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Abstract

Effective control of disease and pest infection is vi-
tal for maximizing crop yields, and pesticide spraying is
a commonly used method for achieving this goal. This
study proposes a novel approach to selective pesticide
spraying using a quadruped robot platform, which we
tested in a broccoli field. We developed an algorithm
to detect and track worms based on our proposed His-
togram of Oriented Gradients and Support Vector Ma-
chine (HOG-SVM) techniques, integrated with the re-
cent object detection and tracking methods. Our plat-
form was tested by traversing the furrows between the
broccoli crop lines and continuously scanning to detect
cabbage worms. Our experiments demonstrate that the
proposed HOG-SVM algorithm successfully reduced the
false positive rate of real-time worm detection by re-
ducing around 90% for the imitation environments and
around 60% for the actual field.

1 Introduction

Agriculture is a repetitive cycle of physical labor on
cultivating crops with various dynamic factors like veg-
etation growth and weather. These criteria are suit-
able for automation applications using robot manipu-
lation and computer vision algorithms. In recent years,
there has been a growing trend in agricultural robot
applications like soil monitoring [19], seeding [9], weed
monitoring [10], pesticide spraying [15], and harvesting
[14, 24, 1].

While every part of the steps is essential for crop
production, our study focuses on automation for pesti-
cide spraying tasks using robots and computer vision.
Usually, pesticides are sprayed regularly and over the
entire field to prevent pests and diseases. This has a
significant impact on food safety as well as on costs
due to spraying that is not originally needed. If pests
can be automatically recognized and pesticides applied
on an individual basis, these problems can be solved
simultaneously.

Pesticide tank
and pump

myCobot 280 
M5stack 6 DOF 

robot arm

RealSense 
L515 camera

Unitree A1

Raspberry Pi 4

USB serial

USB serial

GPIO

Quadruped 
robot

Spraying
module

Leg motors, head camera and GNSS receiver 

GNSS AntennaUSB serial

Connect via 
Wi-Fi mesh

Figure 1. The quadruped robot scans for the
worms on a raw broccoli field. The green arrows
and the Wi-Fi mesh symbols denote the commu-
nication methods between different modules.

In this paper, we propose a quadruped robot plat-
form to operate in the outdoor field and to spray pes-
ticides selectively with real-time worm detection. Fig-
ure 1 illustrates our platform working in a real broccoli
field. Quadruped robots were proven stable and could
maneuver in any terrain [6][3], which are difficult situ-
ations for wheel-type robots. We also developed a ro-
bust worm detection framework to deal with the shaky
video frames taken by the camera attached to the end-
effector of the robot arm. The contributions of our
research are as follows:

1. We propose a quadruped robot platform with ba-



sic features of real-time control of locomotion,
camera streaming, robot arm manipulation, and
GNSS positioning.

2. We propose a worms detection framework that
combines YOLO+Deepsort object tracker and
HOG (Histogram of Oriented Gradients) -SVM
classifier to reduce false positive cases effectively.

3. We implemented spraying modules using robot
arm manipulation and worm detection for real-
field applications.

2 Related work

2.1 Pesticide spraying robot

Unmanned aerial vehicles (UAV) using drones with
pesticide tanks and sprayers are used in recent ap-
proaches for pesticide spraying [5, 7]. However, drone
operations only allow uniform spraying from high posi-
tions, which limits pesticide options and increases the
risk of excessive spraying due to unpredictable wind
conditions. The more advanced method of robot plat-
form for unmanned ground vehicles (UGV) primarily
still uses wheels for locomotion and operates in a lim-
ited area, like a greenhouse on a particular track [2].
Bonirob was first built for wheat fungal phenotyping
[17] and is now widely used for various agricultural
tasks like mechanical weed control [22] and selective
herbicide spraying [18].

2.2 Pest detection algorithm

One of the effective methods of selective pesticide
spraying is to spray only into the insect infection area
of the field. Researchers use image processing com-
bined with environmental knowledge to detect insects.
Johnny L et al. in 2014 [11] used image processing
to convert RGB images into grayscale and calculate
the difference of uniform color trap reference to detect
the insects on paddy fields. Another method of a dis-
ease detection algorithm for selective grapevine spray-
ing was done by Oberti et al. [13] utilizing spectral
indices for fungal detection in infection tissue [12].

Recently, machine learning has been common for
pest detection applications, especially when many fea-
tures are believed to correlate with identification. Es-
pinoza et al. [4] use artificial neural networks to de-
tect and classify adult-stage whiteflies and thrip col-
lected in sticky traps in a tomato greenhouse. Other
researchers, Kasinathan et al. [8] performed both clas-
sical machine learning and deep learning using real field
insect dataset provided by J. Wang et al. [20] and Xie
et al. [23]. The classifications by CNN have accuracy
above 90%, outperforming classical ML with only 80%
accuracy.

3 Worm detection and spraying system

3.1 Robot platform configuration

Our robot platform consists of a quadruped robot
and a spraying module, as shown in Fig. 1. To ensure
the flexibility needed for maneuvering uneven soil and
working closely with crops for pesticide spraying, we
chose a quadruped robot as the central platform. The
spraying module consists of a robot arm, a water pump,
and an RGB-D camera mounted on the robot’s end
effector. External batteries have been added to power
the pump and robot arm. The devices are covered by a
specially designed and 3D-printed case to protect them
from rain and dust.

All modules are connected via ROS under WiFi
mesh. The remote operation program receives the
robot sensor readings, like camera streaming images,
and then processes the data to operate the spraying
module. The robot arm is initially positioned towards
the robot’s side. When a pest is automatically de-
tected, the operation program sends commands to con-
trol the robot arm by inverse kinematics and a spraying
signal to spray the pesticides.

3.2 Worm detection and tracking

In order to effectively eliminate the cabbage worm,
the most prevalent pest in the broccoli field, we have
developed a real-time worm detection and tracking sys-
tem to identify the target area for pesticide spraying
accurately. An overview of the pipeline of this sys-
tem can be seen in Fig. 2. Since missing pests is the
most critical situation to avoid, the system should be
configured to detect as many candidates as possible.
However, this will result in many false positives (FPs),
so a classifier is introduced to remove FPs effectively.
Therefore, we propose to introduce HOG-SVM (His-
togram of Oriented Gradients and Support Vector Ma-
chine) approach to the framework focusing on the con-
tour features instead to account for the similarities in
color between the leaves and the cabbage worms. This
conventional method is chosen to focus on a shape-
based descriptor filter with limited computation power
on the platform. Our experiments demonstrate that
HOG-SVM filters significantly improve detection reli-
ability with a marginal increase of just 0.5% in total
inference time.

We utilized YOLO [16] as the worm detector to en-
sure a timely and efficient process: ΘYOLO : I → Ω.
I is an input image. Ω is a set of extracted ob-
jects’ bounding boxes b with a confidence value c:
Ω = {bi, ci}(i = 1, ..., n), where n is the number of
detected objects. The detection results whose confi-
dence values lower than predefined cth are then refined
through HOG-SVM: ΘSVM : H(I,b) → d ∈ {0, 1}.
ΘSVM returns a binary classification result d. H con-
verts the detected region to the HOG features while
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Figure 2. Worm tracking and pesticide spraying workflow overview

Figure 3. Training dataset samples

Figure 4. HOG features extraction: True positive
worm and false positive leave boundaries

normalizing the image size to W ×W pixels. W is 80
in our experiment. All candidates that have high con-
fidence values and have passed ΘSVM are then sent to
DeepSort [21]: ΘDS : (I, {bj}) → {ηj}, (j = 1, ..., n̂),
where n̂ is the number of detected and filtered objects’
candidates, and η is the tracking id.

3.3 Spraying system

In our system, the robot arm’s default position is set
to face the robot’s right side, and the end effector is ori-
ented downward from a higher perspective. Given con-
straints including robot manipulator size, pump power,
and depth camera range, we defined a spraying dis-
tance range of 25-55 cm with a circular spray area of
approximately 30 cm in diameter. The distance from
the spray to the target is obtained by the depth im-
age taken by the RGB-D camera. Then a robot arm
controller is utilized with tracking ID to move the end-
effector to achieve a predefined spraying position. Fur-
thermore, we have demonstrated the potential of robot

Figure 5. Tracking results on real worms

(a) Successfully removed (b) Failed to filter

Figure 6. False positive cases predicted by YOLO
network: Cases shown in (a) can be removed by
HOG-SVM, while cases in (b) cannot.

arm manipulation in achieving low perspective posi-
tioning, which enables the identification of worms hid-
den under leaves.

4 Experiment

4.1 System details

Our platform utilizes a Unitree A1 robot as the main
base. The spraying modules are built on a 6-DoF my-
Cobot 280 M5stack robot arm, equipped with a Re-
alSense L515 camera and a nozzle connected to a hose



Table 1. The number of detected worm’s IDs under different configurations

Method Conditions Worms Total False tracked ↓ Duplicated ↓
Yolo + Deepsort

Imitation worms, sunny 14
101 46 41

Yolo + HOG-SVM + Deepsort 39 5 20

Yolo + Deepsort
Imitation worms, cloudy 14

237 142 81
Yolo + HOG-SVM + Deepsort 72 24 34

Yolo + Deepsort
Real worms, sunny 5

61 51 5
Yolo + HOG-SVM + Deepsort 28 21 2

and a 12V water pump mounted on the robot’s front
body. The camera is used to detect worms, while a 12V
powered submersible pump inside a 280ml water con-
tainer is used for spraying. Pump power is controlled
by the digital GPIO of Raspberry Pi.

4.2 Dataset and training

To train our bounding box object detection model,
we manually labeled images using LabelImg. The im-
ages of the pest-infested broccoli field were captured
using a conventional camera with a resolution of 4032
× 3024 pixels. It should be noted that the majority of
the worms in the frames were approximately 7% of the
full image size, thus we divided the raw images into 12
tiles with a resolution of 1008 × 1008 pixels to address
this issue. A total of 362 green worms were labeled in
4800 image samples, as illustrated in Fig. 3. The worm
detection model was trained using a dataset split of 8:2
train-test ratio, with default values for ΘYOLO train-
ing hyperparameters, including a batch size of 16 and
a learning rate of 0.01. The training was conducted
over 50 epochs on RTX3090. Our experiment results
demonstrate that the dataset size is adequate for our
model to achieve reasonable accuracy.

To address the limited accessibility of real broccoli
fields, the HOG-SVM method’s development, data col-
lection, and testing were conducted on imitation broc-
coli fields that included broccoli heads, various leaf im-
itations, and plastic worms. We sampled 700 images
from ΘYOLO positive outputs with a balanced worm /
no-worm ratio for training and 318 images for testing.
The extracted HOG features from the ΘYOLO results
are presented in Fig. 4. Our experiments demonstrate
that despite training the ΘSVM using imitation models,
it performs well in natural environments.

4.3 Experimental results

Our platform was tested in real broccoli fields. Due
to the limited availability of real worms, we initially
employed imitation worms in various weather condi-
tions before applying our system to real worms. Figure
5 depicts our system operating in the broccoli fields and
identifying cabbage worms in different orientations. In
this experiment, robots were positioned on the side of

broccoli crops with worms located randomly. Six repe-
titions were performed for each configuration with dif-
ferent weather conditions.

Table 1 presents the performance of our track-
ing method compared to other methods. The False
Tracked column indicates the False Positive tracking
IDs, and the Duplicate ID column displays the same
detected worms being tracked with multiple IDs. Our
method reduced false tracking by 89.13% and 83.09%
under sunny and cloudy weather, respectively. The
robot effectively maneuvered the arm and sprayed the
worm-infested area in 13 out of the 14 target areas,
with a quick transition time of 3 seconds per spray.

Fig. 6 provides sample cases of successful and failed
to filter results of our proposed method. Our method
filtered stalks and midribs successfully while failing to
filter worm-like contour holes and blurred leaf veins.
Failure cases may occur due to severe motion blur com-
bined with a similar color of the worm-like contour of
leaf veins and holes.

5 Conclusion

This study presents a quadruped robot platform for
selective pesticide spraying on broccoli fields. Utilizing
a Unitree A1 robot as the main base with integrating
spraying modules, the system demonstrates high accu-
racy in worm detection with low false tracking and du-
plicate rates. Moreover, our proposed YOLO+HOG-
SVM+DeepSort method for false positive reduction
significantly reduces the occurrence of false tracking
and duplicate IDs in worm detection. However, vari-
ations in illumination conditions can impact the sys-
tem’s performance, which might be attributed to un-
balanced training data collection.
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