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ABSTRACT 
One of the challenges in mixed reality (MR) applications is 
handling contradictory occlusions between real and virtual 
objects. The previous studies have tried to solve the occlusion 
problem by extracting the foreground region from the real 
image. However, real-time occlusion handling is still difficult 
since it takes too much computational cost to precisely segment 
foreground regions in a complex scene. In this study, therefore, 
we proposed an alternative solution to the occlusion problem 
that does not require precise foreground-background 
segmentation. In our method, a virtual object is blended with a 
real scene so that the virtual object can be perceived as being 
behind the foreground region. For this purpose, we first 
investigated characteristics of human transparency perception in 
a psychophysical experiment. Then we made a blending 
algorithm applicable to real scenes based on the results of the 
experiment. 

Keywords: Mixed Reality, Augmented Reality, transparency 
perception. 

Index Terms: I.5.1 [Information interfaces and presentation]: 
Multimedia Information Systems—Artificial, augmented, and 
virtual realities; H.1.2 [Models and Principles]: User/Machine 
Systems—Human factors 

1 INTRODUCTION 
In mixed reality (MR) applications, overlaying virtual objects 
on real images often causes contradictory occlusion in which a 
real foreground object is occluded by a virtual object that 
should be behind the real object. In such cases, users of the 
application often underestimate the depth and scale of the 
virtual object or simply perceive that the virtual object does not 
belong to the scene, resulting in the collapse of the original 
impact or presence of the MR scene. 
   Many previous studies have tried to solve the occlusion 
problem. [10] and [11] reconstructed depth information in a real 
scene to detect occlusion using a stereo vision-based technique. 
[13], [2], and [8] handled occlusion by constructing the visual 
hull [14] of objects using multiple cameras. Although some of 
these studies enabled real-time interaction in an MR scene 
without contradictory occlusion, the use of the applications was 
restricted to a specific local space and not applicable to 
arbitrary outdoor scenes. As for the methods that do not limit its 
use to a restricted space, [6] and [18] proposed an algorithm 
that enabled real-time foreground segmentation from a 
monocular video sequence. [9] and [19] further extended these 
methods and handled the occlusion problem caused by moving 

objects in an outdoor scene. Despite these efforts, however, 
there is still a difficulty in constructing a natural MR scene with 
an arbitrary environment especially when a complex object, 
which is difficult to precisely segment out in real time, exists in 
the real scene. 
   When walking around the outdoor scene, we frequently 
encounter many natural objects such as trees or bushes.  All 
these objects are possible candidates for the occluder to be 
handled for an MR application used in an arbitrary scene. The 
goal of our research is to realize a system that can handle such 
situations and reduce contradictory occlusions robustly 
regardless of contents in the scene. Considering that 
computational cost of foreground segmentation will increase 
with the complexity of the scene, we think it is necessary to find 
a solution other than improving segmentation methods. In this 
study, therefore, we focused on designing a method that allows 
natural visualization of depth ordering between a virtual and a 
real object for arbitrary scenes without precise segmentation of 
the foreground regions. Our approach is quite different from 
other studies in that we took advantage of characteristics of 
human transparency perception. We utilized the behavior of 
perceived depth ordering between transparent surfaces for 
handling contradictory occlusions in a synthesized scene (Fig.1). 
   The paper is divided into five sections. In the following 
section, we first show the basic characteristics of human 
transparency perception, and continue to explain a 
psychophysical experiment that we conducted to make a model 
of perceived depth ordering. In the third section, we propose a 
model of transparency that predicts the results of the experiment. 
The fourth section provides the blending method designed 
based on the model of the transparency. Subsequently, in the 
fifth section, we implement the blending method and test it by 
simulated MR scenes using several real-scene images. Finally, 
in the last section, we complete this paper with summary and 
conclusion. 

2 EXPERIMENTAL INVESTIGATION OF HUMAN TRANSPARENCY 
PERCEPTION 

2.1 X-junction model of perceptual transparency 
The human visual system simultaneously sees two translucent 
surfaces at different depths when even a very simple 2D-pattern 
is presented (Figs. 2A and 2B). According to previous studies 
[1, 3, 4], the visual system employs simple heuristics related to 
the luminance pattern around an “x-junction” where four 
surfaces meet together to stratify the 2D-image into different 
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Figure 1: Contradictory occlusion seen in the left image is 
handled well with our blending method in the right image. 



layers. There are three categories in possible perception 
depending on the patterns of the x-junction: when a line that 
progressively passes from brighter to darker regions around an 
x-junction creates a C-shape, the same surface is always 
perceived as transparent and in front of the other surface 
(Fig.2A, unique transparency); when the line creates a Z-shape, 
either surface can be perceived as in front (Fig.2B, bistable 
transparency);  when the line creates a crisscross pattern, 
neither surface appears transparent (Fig.2C, no transparency). It 
is also known that these heuristics roughly reflect physical 
photometric constraints [1, 12]. 
 

 
 
Figure 2: Transparency perception classified based on patterns 
around an x-junction. 
 
   Thus, it would be ideal if we could find a new blending 
method that produces unique transparency such that a virtual 
object always appears behind a real foreground object. To 
create such a situation, however, we have to change the 
blending equation exactly at the border between a foreground 
region and a background region in the real scene because the 
contrast polarity at the edge of the foreground object must be 
reversed between outside and inside of the virtual object. Thus,   
unique transparency does not meet the purpose of this study 
since this kind of algorithm requires an accurate foreground 
mask. 
   In this study, therefore, we focused on utilizing bistable 
transparency. This type of transparency can be easily obtained 
by a simple blending algorithm because contrast polarities at 
both edges around the x-junction are retained. As described 
above, bistable transparency makes perceived depth ordering 
ambiguous, but previous studies showed that the probability 
that one surface is perceived as being in front of the other 
depends on contrasts between edges forming the x-junction [7, 
12]. If we know the behavior of the perceptual transparency as a 
function of contrasts around an x-junction, we will be able to 
control the perceived depth ordering of a virtual object. Thus, 
the first step of this study was to examine the situation and 
make a model of perceived depth ordering. 

2.2 Psychophysical Experiment 
Several researchers have already investigated how our 
perception of transparency varies with luminance patterns 
around x-junctions by using stimuli inducing bistable 
transparency [5, 7, 12]. In these studies, Delogu et al. have also 
made a model that predicts perceived depth ordering as a 
function of lightness around an x-junction [7]. However, these 
previous studies adopted only parts of all possible patterns in 
their experiments, and the model may not be applicable to those 
that they did not examine. In our experiment, therefore, we used 
a number of stimuli covering various possible luminance 
patterns and made a more general model that predicts the depth 
stratification of transparent layers in the human visual system. 

2.2.1 Methods 
Participants 

Eight observers unaware of the purpose of the experiment (7 
male and 1 female, aged 22–25) participated in the study. 
 
Apparatus 
Stimuli were presented in a dark room on a CRT monitor (Sony 
Trinitron Multiscan CPD-17SF9, 17 inch, 1024 × 768 pixels, 
refresh rate 75 Hz, mean luminance 44.6 cd/m2). Each subject 
placed his/her head on a chin-rest and used both eyes to view 
the stimuli. The viewing distance was 86 cm. 
 
Stimuli 
The stimulus was composed of a disk (diameter: 4 deg in visual 
angle) and a rectangle. The disk was presented at the center of 
the display. The rectangle was presented in the right part of the 
display and subtended a visual angle of 4 deg horizontally and 8 
deg vertically. The disk was split into two regions of the same 
size by the left-side edge of the rectangle, so the whole image of 
the stimuli had four different regions: background region (B), 
rectangle region (R), disk region (D), and overlapping region 
(O). By setting the luminance values of these four regions 
adequately, the situation of bistable transparency, in which 
depth ordering of the disk and the rectangle is ambiguous, was 
obtained. The patterns of the bistable transparency can be 
further classified into four cases depending on the contrast 
polarity at the edges around an x-junction (Fig.3). We tested a 
total of 438 stimuli including these 4 cases. Every stimulus had 
a different combination of various luminance values so that as 
many patterns as possible could be tested. The actual luminance 
values of each stimulus are available online 
(http://www.cvl.iis.u-
tokyo.ac.jp/~fukiage/ISMAR2012/SupplTable.pdf). 
 

 
 
Figure 3: Examples of the experimental stimuli. 
 
Procedure 
In each trial, the stimulus composed of a disk and a rectangle 
was presented for 0.75 seconds. After that, a blank with a 
random-dot pattern (99% contrast) was followed, during which 
the observer pressed one of two keys to respond to a two-
alternative forced-choice question about whether the disk was 
perceived as behind or in front of the rectangle. The random-dot 
pattern was used to prevent adaptation to the specific luminance 
intensity. The next trial started immediately after the observer 
pressed a key. The fixation point was presented at the center of 
the screen at the beginning of each session and during every 
blank period. 
   In each session, all of the 438 stimuli were tested in a random 
order. Eight observers repeated the session 6 times, and 48 
responses were collected for each stimulus to estimate the 
probability that the disk was perceived as behind the rectangle. 



2.2.2 Results 
The obtained probabilities of disk-behind perception for all the 
tested stimuli are available online (http://www.cvl.iis.u-
tokyo.ac.jp/~fukiage/ISMAR2012/SupplTable.pdf).  The results 
indicated which of the two surfaces appears behind varied 
largely with the luminance patterns of the four regions (B, R, D 
and O). In some cases, the disk was always perceived as behind, 
and in other cases, it was always perceived as in front even 
though the luminance patterns were those of bistable 
transparency. This is consistent with the previous studies [5, 7, 
12]. 

3 MODELING PERCEIVED DEPTH ORDERING OF BISTABLE-
TRANSPARENT LAYERS 

3.1 Delogu et al.ʼs model 
The next problem is to find the determinant of the perceived 
depth ordering. For this problem, Delogu et al. proposed a 
model that could predict their results obtained in an experiment 
similar to ours though they tested only 20 patterns from  case 2 
and case 3 in Fig. 3 [7]. In their model, preferences for each 
depth ordering depended on lightness contrast between several 
abutting regions. Here, “lightness” means perceptually scaled 
value of luminance. Delogu et al. adopted the equation 
proposed in [20] to get a lightness value from a luminance level, 
which is described as follows: 
 

,   (1) 
 
where W is the lightness value, and Y is the luminance level. 
They argued that a surface that has the highest lightness 
contrast against all abutting regions is perceived as behind 
(Highest Contrast Model: Rule 1). The contrast of the disk is 
defined as | D – B | + | D – R | + | D – O |, and the contrast of 
the rectangle is defined as | R – B | + | R – D | + | R – O |, where 
B, D, R, and O denote lightness values of each region. Thus, the 
percentage of disk-behind perception would increase with the 
difference of both contrasts: ( | D – B | + | D – O | ) – ( | R – B | 
+ | R – O | ). In addition, they also argued that a surface that has 
the highest contrast against the overlapping region is more 
likely perceived as behind if the contrasts of both surfaces 
defined above are the same (Highest Contrast Model: Rule 2). 
Thus, the percentage of disk-behind perception would increase 
with | D – O | – | R – O | if ( | D – B | + | D – O | ) = ( | R – B | + 
| R – O | ). 
   First, we applied Delogu et al.’s model to our results. In Fig. 
4A, we plotted the percentages of disk-behind perception as a 
function of the lightness contrast difference: ( | D – B | + | D – 
O | ) – ( | R – B | + | R – O | ). Blue, cyan, green, and red circles 
represent data measured with the stimuli in cases 1, 2, 3, and 4 
(see Fig. 3), respectively. The percentages data from cases 2 
and 3 gradually increase with the abscissa, which is consistent 
with Delogu et al.’s model. However, the same model could not 
explain the variance in cases 1 and 4 because the operation of ( | 
D – B | + | D – O | ) – ( | R – B | + | R – O | ) always outputs 
zero in these cases. Thus, we plotted the data from cases 1 and 4 
as a function of | D – O | – | R – O | in Fig. 4B. This time, the 
data seemed proportional to the abscissa, but the plot still could 
not explain the variances induced by changes of luminance 
values in region O. In Fig. 4B, the data from the stimuli that 
have the same luminance value except for region O are joined 
in one line. A line extended vertically indicates that the model 
could not explain variances within the line. Therefore, we 
concluded that the Delogu et al.’s model could explain only part 
of our results. 
 

 
 
Figure 4: The percentages of disk-behind perception plotted 
according to Delogu et al.ʼs highest contrast model. A: Data are 
plotted according to Highest Contrast Model Rule 1. B: Data are 
plotted according to Highest Contrast Model Rule 2. 

3.2 The model proposed in this study 
To explain our results, we made a more flexible model. In our 
model, we assumed that the preferences for the interpretation of 
“disk behind” depend on the following value X: 
 

, (2) 

 
where w is a weight, and B, R, D, and O are the four regions 
identified in the previous section. c(D,O) denotes Michelson 
contrast between luminance values of a region D and O , and is 
obtained as follows (the same is true for the other pairs): 
 

€ 

c(D,O) =
D −O
D+O

.  (3) 

 
Michelson contrast has often been used to scale luminance 
contrast to perceptual level [15, 17]. An advantage of using 
Michelson contrast in this study is that it does not require 
absolute luminance value of the screen in its calculation. We 
only need to get intensity of each region, which is proportional 
to luminance if the monitor is linearized. 
   As shown in Eq. (2), we assumed that the probability of disk-
behind perception increases with the weighted sum of two 
components: one represents how large the contrast between D-
O is compared with the contrast between R-O; the other 
represents how large the contrast between D-B is compared 
with the contrast between R-B. We replotted our results based 
on Eq. (2) and fitted the sigmoid function to approximate the 
data and to get the best-fit w. The sigmoid function (S) we used 
was as follows: 
 

.  (4) 

 
The results we obtained showed small differences between 
cases 1-4 in Fig. 3, so we fitted different sigmoids for the data 
from different cases. The data plotted based on our model are 
shown in Fig. 5. The best-fit parameter of w was 0.93 and the 
best-fit parameters of sigmoid functions were (a, b) = (0.41, 
0.11) for the data from case 1, (a, b) = (0.57, 0.14) for the data 
from case 2, (a, b) = (0.55, 0.13) for the data from case 3, and 
(a, b) = (0.52, 0.12) for the data from case 4. Our model clearly 
provides a better prediction than Delogu et al.’s model. The fact 
that the best-fit parameter of w was close to 1 suggests that the 
perceived depth ordering largely depends on the contrasts 



against an overlapping region. By using this model, we can 
estimate the preferences for disk-behind interpretation given the 
intensities of B, R, D, and O.  
 

 
Figure 5: The percentage of disk-behind perception plotted 
according to our original model. The abscissa is defined in Eq. 
(2). 
 

4 BLENDING METHOD BASED ON THE MODEL OF 
TRANSPARENCY 

In the previous section, we found a model that can predict the 
perceived depth ordering of bistable-transparent layers. The 
next step is to make the best algorithm to blend a virtual object 
with images of a real scene based on the perceptual model. 
   There are several ways to make bistable transparency when 
blending a virtual object with a real image. For example, 
additive blending is simply adding the intensity of two images, 
and the obtained result always leads to bistable transparency. 
Likewise, subtractive blending leads to bistable transparency by 
subtracting one image from the other image. In these methods, 
however, there is a problem that the intensity of a resulting 
blending image often exceeds the maximum intensity or falls 
below the minimum intensity. The better blending methods we 
propose here are multiplicative blending, which is as follows: 
 

,   (5) 
 
and inversed-multiplicative blending, which is as follows: 
 

, (6) 
 
where IM and II are the intensities resulting from each blending 
method, and Ir and Iv denote the intensity of a real-scene image 
and a virtual object, respectively. Here, the range of the 
intensity should be scaled within 0-1. Both of these blending 
methods always lead to bistable transparency. For example, 
multiplicative blending applied to a real scene where the 
intensity of a foreground object is lower than that of the 
background leads to case 1 in Fig. 3. Multiplicative blending 
applied to a real scene where the intensity of a foreground 
object is higher than that of the background leads to case 2 in 
Fig. 3. Likewise, inversed-multiplicative blending applied to a 
real scene where the intensity of a foreground object is lower 
than that of the background leads to case 3 in Fig. 3. Finally, 
inversed-multiplicative blending applied to a real scene where 

the intensity of a foreground object is higher than that of the 
background leads to case 4 in Fig. 3. 
   Next, we introduced a new parameter α to modify the 
blending results based on the model we proposed in the 
previous section. α modulates transparency of a blended virtual 
object as follows: 
 

  (7) 
 
for multiplicative blending, and 
 

    (8) 

 
for inversed-multiplicative blending. Because our experimental 
data indicated that the perceived depth ordering largely depends 
on contrasts against an overlapping region, we can 
monotonically modulate the virtual-behind perception by the 
transparency of a virtual object. Our model of transparency 
requires the intensity of four regions to obtain the probability of 
disk-behind perception. These abstract classes in the 
experimental stimuli, previously identified as background 
region (B), rectangle region (R), disk region (D), and 
overlapping region (O) in our experiments, can be translated 
into four regions in the actual MR scene as follows: B is a 
background region of the real scene, R is a foreground region of 
the real scene, D is a region where a virtual object is blended 
with the background of the real scene, and finally, O is a region 
where a virtual object is blended with the foreground of the real 
scene (Fig. 6).  
 

 
 
Figure 6: How an actual MR scene can be translated into the 
abstract stimuli used in the psychophysical experiment. 
 
Therefore, given the intensity of the virtual object Iv, the 
intensity of the background region of the real scene Ib, and the 
intensity of the foreground region of the real scene If, the 
intensity of each region can be obtained by Eqs. (7) and (8) as: 
 

  (9) 

 
for multiplicative blending, and 
 

 (10) 

 
for inversed-multiplicative blending. By substituting these 
values into the model of transparency, we can get the 
probability that the virtual object is perceived as behind the 
foreground region as a function of parameter α. In other words, 
we can determine the best parameter α so that the virtual object 



is more likely perceived as behind. As an example of what 
α value should be chosen with various real scene images, in Fig. 
7, we plotted upper limits of α that makes an observer perceive 
the virtual object as behind for more than a 50% chance as a 
function of Ib and If for both multiplicative blending (Fig. 7A) 
and inversed-multiplicative blending (Fig. 7B). Here, the 
intensity of a virtual object Iv was set to 0 for multiplicative 
blending and 1 for inversed-multiplicative blending, but the 
qualitative patterns of the results did not change depending on Iv.  
   The next problem to consider is which of the two blending 
equation we should use. One of the important determinants to 
take into account is the visibility of the virtual object. Lower α 
makes the visibility of the virtual object also lower. Thus we 
should choose the better blending method depending on the 
visibility at given Ib and If. However, the selected α value is not 
necessarily a quantitative measure of visibility since the 
contrast of a virtual object depends largely on the intensity of 
the real scene image with which the virtual object is blended. In 
the case of multiplicative blending, for instance, the contrast of 
a virtual object becomes substantially lower under the condition 
in which the intensity of a real image is close to 0, even if 
α equals 1. Likewise in the case of inversed-multiplicative 
blending, the contrast of a virtual object becomes substantially 
lower under the condition in which the intensity of a real image 
is close to 1, even if α equals 1. Therefore, we used the 
equations below as quantitative measures of visibility: 
 

   (11) 
 

   (12) 
 
where VM denotes the visibility measure for multiplicative 
blending and VI denotes that for inversed-multiplicative 
blending. We converted the α values in Fig. 7 using Eqs. (11) 
and (12), and the results are plotted in Fig. 8. 
 

 
Figure 7: Upper limits of α in which an observer perceives a 
virtual object as behind in more than 50% chances plotted as a 
function of Ib and If. 
 

 
Figure 8: Visibility of the virtual object blended with α in Fig. 7. 
 
As shown in Fig. 8, it is clear that the visibility becomes quite 
low when If > Ib in the case of multiplicative blending, and 
when If < Ib in the case of inversed-multiplicative blending. 
Thus, we should use multiplicative blending when the intensity 
of the foreground region is lower than that of the background, 
and should use inversed-multiplicative blending when the 
intensity of the foreground region is higher than that of the 
background. We ensured this simulated result using real-scene 
images (Fig. 9). 
   Moreover, the blending equation chosen in this manner 
always makes the contrast of the virtual object’s texture lower 
within the foreground region than that within the background 
region. This may also make the virtual object more likely to be 
perceived behind the foreground region because it is known that 
the human visual system has a tendency to interpret a high-
contrasted region as in plain view and a low-contrasted region 
as in seen-through view [17]. 
 

 
Figure 9: Comparison between multiple blending and inversed-
multiple blending. In this figure, α is set to 0.8 for both blending 
methods. Multiplicative blending shows a better result when 
foreground region is darker than background (top left). On the 
other hand, Inversed-multiplicative blending shows a better result 



when foreground region is brighter than background (bottom 
right). 
 
   As an overview, our blending method can be described as 
follows: 
Input If (Intensity of a foreground region in the real scene 
image), Ib (Intensity of a background region in the real scene 
image), and Iv (Intensity of a virtual object). 
Selection of blending equation If If > Ib, multiplicative 
blending (Eq. 7) is selected. If If < Ib, inversed-multiplicative 
blending (Eq. 8) is selected. 
Determining the blending parameter α   First, intensities of 4 
regions around the x-junction are calculated depending on the 
blending equation selected above (Eq. 9 for multiplicative 
blending, and Eq. 10 for inversed-multiplicative blending). Second, 
these four values are substituted into Eq. 2. Now the probability 
that the virtual object appears behind can be described as a 
function of the parameter α. The probability is varied according to 
the best-fit sigmoid as shown in Fig. 5 (the curve of case 1 is used 
for multiplicative blending, and that of case 4 is used for inversed-
multiplicative blending). Finally, the largest α in those that yield a 
probability larger than 50% is used as the blending parameter. 

5 IMPLEMENTATION AND EXPERIMENT 

5.1 Implementation of the blending algorithm 
   Based on the results in the previous section, we developed a 
blending algorithm that is applicable to any real scene with any 
virtual object. Our method requires a probability map of 
foreground regions in the real scene, but the map does not need 
to be accurate. Theoretically, the probability map can be 
obtained by various ways including depth map, foreground 
segmentation, and optical flow. Hereafter we assumed that an 
image of the probability map, which shows the probability 
density of the existence of occluders at each pixel, is already 
obtained. 
   Basically, our method provides the best blending results when 
a foreground or background region in a given real scene image 
has a single color. However, such a case is quite rare in the 
actual outdoor scene to which we want to apply our method. 
Thus, we overcame this limitation by applying our blending 
method in a pixel-wise fashion. The algorithm we propose here 
scans along pixels where virtual objects exist and calculates the 
best blending equation and parameter α based on the 
information within a local window centered at that pixel. Since 
neighboring pixels share most of the pixels within their 
windows, the blending parameter varies smoothly over pixels. 
Even transition between different blending equations does not 
cause any noticeable problem in appearance because the virtual 
object becomes completely transparent at the area around the 
switching pixel. 
   Hereafter we show the details of our blending algorithm. Let 
(x,y) denote the current coordinates in the scanning pixels and 
let Pr, Pv, and Pm denote an image of a real scene, virtual object, 
and probability map, respectively. For each pixel at Pr(x,y), 
Pv(x,y), and Pm(x,y), the intensities within a square window of a 
specific size centered at that pixel are examined, and the 
averaged intensity of the virtual object Iv, the background 
region Ib, and the foreground region If at the current pixel are 
calculated as follows: 
 

  (13) 

 
 (14) 

 
  (15) 

 
where W denotes a group of pixels in the window, and Av 
denotes an alpha-channel array of the virtual objects’ image, 
which indicates the existence of a virtual object at each pixel 
(we assume that the virtual object is rendered on an off-screen 
frame buffer). These three values are substituted into Eq. (9) if 
If < Ib, or substituted into Eq. (10) if If > Ib. Obtained values of B, 
R, D and O are then substituted into Eq. (2), and a parameter α 
is determined so that the probability of “disk-behind” 
perception becomes larger than 50%. Using this parameter α, 
the blending result at the current pixel (x,y) is obtained as: 
 

 (16) 
 
   If most of the pixels in a window of the current pixel are 
within the foreground region, the above-mentioned algorithm 
cannot determine the blending equation or blending parameter 
reliably. In such cases, the size of the window is repeatedly 
extended by 1.5 times until a certain ratio (τ) of the pixels is 
assigned to a background region. This magnified window is 
used only for calculating the intensity of a background region 
(Ib). However, it will cause an abrupt change in the blending 
result among abutting pixels. Thus, we used weighted sum of 
all intensity values from every window size as an input for Eqs. 
(9) or (10), which is: 
 

                      (17) 

 
where Wn denotes the window 1.5n times larger than the original 
window (W0), and n denotes the number of repetitions to obtain 
the satisfactory window size. Ib:Wn denotes the Ib calculated 
within Wn. The weight ρ is defined as follows: 
 

                                           (18) 

 
where rk denotes the ratio of background pixels within Wk: 

 
                      (19) 

 
By this operation, we could switch the window size smoothly 
among pixels. 
   By contrast, if all the pixels in a window of the current pixel 
are within a background region, the color of the virtual object is 
directly substituted for this pixel since there should be no 
contradictory occlusion. To make a blending result smooth 
between these pixels and the other pixels, we introduce the next 
equation:  
 

     (19) 
 
where Poutput(x,y) is the final output of our blending algorithm at 
the current pixel (x,y). λ in Eq. (19) is a weight function that 
switches non-blending pixels with the other pixels smoothly. It 
can be obtained as: 
 



    (20) 

 
where N denotes the number of pixels in the window, and S is 
the sigmoid function shown in Eq. (4). 

5.2 Experiment 

5.2.1 Experiment setup 
We tested our method using several static images of real scenes 
in which foreground objects can cause the occlusion problem. 
The resolution of the images was 640x480. Images of the 
probability map of foreground regions were manually generated, 
but we intentionally made it not so precise that they were not 
appropriate for usual methods that simply cut out the 
overlapping region from the virtual objects. In the experiment, 
we used a personal computer (OS: Windows 7, CPU: Corei7 
2.93 GHz, RAM: 8GB, GPU: nVIDIA GTX 550Ti 1024MB). 
The size of the averaging window (W) was 60x60. The smallest 
ratio of background pixels (τ), which is used to determine the 
maximum window size at that pixel, was set to 0.1. In Eq. (20) 
threshold and slope were set to 0.9 and 0.05, respectively. 
Because our algorithm proposed in the previous section 
calculates the blending parameter in a pixel-wise fashion, we 
could implement it on the programmable shader (GLSL). To 
keep an interactive frame rate, we slightly modified the 
algorithm so that it sampled every 6th pixel within a window 
when calculating If, Ib, and Iv. The actual frame rate largely 
depends on the number of pixels around and within a 
foreground region, but it works at a frame rate higher than 25 
FPS on most of the cases. Although the frame rate drops to 
about 8 FPS when a virtual object subtends all pixels and most 
of the pixels are in a foreground region, this will be easily 
improved by decreasing the sampling rate adaptively. 

5.2.2 Experimental results 
   The blending results are shown in the leftmost images in Fig. 
10. Their neighbors to the right are images for comparison and 
were obtained by simple alpha blending using the foreground 
probability map as an alpha-channel mask. Other results are 
also available in Fig.12 in Appendix. Although the borders 
between foreground and background are uncertain in the 
probability maps, the blending results obtained by our proposed 
method did not cause any sense of contradictory occlusion in 
most of the cases. On the other hand, the comparison results 
obtained by simple alpha blending can more likely cause the 
impression of contradiction if the foreground mask is slightly 
smaller than the actual foreground region (the second image 
from the left in Fig. 10A). If the foreground mask is larger than 
the actual foreground region, a virtual object becomes totally 
invisible around the edges of the foreground region (the second 
images from the left in Fig. 10C and Fig. 12A). One of the 
merits of using our blending method is thus its robustness for 
the uncertainty of foreground-background borders. 
   If we use a low-cost foreground detector, the obtained 
probability maps may be more ambiguous and not saturated. 
Assuming such situations, we manually generated probability 
maps in which no pixel indicates “100% foreground” and used 
those maps to make blending results. The parameter settings 
were the same as in the previous experiment except for τ (the 
ratio of background pixels that need to be included within each 
averaging window). τ was changed from 0.1 to 0.4 to optimize 
the blending results. The comparison between our method and 
the simple alpha blending is shown in Fig. 11. The results of 
our blending method are not so different from those using less 
ambiguous probability maps in Fig. 10 though the visibility 

becomes slightly lower. On the other hand, the results of the 
simple alpha blending cause more or less a sense of 
contradictory occlusion for all example images. Thus, our 
method is robust for the ambiguity of a probability map if the 
parameter τ is appropriately chosen according to the degree of 
the ambiguity. 
  Precise segmentation has been one of the bottlenecks in 
solving occlusion problem in real time. By using our method 
with an inaccurate, but lower-cost, foreground detector, it 
becomes possible to reduce contradictory occlusions in MR 
applications implemented in a hand-held device that does not 
have a high throughput. For the same reason, our method has 
the advantage in rendering a virtual object to a real scene where 
complex foreground objects (e.g., bushes or leaves of a tree) 
exist. It takes too much computational cost and is quite difficult 
to precisely segment such a complicated foreground region in 
real time. In this study, our blending method provides an 
alternative solution to handle such situations. In addition, our 
algorithm can make a virtual object seen through a foreground 
region that is actually an opaque object. Therefore, our blending 
method may be useful as a new X-ray visualization technique. 
X-ray visualization methods are extensively studied to make 
virtual information seen through real foreground surfaces in AR 
or MR applications [16, 21]. It should be noted, however, that 
our model of perceptual transparency gives no assurance to 
provide good results when a virtual object is completely 
occluded. To handle such situations reliably, we have to make 
use of other depth cues related to perceptual transparency (e.g., 
blur, contrast), which is a subject of our future study. 

5.2.3 Limitations of our method 
   Despite these advantages, our method still has several 
problems to be solved in the future. First, our blending method 
makes a virtual object almost invisible when the intensity of a 
foreground region is close to that of a background region. In 
such cases, our method could produce no better results than the 
standard alpha-blending method (Fig. 10D and Fig. 12C). To 
improve this, we will have to combine some other perceptual 
cues that can reinforce desirable depth perception without 
lowering the visibility of the virtual object. Second, our 
algorithm could not provide the optimal blending results when 
the intensity of a foreground or background region has a very 
large variance within a local window because our algorithm 
uses the averaged intensity within a window to determine the 
blending equation and its parameter (Fig. 1E and Fig. 12D). 
Since the size of the local window at the foreground pixel 
becomes larger as the distance from the foreground-background 
border increases, optimal blending may not be provided 
especially for such pixels. Third, in the experiment, we 
manually determined parameters like window size so that the 
blending results for the experimental images appeared as 
smooth as possible while keeping the correct depth perception. 
For example, a smaller window may be able to keep the correct 
depth perception for a finely textured image, but it will break a 
spatial consistency of a virtual object across pixels. Considering 
that the scale or apparent texture of a foreground or background 
region varies across each scene, it will be desirable to determine 
the window size and other parameters automatically. Fourth, the 
algorithm proposed in the previous section only assumes cases 
for blending virtual objects with a single real scene and is not 
appropriate for a dynamic scene since it does not compensate 
for any resulting temporal inconsistencies. However, we think 
that if we extend the averaging window into the temporal 
domain using a 3-dimensional window, our blending method 
will show spatiotemporally smooth results even with dynamic 
image sequences. For example, if the foreground region is 
moving, the contrast polarity at the edge of the foreground 
region may change. In such cases, the blending equation will 



also change abruptly. Nevertheless, using a 3-dimensional 
averaging window, the polarity can change smoothly from 
positive to negative or vice versa with several frames delay. 
Thus the blending results would also change smoothly from 
multiple blending to inversed-multiple blending, straddling the 
completely invisible state. Finally, we have not yet conducted 
any user study to confirm the validity of using the 
psychophysical experimental data obtained in a strictly 
controlled condition for blending a virtual object with a real 
scene. Since in a real scene there are many more depth cues, the 
optimal blending parameter, which is now determined based on 
the psychophysical experimental data, may be more or less 
different in value. In the future we have to further optimize our 
blending method by another psychological experiment using 
more realistic synthesized images or movies. 

6 CONCLUSION 
In this study, we examined the behavior of human transparency 
perception in a psychophysical experiment and made a model 
that can predict the results. Based on the model of perceptual 
transparency, we made a blending algorithm that can effectively 
reduce the contradictory occlusion information in arbitrary MR 
scenes. Our proposed method blends a virtual object such that 
the virtual object is perceived as behind a foreground region in 
the real scene given only a moderately accurate foreground 
mask image. The experimental results showed that our method, 
as compared with the simple alpha blending method, is robust 
for an MR scene where very complicated foreground objects 
exist. By combining our method with a low-cost foreground 
detector, we will be able to make an MR application that can 
handle occlusion problems in arbitrary scenes in real time. 
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Figure 10: Comparison between the results of our blending method and those of simple alpha blending. Left-most column shows the results of 
our blending algorithm. The second column shows the comparison results obtained by simple alpha-blending using the probability map as an 
alpha-channel mask. The third column shows original images of real scenes. Right-most column shows foreground mask images that were 
manually generated for the simulation. Our method shows better results as compared with simple alpha blending in A, B, and C. In D, however, 
a virtual object blended by our method becomes almost invisible around the edges of foreground region since the intensity of the foreground is 
similar to that of the background region. In addition, our method cannot provide optimal results when the intensity of a foreground region or a 
background region has a large intensity variance within a local window in which the averaged intensity value is calculated. In such cases, the 
results are often not better than those obtained from the simple alpha blending (E). 



 
Figure 11: Comparison between the results of our blending method and those of simple alpha blending, using more ambiguous probability 
maps. If we use a low-cost foreground detector, the obtained probability maps may be more ambiguous and not saturated. Assuming such 
situations, we manually generated probability maps in which no pixel indicates “100% foreground” and used those maps to make blending 
results. The results of our blending method are not so different from those using less ambiguous probability maps in Fig. 10 though the 
visibility becomes slightly lower. On the other hand, the results of the simple alpha blending cause more or less a sense of contradictory 
occlusion for all example images. 



APPENDIX 

 
Figure 12. Additional examples of comparison between the results of our method and those of simple alpha blending. Left-most column shows 
the results of our blending algorithm. The second column shows the comparison results obtained by simple alpha blending using the 
probability map as an alpha-channel mask. The third column shows original images of real scenes. Right-most column shows foreground 
mask images that were manually generated for the simulation. Our method shows better results as compared with simple alpha blending in A 
and B. In C, however, the result of our blending method is no better than that of simple alpha blending because the intensity of a foreground 
region and that of a background region calculated within the local window are similar to each other. For the same reason, the visibility of a 
virtual object blended by our method becomes very low in most of the pixels in D. 


