and usually located at the bottom-
most part of these objects. On the other hand, Occlusion
boundaries happen along the edges of two vertical objects such
as buildings and cars.

The difference in semantic labels and the identified bound-
ary determine whether the weight is increased or decreased.
For example, when the boundary is labeled as Connected, the
neighboring pixel should be counted during estimation and
therefore the weight is increased. On the other hand, when the
boundary is classified as Occlusion, there should be an obvious
disconnection between the depth of the two neighboring pixels
and the weight should be decreased.

We define the weight for the semantic boundary as:

ws =

{
1 (Lx = Ly)

αs (otherwise)
(6)

This formula reduces the weight when the semantic labels
between estimated point Lx and the known-depth point Ly

are different and the boundary is classified as Occlusion.
5) Motion stereo (MS): Using sequential images gives

more information other than just color gradient and object
boundaries. In particular, assuming a non-zero translational
motion, dense depth map of static objects can be estimated
from successive frames. Using this information, we can further
improve the estimation of unknown depths in the image,
particularly outside the boundary of the known point clouds
(typically upper part of images when using LIDAR-image
pairs).

We define the weighting of the depth from motion stereo
using concatenated inverse oriented distance function:

wm =

{
0 (x ∈ B)

h(x, δB) (x /∈ B)
(7)

where h(·) defines the Euclidean distance of x to the
boundary δB of the known point cloud area B. The weight wm

increases linearly as the distance to the boundary increases,
which decreases the contribution of the known-depth points
along the boundary to the estimated pixel.

B. Semantically Dependent Propagation

In contrast to other methods that also handles interpolation
of sparse data ([1], [2], [19]), our method relies on direc-
tionally biased propagation. This means that we give different
importance to the direction the data is propagated with respect
to the semantic classes.

Fig. 3. The intersection between the plane parallel to the image plane and the
3D structures defines lines of which direction is dependent on the semantic
class.

Our idea is based on observable visual properties of objects
in a projective imaging system, where in object shapes are
generally preserved with obvious limits to the inherent effects
of 3D-2D projection. By relying on the semantic classes, it is
possible to guess the geometric structure of the object and
as a result allows us to constrain the relationship between
neighboring depth pixels.

For example, in a perspective projection where the camera
is perpendicular to the ground, we can define a plane that
is parallel to the camera frame (see Figure 3). Points in this
plane are equidistant to the camera frame, hence have equal
depth values. If we intersect this plane with the 3D objects, the
direction of the lines that are formed appears to be dependent
on the semantic class.

The value of dx is solved sequentially along the direction
indicated by the semantic label. After dx is calculated for x,
it is removed from De and becomes a subset of Dp. Since
the depth map is propagated sequentially, this means that
succeeding pixels will also use the newly added value to the
interpolation. Using this scheme, we were able to improve
the accuracy of estimated depth especially along the object
boundaries. Figure 4 shows the effect of this approach.

C. Optimization

After solving the dense depth map using our proposed
propagation method, we implemented an optimization step
to solve for a smooth depth map D̄. We borrow the tensor-
based TGV-L2 (total generalized variation) denoising method
described in [11]. To do this, we solve for the depth u at pixel
x, where u ∈ D̄, as:

arg min
u,v

∫
Ω

{α1|T
1
2 (∇u− v) |

+ α0|∇v|+ λ‖u− dx‖2}dx (8)

where T is an anisotropic diffusion tensor as described in [11].
The above optimization function allows u to be smooth by
imposing a small TGV (∇v) through the relaxation variable
v, while constraining the value around dx. It improves the
values along the natural object boundaries described by the
edge images and guided by the diffusion tensor. We assign
the parameters α0, α1 and λ in the same manner as in [11]
and solve (8) using primal-dual decomposition and the second-
order approximation of TGV.
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Fig. 4. Comparison of depth accuracy along boundaries without directional
propagation (left) and with our proposed directionally biased propagation
(right).

IV. IMPLEMENTATION

Our implementation requires a calibrated [20] image se-
quence and a sparse 3D point cloud. We first assume that the
3D points are projected onto the image plane for each frame
in the sequence as a sparse depth map. This RGBD pairing is
common in publicly available datasets such as [21].

A. Semantic Segmentation

We process each image in the sequence for the semantic
segmentation. We use a publicly available implementation of
the ICNET method [22][23] trained on the CITYSCAPES [24]
dataset. The semantic classes are: road, sidewalk, building,
wall, fence, pole, traffic light, traffic sign, vegetation, terrain,
sky, person, rider, car, truck, bus, train, motorcycle, bicycle
and void. We run ICNET on a GTX1080Ti GPU computer
and achieved a 30fps frame rate on 1242x375 image size.

B. Boundary Labeling

To implement our boundary labeling scheme, we use the
semantic classes generated by ICNET. We devise a simple
boundary traversal in the semantic segmentation image to
determine the type of boundary. We first re-categorized the
objects such as road, sidewalk and terrain as ground, of
which self-boundaries are labeled as Connected. Except for
vehicles (car, truck, bus, train, motorcycle, bicycle), crossing
a boundary to the ground during vertical traversal, indicates a
Connected boundary. For vehicles, the bottom most section of
the segment bounded by the ground (wheels) are also labeled
as Connected. All other boundaries are then considered as
Occlusion.

C. Motion Stereo

For motion stereo, we implemented a depth estimation
method described in [25]. This method solves the motion
stereo problem for two views in a variational framework and
runs in real time. We estimate the correct scale relative pose
between two frames using the LIDAR point cloud data and
the dense correspondence from optical flow [26], and perform
a perspective-n-point [27] estimation. After solving for the
poses, we then estimate the dense depth using [25]. On a
GTX1080Ti GPU, we were able to achieve a 10fps frame rate
which is suitable for our method.

D. Propagation and Optimization

We set the parameters of each term in the propagation
step to normalize the values and scale the range between
different terms (i.e. pixel distance, depth, intensity values). In
our implementation, we used the values: βl = 0.4, βd = 1.0,
λl = 0.1, λc = 1.0, βc = 0.1, and αs = 10.0.

We use the sparse depth map from projected LIDAR points,
RGB, semantic segmentation and depth from motion stereo
images as inputs to our proposed method. Both propagation
and optimization steps are parallelized using the same GPU
as above with C++/CUDA to achieve real-time results. The
propagation step requires 19ms. In our experiments, there is
a trade-off between optimization iteration steps and accuracy
and smoothness along object boundaries. Higher iterations
result in a more defined object boundaries at the cost of
processing time. For a 1242x375 image, we determine a range
of 29ms to 105ms for iteration values between 50 and 200.
In our results, we use an iteration value of 100 and achieve a
processing time of 50ms using parameter values α0 = 17.0,
α1 = 1.2 and λ = 5.0.

V. RESULTS AND COMPARISON
A. Effective Contribution of Each Term

We evaluated the contribution of each term on the accuracy
of the resulting depth map and summarize the results in Table I
and Figure 5 showing the error map as used in [21]. We added
and accumulated the term one by one starting from the pixel
proximity. From the results, each additional term gradually
reduces the MAE and RMSE.

Our proposed semantic boundary labeling scheme improves
the RMSE by 27.1mm and the MAE by 210.4mm for Frame
12 of our dataset. From the images, it is apparent that the errors
along the object boundaries are reduced. Moreover, by adding
the motion stereo term, the accuracy of estimated depth outside
of measured LIDAR regions is greatly improved, with total
RMSE improvement of 1458.5mm and MAE of 476.7mm.

However, while applying the optimization step improves the
RMSE slightly by 7.9mm, the MAE was worse at +95.1mm.
The degradation after optimization is due to the naive edge
smoothing which often excludes semantic information es-
pecially in geometrically smooth areas (e.g. ground) with
visually varying textures (e.g. paints and markings).

B. Comparison with Existing Methods

We compare the results of our propagation technique with
our implementation of two existing methods [1] and [2] using

Fig. 5. Contribution of each term on the accuracy of depth estimation.
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Fig. 6. Comparison of (a) [1], (b) [2] and (c) our method with error map [21] on samples of our dataset with ground truth dense depth map and semantic
labels. (Top to bottom: frames 12, 18, 29, and 35.)

TABLE I
CONTRIBUTION OF EACH TERM ON THE ACCURACY OF DEPTH

ESTIMATION ON FRAME 12 OF OUR DATASET USING MAE AND RMSE (IN
MM) AND ERROR REDUCTION (DIFF.) WITH THE ADDED TERM.

Term MAE Diff. RMSE Diff.
PP 2092.3 -0.0 4184.2 -0.0

PP+DE 1614.0 -478.3 3685.8 -498.4
PP+DE+IG 1409.0 -205.1 3420.6 -265.3

PP+DE+IG+SB 1198.6 -210.4 3393.5 -27.1
PP+DE+IG+SB+MS 721.8 -476.7 1935.0 -1458.5

All+Optimization 817.0 +95.1 1927.1 -7.9

our outdoor dataset which consists of image pairs with dense
ground truth depth map, ground truth semantic segmentation
and known pose. Figure 6 shows the depth results from the
three methods as well as the error map. We also compare
the three methods using maximum absolute error (MAE in
mm) and root mean square error (RMSE in mm) measures
and summarize the results in Table II. In all but one image,
our method outperforms the two other methods in terms of
accuracy. Compared with [1], our obvious advantage is the
availability of estimated depth even without the LIDAR inputs
(top part of the image). Using interpolation-based completion
suffers from the limitation of estimation window size which
is not enough to cover the whole image especially when large

portions are missing. Increasing the window size, however,
significantly increases computation time.

Compared to [2], our method achieves better results in terms
of accuracy especially in regions with large missing LIDAR
data and mostly uniform semantic segmentation because of our
motion stereo scheme. Generally speaking, when an object is
perfectly segmented even without sparse depth prior (such as
the tree trunk in frame 35 of Figure 6), the method described
in [2] works very well. However, in recent cases, semantic
segmentation methods can only identify general object classes
and leaves out natural and specific object boundaries, hence
the advantage of motion stereo-based depth estimation. For
example, the wrong depth of the trees in frame 12, windows
in frame 18, and the fence and building boundary in frame 29,
were propagated to the top of the image when using method [2]
due to the flat semantic label. On the other hand, these regions
were more accurately estimated with our proposed method.
We also evaluated our method on a the KITTI [21] dataset
and show our propagation and optimization result in Figure
7. Even though the semantic segmentation is not perfect, our
proposed approach was able to estimate the depth of even thin
objects outside the boundary of the measured LIDAR points,
such as traffic signs and poles. Moreover, the optimization step
refines the boundary conditions where the semantic labels fail.
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TABLE II
COMPARISON OF OUR METHOD WITH [1] AND [2] USING MAE AND

RMSE (IN MM).

frame [1] [2] Ours
MAE RMSE MAE RMSE MAE RMSE

8 4328.3 8563.3 1022.2 3008.7 529.3 1765.6
12 5733.8 12528.6 1823.5 4031.0 721.8 1935.0
18 5817.6 9498.4 502.8 1494.2 242.2 792.3
29 4970.0 8261.9 415.4 1159.1 387.0 807.4
35 8845.8 14098.1 770.6 1939.1 737.7 1948.0

Fig. 7. Sample result of our method with the KITTI dataset [21] using
the computed semantic segmentation from ICNET [22]. Thin objects outside
of the measured LIDAR region and inaccurate semantic segmentation were
estimated correctly

VI. CONCLUSIONS
In this paper, we proposed a dense depth estimation method

by using a sparse LIDAR data and an image sequence.
Our results show that using our proposed directionally-biased
propagation, we were able to improve the accuracy of the
result along object boundaries. Furthermore, by utilizing the
semantic labels to classify different type of boundaries, we
were able to make the depth estimation more reliable. We were
able to accurately estimate the depth at the regions with large
missing LIDAR points using our motion stereo scheme. In our
implementation, we were able to achieve real-time processing
using modern GPUs.

However, our boundary labeling method is dependent on
the accuracy of the semantic segmentation. For future work,
a segmentation method that can classify between individual
objects can be used which will allow for detecting occlusion
boundaries between similar class objects. Additionally, a wider
range of propagation strategy, i.e. non-strict direction, can
be extracted from the semantic classes and can increase the
flexibility of the proposed approach. Moreover, the naive
optimization scheme can be improved to include semantic in-
formation such that the edge refinement is limited to geometric
object boundaries and ignores the visual texture of smooth
surfaces.
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