
1

Published on October 2010

Image-based Network Rendering of Large Meshes for Cloud

Computing

Yasuhide Okamoto

†
, Takeshi Oishi

†
, Katsushi Ikeuchi

†

Abstract Recent advances in sensing and software technologies enable

us to obtain large-scale, yet fine 3D mesh models of cultural assets.

However, such large models cannot be displayed interactively on

consumer computers because of the performance limitation of the

hardware. Cloud computing technology is a solution that can process a

very large amount of information without adding to each client user’s

processing cost. In this paper, we propose an interactive rendering

system for large 3D mesh models, stored on a remote environment

through a network of relatively small capacity machines, based on the

cloud computing concept. Our system uses both model- and image-

based rendering methods for efficient load balance between a server

and clients. On the server, the 3D models are rendered by the model-

based method using a hierarchical data structure with Level of Detail

(LOD). On the client, an arbitrary view is constructed by using a novel

image-based method, referred to as the Grid-Lumigraph, which blends

colors from sampling images received from the server. The resulting

rendering system can efficiently render any image in real time. We

implemented the system and evaluated the rendering and data

transferring performance

Keywords Huge mesh rendering, Image-based rendering, Network

rendering

1. Introduction

Typically, e-Heritage digitization results in mesh models

consisting of billions of triangles with high complexities,

so it has been difficult to view digitized objects in real

time on current consumer computers. First, the current

Internet does not have the capability to download such

mesh models in real time. Second, the usual PC on the

client side cannot render such models in real time. As a

solution to these problems, a process called “cloud

computing” has been proposed to deal with large-scale

information with minimal cost to the user. Cloud

computing has server machines to process large data sets

and abstract them as “clouds” for client users. Client

users can obtain data from the cloud freely and speedily

without the expertise and special knowledge they would

need to manipulate a large amount of raw data. In this

paper, we propose an online rendering system applicable

for the cloud computing system.

This paper proposes an efficient rendering system by

both model- and image-based rendering as shown in

Figure 1. Our system locates original mesh models of

cultural assets on a remote server, in order to avoid the

channel limitation between the server and the client. The

server pre-renders the mesh models from various

viewing positions, and stores these images in a

repository based on our rendering method referred to as

Grid-Lumigraph. At run time, the client sends a request

to display the mesh model at a certain view position and

specifies the viewpoint parameters. The server sends

back the pre-rendered images necessary to calculate the

view as well as the sparse mesh model. The client

calculates and displays the new view by using the image-

based rendering with the set of images and the sparse

mesh model from the server.

This paper has the following structure. Section 2 surveys

the related work and discusses the benefits and

drawbacks of the methods. In Section 3 we describe

Grid-Lumigraph, which is the image-based method for

reconstruction of arbitrary views from sampling images.

In section 4, we describe the construction of an LOD-

based model and a repository composed of sampling

images. We explain the detail of our proposed server-

client rendering system in Section 5, demonstrate and

evaluate the system in section 6, and we conclude in

section 7.

2. Related work

The Level of Detail (LOD) method is proposed for

displaying large mesh models in [14]. LOD methods

represent 3D objects with mesh models in

multiresolution. The Progressive Mesh presented in [7]

records the sequence of the reduction that merges smaller

triangles to form larger ones in the mesh structure. The

Adaptive Tetrapuzzles proposed in [1] converts the input

mesh into a hierarchy structure composed of nodes,

containing smaller meshes, referred to as patches with

multiresolution. Sending mesh data over the network is

very expensive, though.

The LOD methods are also used in point-based

representations. QSplat [15] and Layered Point Cloud [4]

are point-based rendering systems, which use points as

the rendering primitive with a hierarchical data structure.

Far Voxels proposed in [5] uses points and voxels with

view-dependent color as the rendering primitives in the

LOD hierarchy. Those methods can be extended to

 † Y. Okamoto, T. Oishi, K. Ikeuchi
 3rd Dept., Institute of Industrial Science, University of

Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 Japan.

2

Fig. 1 Overview of proposed rendering system. The server contains geometric data recorded in the format of an LOD hierarchy and the repository of

sampling images of the input 3D model. The client system displays arbitrary views reconstructed by using received images and sparse 3D mesh patches.

server-client rendering systems as proposed in [1, 4, 5, 7,

16]. Although this point-based representation is much

more compact than the mesh-based, depending on the

complexity of the input model, the communication traffic

can still be high.

Like the geometry-based methods described above,

image-based methods are also extended to a server-client

method in [11]. In this approach, the server has the

geometric model, and it renders and then sends images

corresponding to the requests from clients. Although the

server only needs to send an image in real time,

rendering at the server is a costly operation, and, if too

many requests occur, the server may break down.

Impostor, presented in [2, 9, and 17] is the rendering

method on the network using geometric and image

information. This system is mainly designed for

walkthrough environments such as urban scenes. It

assumes that a 3D model is already established on the

client, which is not the case in our paradigm.

3. Grid-Lumigraph for image reconstruction

A client machine in our system can display any arbitrary

view of the input 3D model from the viewing location

and direction that a user chooses, using a new image-

based method referred to as the “Grid-Lumigraph.” Our

Grid-Lumigraph reconstructs a view with only sampling

images near current viewpoints and a rough 3D mesh

model.

3.1 Grid-Lumigraph

Our Grid-Lumigraph has the same basic idea as light

field rendering [12], which reconstructs a view from

color values of all rays going through the view. The

collection of all rays for this operation is referred to as

the “light field.”

Constructing a view image using the light field rendering

method is depicted in Figure 2 (a). The dotted line

indicates one of the new rays necessary for rendering the

image to be updated. To calculate the color of the dotted

ray, we extract the color values on the nearest rays s1-u1,

s1-u2, s2-u1, and s2-u2, and blend them into the new

color value assigned to the target ray. This light field

method requires dense sampling of s-u pairs; otherwise,

the reconstructed image may have blurs and ghosting, as

shown in Figure 2 (b).

The Lumigraph [6], shown in Figure 2 (c), utilizes

geometric information to remedy this issue. The dotted

line indicates a necessary ray that needs to be calculated.

The geometric information provides the nearly correct

position of the intersection point between the ray and the

object surface, which helps use more appropriate rays.

This correction does not need a completely precise 3D

model. To correct view images, our Grid Lumigraph has

a level-of-detail (LOD) 3D mesh model on the server,

extract coarse meshes from it, and provides clients with

them. This supply of LOD based model enables us to

more flexibly and efficiently maintain enough geometric

data on clients than Lumigraph.

3

Fig. 2 Correct sampling with geometric information. (a) Extraction colors from sampled colors without geometric information. (b) The result without

correction. (c) Extraction with geometric information. (d) The result with correction using geometric information.

Our Grid-Lumigraph projects the sampling images on

the 3D mesh model like texture mapping. The image

repository stores sampling images at each viewpoint in

3D space. Once a viewpoint is selected by a user at run

time, the Grid-Lumigraph chooses the nearest sampling

points around viewpoints, extracts images assigned to

those points, and then sends and projects those images

onto the 3D mesh model on the client. The Lumigraph

and our Grid-Lumigraph have the same principle of

using image-based rendering with a rough 3D mesh

model. The Lumigraph calculates the nearest rays from

the light field, while our Grid-Lumigraph determines the

nearest images from the image repository constructed of

images sampled from each grid point of the object 3D

space. Our Grid-Lumigraph only needs texture mapping

capabilities and is very efficient for rendering.

3.2 Grid-Lumigraph on GPU

The Grid-Lumigraph can be easily implemented to

effectively use the capability of a GPU. For generation of

a new image, the Grid-Lumigraph uses sampling images,

typically four to twelve, around the viewpoint selected

by a user. Then, the Grid-Lumigraph projects each

sampling image, one by one, using the projected texture

mapping method onto the 3D mesh model. This

procedure can be efficiently done by the GPU’s texture

mapping capability, shown in Figure 3. In this projection,

shadow mapping of the GPU is also utilized to avoid

mapping rays to back faces of the 3D mesh from the

sampling viewpoint. These mapping results are projected

and normalized on the current viewing image plane of

the user, using the built-in GPU capability.

4. Data construction for Grid-Lumigraph (offline

process)

In the offline process, our system generates and stores

the pre-rendered image, to be sent and rendered on

clients by Grid-Lumigraph, in the repository on a server

machine. The Level of Detail (LOD) rendering method

extended from Adaptive Tetrapuzzles [1] is employed for

rapid construction of the image repository.

4.1 Constructing LOD Hierarchy

Our method to construct an LOD hierarchy is different

from that of Adaptive Tetrapuzzles. The Adaptive

Tetrapuzzles recursively divide the space and construct a

hierarchical structure. The approach of this method is

simple to implement and efficient to process. However,

the number of triangles of our target 3D models is huge,

so the recursive splitting process is time-consuming. To

solve this problem, we perform the splitting process not

by triangles but by small meshes. Our method defines a

voxel space of pre-determined resolution and generates a

group of small meshes (Step 1), forms a graph of divided

meshes for constructing a tree structure from them (Step

2), and then simplifies the tree structure (Step 3). We

prefer this method for space efficiency adapted to the

object shape in hand.

Step1: Decomposition into voxel space. We define the

voxel space at the finest level. Then, we decompose an

input mesh model into smaller meshes using the voxel

space. We sort each triangle to a single voxel that

4

Fig. 3 The reconstruction of images by projective texture mapping using GPU capability. We can efficiently extract each pixel's correct color from

sampling images by texture projections. Each nearest sampling image is projected from the sampling point to the geometric data. By accumulating the

results in the final buffer, we can obtain the reconstructed image

contains at least one of its vertices. If the vertices of a

triangle belong to multiple voxels, it is sorted to the

voxel that contains the most vertices of the triangle.

Finally, we assign a group of meshes to the

corresponding voxel. We control granularity of the voxel

space so that each voxel contains fewer triangles than the

predefined value Nv.

Step2: Recursive graph partitioning. We convert a

group of meshes, defined in Step 1, into a graph

representation, G (V, E), for the construction of an LOD

structure in the next step. One vertex in the vertex set, V,

of the graph corresponds to one voxel, and one edge in

the edge set, E, corresponds to the adjacent relation

between two voxels. Thus, in this graph, at most, one

vertex has six edges corresponding to six adjacent voxels.

For splitting the graph evenly and adaptively for shapes,

we assign a weight to each vertex and each edge. Here, a

vertex weight is defined as the number of triangles

belonging to the mesh. To define edge weight, first, we

calculate the mean surface normal vector at each vertex.

Then, an edge weight is defined as the inner product of

two averaged vectors of the two vertices on the edge.

We recursively partition the graph into a pair of sub-

graphs, shown in Figure 4. This recursive partitioning

continues until the size of each sub-graph, defined as the

number of the belonging triangles, becomes less than a

pre-defined number Nl. In our system, this graph

partitioning procedure is implemented by using the Metis

library [10].

After this procedure, we can obtain a hierarchy structure

in which each leaf node has a small sub-graph of the size

Nl. Non-leaf nodes contain a larger sub-graph. At each

node in the graph structure, we connect all meshes of

that node into a continuous mesh patch.

Step 3: Simplification at non-leaf nodes. We simplify a

mesh patch at each non-leaf node in the constructed

hierarchy. The number of triangles at each node is

reduced to a pre-defined number Nn. We implemented

this simplification method by using a quadric error

metric [3]. This method iteratively collapses edges from

the lowest edge, in ascending order of quadric errors,

until the number of triangles becomes the desired number.

Here the quadric error represents a rough approximation

of the distance between original and simplified mesh

patches.

Each node holds the node parameters and the geometric

data of a simplified mesh patch. The node parameters

given by a mesh patch are eight corner positions of the

bounding box, the range of surface normal, and the

minimum quadric error calculated in simplification. The

range of surface normal of the mesh is represented by

one 3D vector of the mean normal of the mesh and one

scalar value meaning the maximum difference of angle

from the mean vector. And the minimum quadric error

means the distance between the simplified mesh and the

original mesh, and it is used to parameterize the

resolution of the mesh rendered on the screen. The

geometric data consists of positions and connectivity

relations of polygonal vertices in the mesh patch. Node

parameters will be used for traversing the hierarchical

structure, while the geometric data is used for rendering

the mesh patch.

The simplification procedure ensures consistency of

boundaries between mesh patches. Inconsistency

between mesh patches causes holes and artifacts along

the patch boundary on rendering. Simplification is not

conducted on edges either along boundaries or directly

connected to boundaries.

4.2 Efficient 3D LOD rendering

In order to generate a set of pre-rendered images, our

system uses the 3D LOD structure. The rendering

process traverses the constructed hierarchy from the root

node along the tree structure following the depth-first

search strategy. If the process successfully finds a mesh

patch that satisfies necessary resolution, the process

tracks back following the depth-first search strategy,

5

Fig. 4 Construction of Level-of-Detail hierarchy.

(a): Recursive splitting of mesh by graph-partitioning of voxel space.

(b): Results of partitioning into small mesh patches.

while it adds the node to a list of rendering nodes. The

necessary resolution is given by the projected quadric

error , where ϵ and r are the quadric error at the node,

and the distance between a viewpoint and the center of

the mesh patch. If the procedure reaches a leaf node, it is

also added to the list. After traversing the entire tree

structure, the resulting list of rendering nodes is given to

the rendering pipeline.

Some exceptional cases occur in the tree traverse, which

are out of screen and back-face. An out-of-screen case is

given by a node whose bounding box is projected outside

of the screen. In a back-face case, all triangles in the

mesh patch of traversed node turn away from the

viewing direction. We easily judge the back-face case by

checking whether the viewing vector intersects with the

range of normal. If one of these cases occurs, the traverse

operation immediately backtracks along the tree structure

following the depth-first strategy.

4.3 Building a sampling repository

The previous section described the method to traverse

the LOD structure. In this section, we construct a set of

pre-rendered images, referred to as a sampling repository.

Later, a group of images from this repository will be sent

to a client for image-based rendering.

We sample the viewing space. In our implementation, we

assume that the viewing space is defined as a box twice

as large as the input 3D model, divided into regularly

located sampling viewpoints. The granularity of

sampling is empirically decided depending on the

density and complexity of the input model. At each

viewpoint, we generate an image of the object using the

LOD model, in six directions along the axes, positive

and negative directions of x, y, and z described in Figure

5. We record the image viewed in each direction by a

direction index that assigns a number from 0 to 5 to the

direction. We set each face to one image plane, set the

aspect ratio to 1, and set the angle of the field of view to

90 degrees, to capture all rays passing through the

viewpoint. If there are no mesh patches to be rendered

in a sampling image, we can skip recording the image

and register an empty flag instead of an image. Sampling

images are stored as JPEGs in the image repository.

 Fig. 5 Sampling from each grid point. Viewpoints for sampling are

located on each grid point of the voxel space surrounding the input 3D

model. View directions are set along axes x, y, and z. The image

repository manages sampling images in a hash table.

6

Client

Cache memory

Main

Thread

COM

Thread Renderer

Update view

Send

current viewpoint

Send images
Update cache

Update view

Server

COM

Thread

Main

Thread
Image

repository

Geometric

data
Changing

a viewpoint

Check cache

Extraction of

needed images

Extraction of

sparse 3D mesh

Send 3D mesh Update cache

Update view

Step 1Step 2

Step 4

Step 3

Request 3D data

Step 4

Step 4

Sequence of

request images

Sequence of

Request 3D meshes

Sequence of

without requests

 Fig. 6 The sequence chart for the rendering pipeline on our system. If the client's cache has enough data to reconstruct the current view, the client's

thread can display the view without requests to the server. Otherwise, the client makes requests for images and 3D meshes to the server. The data

communication is managed by COM threads, and it is asynchronously done. The renderer updates the view whenever the data communication is finished.

 Fig. 7 Communication of the geometric data. The server provides very sparse mesh patches depending on the client's viewpoint. The sparse mesh

patches are chosen from the LOD hierarchy structure.

Those images are retrieved using a hash table with the

combination of grid point ID and direction index which

can be represented by four integers as (xi, yi, zi, d).

5. Rendering system using Grid-Lumigraph through

the network (online process)

Our system has a server for image repository and clients

for view generation. This section describes the details of

data exchange between the server and the clients over the

network.

5.1 Protocol for rendering

The protocol between a server and clients for rendering

is described in Figure 6.

Step 1: When a user requests display of the target 3D

model from a particular viewpoint on a client system, the

client system sends the parameters of the current

viewpoint to the server system. Those parameters include

the current viewing position and the current viewing

direction, which are represented by six floating points.

Step 2: Once the server receives parameters of the

current viewpoint, the system determines the set of the

nearest sampling points. Then we can easily retrieve

images assigned to each nearest point from the image

repository, using a hash key as the calculated grid point’s

ID and the viewing direction.

Step 3: The server sends retrieved sampling images to

the client. Before sending images, the server checks

whether the client has already had the same image by

using sent information from the client. The server sends

retrieved images only if the client does not have the

image.

In addition, the server sends extra images to the client at

the same time. In one process of sending images, the

server sends not only images nearest to viewing

7

Fig. 8 Filling holes. (a) is a rendering result with some holes because of the low sampling granularity. In the interactive time, the filling procedures are

done ad hoc by using sparse model data located on the client as shown in (b).

Fig. 9 The parameters of input 3D models and rendering results on the clients. Some white holes in “Bayon Face” and Menandro’s house are originally

contained in the input models, and those are unscanned parts.

directions at the nearest sampling point (for example, the

x direction at a point), but also images in other directions

at the points (for example, the y and z directions at the

point). The client saves received images as cache in local

memory. The stored sampling images in the cache are

managed in the manner of least recent used (LRU).

Step 4: The server sends the sparse 3D model to the

clients. The server has the sparse 3D mesh model

formatted in the LOD hierarchy. For the initial request,

the server sends the entire model, which is composed of

coarse mesh patches extracted from around the top part

of the hierarchy data structure. For the later requests, it

sends the corresponding mesh patches visible from the

current viewpoints, described in Figure 7. The clients

request new mesh patches, if necessary. In particular,

when zooming in toward the object, the number of

(a) Rendering result with holes (b) Rendering result

after ad hoc filling

using geometric data

8

0

10

20

30

40

50

60

70

1 101 201 301 401 501 601

Frame Number

F
ra

m
e
 R

a
te

 [
fr

a
m

e
/
se

c
]

pure Model-based LOD Grid-Lumigraph

 Fig. 10 Rendering speed (frames per second) of pure model-based LOD method and Grid-Lumigraph.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 101 201 301 401 501 601

Frame Number

T
ra

n
s
fe

rr
in

g
 D

a
ta

 S
iz

e
 [

M
B

/
s
e
c
]

pure Model-based LOD Grid-Lumigraph

 Fig. 11 Transferring data rate (megabytes per second) of pure model-based LOD method and Grid-Lumigraph

vertices displayed is reduced. The client requests new

mesh patches in a finer resolution if the projected

quadric error of a mesh patch is less than a predefined

value.

5.2 Additional capabilities for better performance

When there is a rapid change in viewpoints, the server

and the client work asynchronously to avoid stalling. The

client continues to send the parameters of the viewpoint,

while it renders a new image using other images

available in cache. The server continues to send sampling

images corresponding to the received requests, and the

client updates the rendered results whenever new data is

received from the server.

In our system, some holes may occur in reconstructed

images from sampling images as shown in Figure 8 (a).

The main reason is that sampling granularity is lower

than the complexity of the input object’s shape. If the

holes are small, we cover them by calculating shading

effect using the surface orientation of the triangles and

the light source direction as shown in Figure 8 (b). When

the server is idling, the client requests the server to

generate the current view from the current viewpoint and

send it. The client can instantly update the displayed

image by using it.

6. Implementation and results

We implemented and performed the server and client

functions on a 2.4GHz AMD Athlon64 X2 PC with 4GB

RAM, which has GeForce 8800GTS with 512MB of

video memory. Our system runs on Windows XP. We

used a 1GBit LAN between the server and the client. We

9

 Fig. 12 Comparison of the quality of images rendered by (a) highest resolution model, (b) pure Model-based LOD method, and (c) Grid-Lumigraph.

Right bottom images are magnified views

used NVIDIA Cg Toolkit for implementation of details

in GPU processing, which include LOD rendering and

image projection.

We constructed the LOD structure on the server, setting

Nv to 500, Nl to 4000, and Nn to 2000. The size of cache

on clients is 50 MB for images and geometric data. The

dimensions of sampling images are set to 512 by 512

pixels.

The rendering results on clients are shown in Figure 9.

Those input models have large numbers of triangles,

from one million to twenty million. We constructed the

image repositories for those models, whose sampling

granularity per dimension is 16 or 32, described as

sampling grid in Figure 9. In the experiment, all models

were efficiently rendered in real time, over 30 fps, on

clients, even if the input model was very large.

Additionally, we also evaluated and compared the

rendering speed, the size of transferred data, and

rendering quality of our proposed method with the pure

model-based LOD method that renders images by using

only geometric data. We used the model of “Bayon

Face,” moving the viewpoint along a path in a certain

time, and evaluated the rendering speed and transferred

data.

The result of rendering speed is shown in Figure 10.

From this result, we observed that Grid-Lumigraph can

constantly render faster than the pure model-based LOD

method. The model-based method renders less data

according to the close-up scene, but can need more

amount of data in other complex scenes. On the other

hand, Grid-Lumigraph uses a constant number of images

to render views, so the rendering speed is very stable

shown in Figure 10.

The result of the data transferring rate is shown in Figure

11. From this, we observed that Grid-Lumigraph can also

render views with transfer of less data than pure model-

based LOD method. The size of data transferred in the

model-based LOD method exceeds 500 kilobytes many

times in the sequence. In contrast, the size of transferred

data in Grid-Lumigraph can be kept to less than 300

kilobytes. We can say that our system is more applicable

for network environments than pure MBR method.

Finally, we show the original image and images rendered

by both methods in Figure 12. We decided the resolution

of the MBR method and Grid-Lumigraph so that two

methods can render images in real time and in almost

equal speed. We observed that the image rendered by the

model-based LOD were smooth and lost detail due to the

simplification. On the other hand, we observed detailed

bumpy surfaces in the Grid-Lumigraph image that were

generated by projecting pre-rendered images. The pure

MBR method is better than Grid-Lumigraph for

sharpness of the silhouette, but on the whole, the image

rendered by Grid-Lumigraph is more similar to the

highest resolution image than pure MBR.

7. Conclusion

We proposed a view-dependent rendering system for

large-scale 3D models located on a remote server. In our

approach, we use a model-based rendering method for

repository generation at the server and a novel image-

based method, referred to as the Grid-Lumigraph, for

view generation on the client. A model-based rendering

system on the server generates rendering images from

various view positions using the LOD structure and

stores these sampling images in the image repository.

The rendering system on the client displays a requested

view using the Grid-Lumigraph, which uses a sparse 3D

mesh model and sampling images nearest to the

viewpoint. The Grid-Lumigraph, a variation of the light

field method, projects blended sampling images using

the projective texture mapping method. The Grid-

Lumigraph can be implemented effectively on a GPU.

Our system can display very large 3D models, which

have a huge number of triangles, in real time with

efficient data communication.

For future work, we would like to extend our system to

(a)Highest resolution (ground truth) (b)Pure model-based LOD

rendering
(c)Grid-Lumigraph

10

work on the practical cloud computing system, and

evaluate the performance under different network

environments. Therefore we will improve the image

sampling strategy of Grid-Lumigraph depending on the

geometric complexity and access frequency, and develop

the compression method for efficient data

communication.

Acknowledgments

The research described herein was supported, in part, by

the Japanese Ministry of Education, Culture, Sports,

Science and Technology. The 3D models of cultural

assets were digitized with the cooperation of the

Japanese Government Team for Safeguarding Angkor

(JSA) and the National Museum of Western Art, Tokyo.

References

 [1] P. Cignoni, F. Ganovelli, E. Gobetti, F. Marton, F. Ponchio, and R.

Scopigno. Adaptive TetraPuzzles – efficient out-of-core

construction and visualization of gigantic polygonal models.

ACM Transactions on Graphics (Proceedings of ACM

SIGGRAPH 2004), 23(3):796–803, 2004.

[2] S. Dobbyn, J. Hamill, K. O’Conor, and C. O’Sullivan. Geopostors:

A real-time geometry/impostor crowd rendering system. ACM

Transaction on Graphics (Proceedings of ACM SIGGRAPH

2005), 24(3):933–933, 2005.

[3] M. Garland and P. S. Heckbert. Surface simplification using quadric

error metrics. In Proceedings of ACM SIGGRAPH 97, pages

209–216, 1997.

[4] E. Gobbetti and F. Marton. Layered point clouds: A simple and

efficient multiresolution structure for distributing and rendering

gigantic point-sampled models. Computers and Graphics,

28(6):2004, 2004.

[5] E. Gobbetti and F. Marton. Far voxels: a multiresolution framework

for interactive rendering of huge complex 3d models on

commodity graphics platforms. ACM Transaction on Graphics,

24(3):878–885, 2005.

[6] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen. The

lumigraph. In Proceedings of ACM SIGGRAPH 96, pages 43–54,

1996.

[7] H. Hoppe. Progressive meshes. In Proceedings of ACM

SIGGRAPH 96, Computer Graphics, pages 99–108, 1996.

[8] K. Ikeuchi, K. Hasegawa, A. Nakazawa, J. Takamatsu, T. Oishi, and

T. Masuda. Bayon digital archival project. In Proceedings of

Virtual Systems and Multimedia 2004, pages 334–343, 11 2004.

[9] S. Jeschke, M. Wimmer, H. Schumann, and W. Purgathofer.

Automatic impostor placement for guaranteed frame rates and

low memory requirements. In Proceedings of the 2005

Symposium on Interactive 3D Graphics and Games, pages 103–

110, 2005.

[10] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme

for irregular graphs. Journal of Parallel and Distributed

Computing, 48(1):96–129, 1998.

[11] D. Koller, M. Turitzin, M. Levoy, M. Tarini, G. Croccia, P. Cignoni,

and R. Scopigno. Protected interactive 3d graphics via remote

rendering. In Proceedings of ACM SIGGRAPH 2004, pages

695–703, 2004.

[12] M. Levoy and P. Hanrahan. Light field rendering. In Proceedings

of ACM SIGGRAPH 96, pages 31–42, 1996.

[13] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L.

Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade,

and D. Fulk. The digital michelangelo project: 3d scanning of

large statues. In Proceedings of ACM SIGGRAPH 2000,

Computer Graphics, pages 131–144, 7 2000.

[14] D. Luebke, M. Reddy, J. D. Cohen, A. Varshney, B. Watson, and R.

Huebner. Level of Detail for 3D Graphics. Morgan Kaufmann,

2002.

[15] S. Rusinkiewicz and M. Levoy. QSplat : A multiresolution point

rendering system for large meshes. In Proceedings of the 27th

annual conference on Computer graphics and interactive

techniques, pages 343–352, Jul. 2000.

[16] S. Rusinkiewicz and M. Levoy. Streaming QSplat : A viewer for

networked visualization of large, dense models. In Proceedings

of the 2001 Symposium on Interactive 3D Graphics, pages 63–68,

2001.

[17] J. Shade, D. Lischinski, D. H. Salesin, T. DeRose, and J. Snyder.

Hierarchical image caching for accelerated walkthroughs of

complex environments. In Proceedings of ACM SIGGRAPH 96,

pages 75–82, 1996.

