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Figure 1: Foreground and shadow occlusions are handled correctly with our proposed solution. The two images on the left shows the original
frame in campus sequences and its corresponding augmented result. The two ones on the right shows the original frame in Asuka sequences
and its corresponding result.

ABSTRACT

Occlusion handling in augmented reality (AR) applications is chal-
lenging in synthesizing virtual objects correctly into the real scene
with respect to existing foregrounds and shadows. Furthermore,
outdoor environment makes the task more difficult due to the un-
predictable illumination changes. This paper proposes novel out-
door illumination constraints for resolving the foreground occlusion
problem in outdoor environment. The constraints can be also inte-
grated into a probabilistic model of multiple cues for a better seg-
mentation of the foreground. In addition, we introduce an effective
method to resolve the shadow occlusion problem by using shadow
detection and recasting with a spherical vision camera. We have
applied the system in our digital cultural heritage project named
Virtual Asuka (VA) and verified the effectiveness of the system.

Index Terms: I.3.7 [Computer graphics]: Three-dimensional
Graphics and Realism—virtual Reality; I.4.6 [Image Processing
and Computer Vision]: Segmentation—Pixel Classification

1 INTRODUCTION

The occlusion problem in AR challenges researchers with some is-
sues. The first problem is foreground occlusion in which 3D mod-
els should be rendered correctly behind the foreground if necessary.
Another one is shadow casting with respect to the coherence of the
location and the illumination condition. In an outdoor AR system
like the digital museum, there is necessity to handle the mentioned
problems robustly in an outdoor environment. These two issues are
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the main concerns of our work and are addressed in the remain-
ing part of the paper. Regarding the former problem, our goal is
to handle the foreground occlusion in an outdoor environment with
complicated illumination conditions. In the AR literature, there are
some noticeable works which partially addressed the problem. Pilet
et al. proposed a method to re-texture the deformable surface with
the presence of complex illumination and occlusion in [20] but out-
door illumination was not taken into account. While Kanbara [9]
and Kim [11] applied stereo vision for depth information for which
multiple cameras are required, Ladikos et al. used a system of 16
ceiling-mounted cameras to let users interact with virtual objects
[12]. However, those works rely on accurate stereo vision which
is time-consuming. In commercial applications, although the aug-
mentation of lines or banners into live videos has been used in the
television broadcasting industry, the augmented contexts are sim-
ple. Furthermore, the illumination variation within the environment
is not correctly handled.

In order to reach that goal, our approach is to segment the fore-
grounds and to estimate their depths. Foreground segmentation has
attracted much attention in the literature of computer vision ranging
from manual processing to totally automatic systems. Among these
methods, image matting is widely known to give highly accurate
segmentation results [24]. Nevertheless, a fully automatic matting
approach for outdoor scene with complex illumination condition is
still a challenging problem. Meanwhile, among graph-cut based
methods, Criminisi et al. probabilistically combined multiple mod-
els including temporal continuity, spatial continuity, color likeli-
hood, and motion likelihood to segment foreground from monoc-
ular video sequences in real time [3]. Sun et al. proposed an-
other real-time foreground segmentation with only color and con-
trast cues [23]. Kakuta et al. combined the methods proposed in [3],
[23] and [10] to solve the foreground occlusion in AR [8]. These
methods are applied in indoor applications with certain robustness.
The segmentation results, on the other hand, are rather sensitive to
the illumination condition especially in an outdoor environment.

Concerning the illumination change in segmentation, while a



gradual change can be solved by an adaptive learning of a back-
ground model, a sudden change is a challenging problem and
remains an active research area. Rosin proposed a well-known
threshold-based method for change detection [22]. Li et al. im-
proved the detection by combining the intensity with texture cues
[15]. In [18], O’Callaghan et al. successfully detected foreground
from indoor background changing in illumination by using normal-
ized gradient-correlation between two successive frames. Pilet et
al. also showed impressive results regarding the abrupt change of
background illumination by using a statistical model on illumina-
tion ratio [21]. However, all above methods lack the sound con-
sideration of outdoor illumination, change of which is in a rather
different manner. Moreover, the statistical model of illumination
in [21] is inaccurate since we cannot assume that the ratio of two
Poisson or Gaussian distributions has a Gaussian distribution.

Contrary to the above approaches, we introduce a set of illumina-
tion constraints to handle both the sudden illumination change and
the gradual one. Furthermore, we extend the multiple cue-based
segmentation in [8] by adding the illumination and the motion cue
with background attenuation. Due to the inaccuracy of optical flow
regarding the aperture problem, our heuristic background attenua-
tion proves its effectiveness in estimating motion areas of the scene.
Then, a spherical vision camera is applied to estimate the depth
of the segmented foregrounds as proposed in [8]. Therefore, the
foreground occlusion problem is resolved by setting those far fore-
grounds behind the virtual objects.

In addition, an effective method to solve shadow occlusion in AR
is also introduced in this paper. First, with the camera sensitivity,
shadow region is detected by using the illumination invariant con-
straint, and refined by using the energy minimization method. The
detected shadow area is then used to estimate light direction and to
recast shadow onto the virtual object by using the spherical vision
camera. Finally, real-time shading and shadow in [7] is also ap-
plied to render virtual objects without using any additional camera
for scene illumination.

In this paper, two significant contributions to outdoor AR are in-
troduced. First, we propose novel outdoor illumination constraints
which make the foreground occlusion handling more robust with
respect to the abrupt illumination change. Secondly, a simple yet
effective solution to shadow occlusion is also presented. These two
key contributions provide us the solution to both foreground and
shadow occlusion issues in outdoor AR, which we believe will be
promising in the literature.

The paper is divided into eight sections. After presenting an
overview of the system in Sect. 2, we introduce the foreground oc-
clusion handling in Sect. 3. Then, Sect. 4 provides us insight into
the illumination constraints and how they improve the foreground
segmentation by handling sudden change in illumination. Sect. 5
explains how shadow is detected and recast with a spherical vision
camera. Subsequently, an overall system is implemented and ex-
perimented in Sect. 6. Experimental results in Sect. 7 prove that
the proposed methods work effectively and practically with high
resolution outdoor video sequences. The last section completes this
paper with summary and discusses ideas for future improvement
and further research.

2 OVERVIEW

In our occlusion handling system as illustrated in Fig. 2, the input
from the spherical vision camera is first processed by foreground
segmentation to obtain a foreground image. However, the obtained
foregrounds include shadows which need to be separated in order
to solve the shadow occlusion. Thus, shadows are then detected
as shadow regions in the second stage. Depth and height of fore-
grounds are also estimated to correct depth rendering and to cal-
culate the direction of the light source which causes the shadow.
With known shadow and directional light, shadow casters can be

obtained and used to cast the shadows onto virtual objects with a
traditional shadow mapping method.

Figure 2: An overview of the whole system.

3 FOREGROUND OCCLUSION HANDLING

In our system, foreground occlusion is handled by using online
foreground segmentation and foreground depth estimation. In or-
der to make this section clear and easy to understand, we will ex-
plain the depth estimation later in section 5 together with height
estimation by using a spherical vision camera. In Sect. 3.1, online
foreground segmentation will be introduced first to explain the ba-
sic framework of the probabilistic fusion of multiple cues, which is
inherited from the work in [8]. We then present a new motion cue
with background attenuation in Sect. 3.2 and finally identify the
main problem caused by outdoor illumination in Sect. 3.3.

3.1 Online foreground segmentation

Regarding the foreground segmentation process in occlusion han-
dling, besides illumination changes, the outdoor scene challenges
the task due to the occupation of moving foreground and moving
background such as trees, leaves and clouds. Therefore, it is wise
to combine different available cues together to segment the fore-
ground online because a single cue is not reliable. We extend the
work of Kakuta et al. [8] by adding the illumination cue and the
motion cue with background attenuation which will be explained in
the following sub-sections.

Let IBt
and It = (I1t , ., Int ) denote the estimated background im-

age at time t, and the image at time t where Iit indicates the ith pixel
in the image, respectively. Our desired binary output is denoted by
X t = (x1t , .,xnt ) where xit ∈ {F( f oreground),B(background)}. As
in [8], we apply the most widely used energy function which is in
the form of data and smoothness term as follows:

E(X t ,X t−1,X t−2, It−1, It) = Edata(X
t ,X t−1,X t−2, It−1, It)+

λEsmooth(X
t , It) (1)

where λ is a smoothness factor.
In our fusion-based model, the data term Edata in Eq. (1) can be

used to integrate different cues together to give the final likelihood



of the foreground to segment.

Edata(X
t ,X t−1,X t−2, It−1, It) = αEcolor(X

t , It)+

βEtemp(X t ,X t−1,X t−2)+

γEmotion(X t , It , It−1, IBt
)+

θEillum(X
t , It , IBt

) (2)

where Ecolor, Etemp, Emotion and Eillum are color term using the
background model, temporal prior term, motion term and illumi-
nation term, respectively. α , β , γ and θ are corresponding mixing
factors.

• Color term Ecolor(X t , It): The color likelihood is computed
from the online Mixture of Gaussian (oMoG) model which
is learned from the input It online as proposed in [14]. The
energy for this term here is defined as the negative log of the
foreground likelihood.

Ecolor(X
t = F, It) = ∑

ir∈I
− log(1− poMoG(itr|B)) (3)

where

poMoG(itr|B) =
nr

∑
i=1

wr
i G(xt

r,µr
i ,σ

r
i ) (4)

where wt
r, µr

i , σ r
i are weight, mean and variance of the ith

Gaussian distribution, respectively.

• Temporal prior Etemp(X t ,X t−1,X t−2): The temporal likeli-
hood is computed from the temporal prior transition table
which represents the estimation of the coming result based on
the previous ones as proposed in [3]. The energy for this term
is defined as the negative log of the temporal prior likelihood.

Etemp(X t = F,X t−1,X t−2) =

∑
xr∈X
− log(ptemp(xt

r = F |xt−1
r ,xt−2

r )) (5)

• Motion term Emotion(X t , It , It−1, IBt
): The motion likelihood

is computed from the motion cue with background attenuation
in the next sub-section 3.2. The energy for this term is also
defined as the negative log of the motion likelihood.

Emotion(X t = F, It , It−1, IBt
) = ∑

ir∈I
− log(pmotion(itr, i

t−1
r , IBt

)) (6)

• Illumination term Eillum(X t , It , IBt
): The illumination likeli-

hood indicates how similar the current frame It is likely to
be with the learned background, although there exists illumi-
nation change. To estimate this likelihood, the background
image It

B from the online background model is used in Eq.
(16). The energy for this term is also defined as negative log
of the illumination distance.

Eillum(X
t = F, It) = ∑

itr∈It

iB
t

r ∈IBt

− log(dinv(itr, i
Bt

r )) (7)

Meanwhile, the second term in Eq. (1) called smoothness indicates
the tendency that the same label is assigned to the neighboring pix-
els in an image. In general, the labels are spatially continuous in the
foreground area but different at the segmentation boundaries. We
define the energy for this smoothness term with background atten-
uation proposed by Sun et al. in [23].

The labels (X̂1, . . . , X̂ t) that minimize the energy
E(X t ,X t−1,X t−2, It−1, It) shown in Eq. (1) are computed by
estimating the current label X̂ t using the old labels (X̂1, . . . , X̂ t−1)
that are already estimated.

X̂ t = argminE(X t , X̂ t−1, X̂ t−2, It) (8)

It is widely known that the optimum label X̂ t in Eq. (8) can be
estimated by using graph cut [2], .i.e. the solution to the energy
minimization in a Markov Random Field (MRF) corresponds to the
minimal cut of the corresponding graph, which is also equivalent
to the max-flow of the graph according to the max-flow min-cut
theorem.

There are some algorithms in the literature to find the maximum
flow including linear programming, Ford-Fulkerson, Edmonds-
Karp and push-relabel algorithms. However, most of the algorithms
fall into one of the two groups known as augmenting paths and
push-relabel. In this work, we apply the algorithm based on aug-
menting paths proposed in [1], which has been proved to be the
fastest and the most efficient one.

3.2 Motion cue with background attenuation

The motion cue provides us some important hints about moving
objects which are potential foregrounds. Among the methods for
motion estimation, optical flow is widely used for two consecutive
frames. Since our goal is to obtain a motion cue for foreground seg-
mentation, not for accurate motion, dense optical flow is preferred
among different approaches to determine motion flow. Thus, for the
motion cue, we use the most basic model to estimate dense optical
flow based on [5].

Since moving parts are more likely to be moving foregrounds,
we use the length of estimated motion vectors as a motion cue, i.e.
the larger motion it is, the more likely it belongs to the foreground.
Thus, for each pixel xt

r and xt−1
r in frame It and It−1 respectively,

we have:

pmotion(xt
r,x

t−1
r ) =

∥⃗v(xr)∥
M

(9)

where M is a constant indicating the largest displacement allowed
in dense optical flow. However, with such simple model, there
are some well-known problems such as the occlusion and aperture
problem. Rather than using the time-consuming but accurate flow
estimation, we propose a simple strategy to attenuate the estimated
background since the learned background It

B is available. We atten-
uate the background area in the flow by replacing Eq. (9) with Eq.
(10) below, i.e. removing those pixels with the intensity which is
close to that of the corresponding background pixel.

pmotion(xt
r,x

t−1
r ) =

∥⃗v(xr)∥
M

d(It(x,y), It
B(x,y))

σD
(10)

where d(It(x,y), It
B(x,y)) and σD denote how the new pixel and the

corresponding background pixel differ and the attenuation parame-
ter respectively. Fig. 3 illustrates how the motion model works.

3.3 Problems with outdoor illumination change

Fig. 4 illustrates how the abrupt change of outdoor illumination
causes problems in the traditional foreground segmentation with the
color distribution and motion model. Although we can obtain bet-
ter results for moving foreground by adjusting the mixing factor of
the motion cue, it still suffers from the cases when the foreground
temporarily stands still.



Figure 3: Motion with background attenuation from two successive
frames. The whiter the pixel is, the higher probability that it belongs
to the foreground.

Figure 4: The upper row shows how the illumination changes
abruptly. The lower left is the corresponding probability from the Mix-
ture of Gaussian model while its corresponding result from segmen-
tation is in the lower right image.

4 HANDLING OUTDOOR ILLUMINATION CHANGE IN FORE-
GROUND OCCLUSION

In an outdoor scene, changes in illumination are inevitable and chal-
lenging to most researchers in the computer vision field. Therefore,
it is impossible to have a robust approach to any online segmenta-
tion task in an outdoor scene without significant understanding of
its complex illumination condition. In this section, we propose an
effective solution to handle sudden changes in illumination in most
cases of day light condition ranging from a sunny one to a heavy
cloudy one. The illumination constraints will be explained in Sect.
4.1 and 4.2. Both constraints can be used as an illumination cue
which can be integrated into a multiple-cue background model in
Sect. 3. In addition, we also introduce an illumination constraint-
based algorithm to check two image irradiances regarding illumi-
nation change in Sect. 4.3.

4.1 Illumination invariant constraint
Let’s assume that a surface patch St at time t is Lambertian with
normal n⃗ and the corresponding surface reflectance ρ . Our pro-
posed outdoor illumination model Eq. (35) with the visible portion

of the sky in the appendix A reads

It = ρEtB (11)

where

Et =

(
gEsun

t
(⃗
nD⃗t
)
+Esky

t cos2 β
2

)
and It denotes the corresponding image irradiance and E for the
irradiance at the surface patch.

If we assume that the camera sensitivity is sufficiently narrow
and that daylight is blackbody radiation, we can apply Wiens ap-
proximation to Plancks formula as in [6], i.e.

Eλ
t ≈ c1λ−5e

− c2
λT λ

t (12)

where c1 and c2 are two constants and Tt is the color temperature
with the center wavelength λ of the camera sensitivity. By applying
Eq. (11) and Eq. (12) at two different times t1 and t2, we obtain the
ratio as :

Rλ
t1,t2 =

Iλ
t1

Iλ
t2

=
Eλ

t1

Eλ
t2

= e
− c2

λ

(
1

T1
− 1

T2

)
(13)

Finally, we can easily infer the constraint among the log-ratios
lnRλR

t1,t2 , lnRλG
t1,t2 and lnRλB

t1,t2 as :

lnRλR
t1,t2 −C lnRλG

t1,t2 +(C−1) lnRλB
t1,t2 = 0 (14)

where C =
( 1

λR
− 1

λB

)/( 1
λG
− 1

λB

)
. We call Eq. (14) the illumina-

tion invariant constraint. Furthermore, it is possible to modify the
illumination constraint in Eq. (14) into a form of distant measure
as :

dc(I1, I2) = ∥ lnRλR
t1,t2 −C lnRλG

t1,t2 +(C−1) lnRλB
t1,t2∥ (15)

Since dc(I1, I2) ≤ 2(C + 1)Dc where Dc = lnmax(Intensity), Eq.
(15) can be rewritten in normalized form as :

dinv(I1, I2) =
∥ lnRλR

t1,t2 −C lnRλG
t1,t2 +(C−1) lnRλB

t1,t2∥
2(C+1)Dc

(16)

4.2 Illumination ratio constraint
First, by taking logarithm of Eq. (13), we obtain

λ lnRλ
t1,t2 =−c2

(
1
T1
− 1

T2

)
(17)

Since it is obvious that the right side of Eq. (17) is independent of
the wavelength, another constraint which we call the illumination
ratio constraint can be obtained as :

λR lnRλR
t1,t2 = λG lnRλG

t1,t2 = λB lnRλB
t1,t2 (18)

For the illumination ratio constraint in Eq. (18), we can also
rewrite it in a similar distant measure as :

dr(I1, I2) = max
(
∥λR lnRλR

t1,t2 −λG lnRλG
t1,t2∥,

∥λG lnRλG
t1,t2 −λB lnRλB

t1,t2∥,

∥λB lnRλB
t1,t2 −λR lnRλR

t1,t2∥
)

(19)

Furthermore, we can also normalize the ratio constraint as :

dratio(I1, I2) =
dr(I1, I2)

Dc max(λR,λG,λB)
(20)

where Dc is defined as in Eq. (16).



4.3 Illumination constraint-based algorithm
Before introducing the algorithm based on the two proposed con-
straints, let’s discuss the cases of outdoor illumination changes. We
can divide the cases into three main categories as follows:

• Heavy cloudy day: The Sun is absent and changes in illumina-
tion are mainly caused by the changes of the brightness and/or
the color of the sky. However, in reality, the case that the sky
color dramatically changes is rare. For instance, clouds with
strange color appear after the rain. For most cases, changes in
the sky color are very small and insignificant in comparison
with changes of the surface reflectance due to the thickness of
the cloud.

• Partial cloudy day: The Sun is partially occluded and changes
are mainly caused by the occlusion routine of the Sun or the
reappearance routine of the Sun after being occluded. Cast-
ing shadow also falls into this case when the Sun is occluded
regarding the surface geometry. Although the Sun is par-
tially occluded, the saturated cloud area is so bright that it
can be considered as the Sun with lower brightness. There-
fore, changes in this case are also very small and insignificant
in comparison with the changes of the surface reflectance due
to the saturated cloud areas.

• Sunny day: In this case, the Sun light is dominant and changes
are mainly caused by changes in the brightness and/or the po-
sition of the Sun. Thus, changes in this case are also very
small and insignificant in comparison with the changes of the
surface reflectance due to the fact the Sun just changes its
brightness and/or its location.

From the above observation, we combine two constraints to pro-
pose a simple algorithm (Alg. 1) to check whether the two image
irradiances are from the same point on the surface patch regarding
a large change in outdoor illumination.

Algorithm 1 Illumination constraint-based algorithm
Input: Image irradiance I1 and I2
Output: A boolean value indicating whether I1 and I2 are from the
same point on the surface patch after illumination changes
dc←− ∥ lnRλR

t1,t2(I1, I2)−C lnRλG
t1,t2(I1, I2)+(C−1) lnRλB

t1,t2(I1, I2)∥
dr = max

(
∥λR lnRλR

t1,t2 −λG lnRλG
t1,t2∥,

∥λG lnRλG
t1,t2 −λB lnRλB

t1,t2∥,
∥λB lnRλB

t1,t2 −λR lnRλR
t1,t2∥

)
Return: dc < ε and dc < δ

Furthermore, the flow of segmentation process in Fig. 5 illus-
trates how the algorithm is integrated into the robust segmentation
to handle large changes in illumination. Along with the time line, a
fusion of multiple cues including background model, motion, tem-
poral prior and illumination is applied to estimate the foreground.
However, if the estimated result is inaccurate, i.e. the whole fore-
ground areas are larger than a certain threshold due to the sudden
change in illumination, the system will switch into the extraordi-
nary stage using Alg. 1 above. While doing this abnormal routine,
the background model is also learned concurrently either till it con-
verges or till the illumination condition becomes stable again. Af-
ter that, the system switches back into the normal routine as before.
The algorithm can be found in detail in Alg. 2. The corresponding
result of Fig. 4 is shown in Fig. 6.

5 SHADOW OCCLUSION HANDLING

In order to handle the shadow occlusion problem, it is necessary
to separate the shadow region from detected foreground and then

Figure 5: An overview of the foreground segmentation with illumina-
tion constraints.

to recast the shadow onto virtual objects correctly. In addition, the
foreground depth and height, and the light direction should also be
estimated. Shadow detection comes next in section 5.1 and then it
is followed by how we recast the detected shadow in section 5.2.

5.1 Shadow detection
Natural shadow in an outdoor scene is normally formed by the fact
that only sky light reaches the surface area without the participation
of the Sun light. The proposed illumination constraints in section 4
can also be applied with a larger threshold.

In addition, it can be easily proved in appendix B that the pro-
posed illumination invariant constraint in section 4.1 is equivalent
to F-value of the shadow invariant in [17] of Marchant et al.

With the assumption of blackbody radiation and the narrow-
banded camera, we can apply the proposed illumination invariant
constraint in Eq. (16) to detect shadow at per-pixel level with the
observation that the brightness of shadow is lower than that under
sunlight (brightness constraint). The process is described in Alg. 3
below.

Nevertheless, the proposed per-pixel approach provides us the
shadow point clouds which are unexpected (Fig. 7). Although one
can think of a morphology operator to enhance the result, we in-
troduce a region-based optimization by using energy minimization.
The shadow energy can be represented as :

Eshadow = Edata(X
t , It , It

B)+αEsmooth(X
t , It , It

B) (21)

Lu et al. proposed a method which detects the shadow region using
energy minimization in [16]. However, in [16], the authors discard
the data term which indicates the likelihood of shadow and non-
shadow for each pixel. On the contrary, we use the distance from
Eq. (16) to form the shadow likelihood as :

Edata(X
t = B, It , It

B) = ∑
ir∈I
− log(dinv(itr, i

t
B)) (22)

The smoothness term in (21) is defined as

Esmooth(X
t , It , It

B) = ∑
(p,q)∈N

− log(Contrastatten(itp, i
t
q, i

Bt

p , iB
t

q )) (23)

where Contrastatten is defined as in section 3. Finally, the optimum
label can also be optimized using energy minimization with graph



Algorithm 2 Segmentation with illumination change
Input: Image irradiance It and It

b of the current frame and the
learned background respectively
Output: Foreground It

f from the current frame It

Estimate color cue Probcolor as in Eq. (4)
Estimate temporal prior cue Probtemp as in Eq. (5)
Estimate motion cue Probmotion as in Eq. (6)
Estimate illumination cue Probillum as in Eq. (7)
Estimate It

f from Probcolor

countcolor ←−CountForegroundPixel(Probcolor)
countillum ←−CountForegroundPixel(Probillum)
if abs(countcolor− countillum)> threshold then

for each location(x,y) where It
f (x,y) is foreground do

if Constraint(It
f (x,y), I

t
b(x,y)) from Alg. 1 then

Probcolor(x,y)←− dr(It
f (x,y), I

t
b(x,y)) from Eq. (20)

end if
end for

end if
It

f ←− DoGraphCut(Probcolor,Probtemp,Probmotion,Probillum)

Return: It
f

Algorithm 3 Per-pixel shadow detection
Input: Image irradiance I f and Ib of foreground and background
respectively
Output: A boolean value indicating whether I f belongs to the
shadow region or not
dc←− ∥ lnRλR(I f , Ib)−C lnRλG(I f , Ib)+(C−1) lnRλB(I f , Ib)∥
Return: dc < σ and I f < Ib

cut as in Sect. 3. Fig. 8 illustrates how the shadow regions are
refined.

5.2 Shadow recasting
With the help of a spherical vision camera, the estimation of the
foreground depth and height as well as the directional light can be
done with simple spherical geometry. The shadow mapping method
is then applied. The process is described in detail in Alg. 4.

First, in order to superimpose virtual objects with respect to fore-
grounds in the real scene and to cast the detected shadows correctly,
the foreground depth should be known and virtual objects should be
rendered correctly whether in front of or behind the foreground ac-
cording to the estimated depth. With the assumption that the ground
is relatively flat and that the camera height is known, the foreground
depth can be easily estimated by using simple spherical geometry
as in Fig. 14 in Appendix C. Let h denote the camera height and d
for the estimated depth. We have

d = hsinα (24)

where α denotes the first components in the spherical coordinate
I(α,ϕ) of the foreground bottom. Fig. 9 illustrates how the depth
map is estimated.

Additionally, in order to recast the detected shadows, the light
direction should be known; hence, the foreground height should be
taken into account. Inheriting from the depth estimation, the fore-
ground height is estimated by using simple geometry as illustrated
in Fig. 10. Certainly, we also assume that the ground is relatively
flat and that the camera height is known. There are two cases in this
calculation. One is when the height is over the camera height:

h2 = h(1+ tanβ1 tanβ2) (25)

Figure 6: Result of illumination constraints. The uppler left image
shows the illumination invariant distance while the one on the upper
right shows the illumination ratio distance. The whiter the pixel is, the
larger the distance is. The lower image indicates the final segmenta-
tion result.

Figure 7: The image on the left is the original frame and its corre-
sponding foreground is in the middle image. The one on the right
shows detected shadow in per-pixel level.

And another is when the height is below that of the camera:

h1 = h(1− tanα1 tanα2) (26)

where h denotes the camera height and the angles are defined as in
Fig. 10.

Next, we assume that the detected foreground shadows are all
casting shadows caused by the Sun light. Thus, the light source can
be safely assumed to be directional. In order to estimate the direc-
tional light vector, foreground and its corresponding shadow should
be projected onto the ground from the spherical image by using the
transformation in Eq. (39) in appendix C. Let P⃗0, P⃗ and h denote
the position of the shadow of the foreground head, the position of
the foreground bottom and the foreground height estimated as in
previous section, respectively. The directional light vector can be
simply calculated as :

⃗dlight = P⃗0− (P⃗+ h⃗) (27)

At this stage, we have estimated the required components for
shadow recasting, which are the directional light, shadow regions
and their corresponding projections onto the ground from the spher-
ical image. Whether we apply the shadow mapping or the shadow
volume method, the silhouette of the shadow casters should be
known. For each point in known shadow regions on the ground,
we calculate the intersection of the vector toward d⃗light with the



Figure 8: The per-pixel shadow detection provides results as in the
image on the left and the one on the right shows how it is refined.

Algorithm 4 Shadow recasting algorithm
Input: Image irradiance It , It

f and It
b of the current frame, the seg-

mented foreground and the learned background respectively
Output: The render context with recast shadows
Shadowregion←− EnergyBasedShadow(It

f , I
t
b) from Sect. 5.1

for each f ore in It
f do

Depth f ore←− DepthEstimation( f ore) from Eq. (24)
Height f ore←− HeightEstimation( f ore) from Eq. (25) and (26)
DirectionalLight f ore←− DirectionalLight( f ore,

ShadowRegion, Depth f ore, Height f ore) from Eq. (27)
end for
Lightdirection←− Average(DirectionalLight{It

f })

for each f ore in It
f do

Caster f ore←− CasterEstimation(Lightdirection, fore,
ShadowRegion, Depth f ore, Height f ore)

end for
Render shadow casters and virtual objects with shadow mapping
Return

vertical plane at foreground bottom P⃗. The border of all intersec-
tion points will provide us the silhouette of the shadow caster. Tra-
ditional shadow mapping is then used to correct the shadows on
virtual objects.

6 IMPLEMENTATION AND EXPERIMENT SETUP

6.1 Implementation

Since the proposed foreground segmentation system is used to pro-
cess high resolution frames online in a per-pixel level, it is too time-
consuming to be implemented in any practical application. We take
advantage of the current available Graphics Processing Unit (GPU)
to accelerate the calculation of each cue for foreground segmenta-
tion.

In addition, we obtain the solution of the optimum label by using
graph cut on the whole image. Although this provides us optimized
results, it also yields poor performance especially for high resolu-
tion images. By observing that the foreground regions tend to fall
into the joint areas provided by multiple cues, we propose a sim-
ple heuristic approach by applying the graph cut on areas which
are more likely to be foreground. Alg. 5 below explains how the
heuristic process is done.

6.2 Experiment setup

In our experiment, the spherical vision camera Ladybug2 by Point
Grey Research Inc. is used and fixed on a tripod at the height of
around 160cm. First, we experimented on video sequences cap-
tured in our campus and then applied in our VA project. In the
system, we use a notebook, the spec of which is, OS: Windows 7,
CPU: Core2Quad 2.0 GHz, RAM: 4GB, GPU: nVIDIA GTS 160M
1024MB.

Figure 9: Depth estimation using a spherical vision camera. The
image on the left is the original frame. The middle image shows
segmented foreground. The one on the right is the estimated depth
map. The shadow in the last image is considered to be foreground
and not separated yet.

Figure 10: Depth and height estimation using a spherical vision cam-
era.

As introduced in Fig. 2 in Sect. 2, we fix the spherical vision
camera during the experiment while the viewers can move the head-
mounted display (HMD).

7 EXPERIMENTAL RESULTS

Regarding the experiments on illumination change, we compare
our foreground segmentation results with respect to the previous
method in [8] which is a combination of [3] and [23]. Since current
public dataset is not available, we use our own video data. Fig. 11
and Fig. 12 show how the illumination changes in reality in Asuka
and campus sequences. In our experiment, the mixing factors of the
energies to minimize (i.e. α , β , γ and θ in Eq. (2)) are set to 0.25,
0.125, 0.125 and 0.5 respectively. Fig. 11 and Fig. 12 below show
that previous methods fail when the outdoor illumination changes.
Meanwhile, our proposed outdoor illumination handling achieves
correct foreground segments.

In order to evaluate the correctness of our proposed method, we

Algorithm 5 Heuristics for segmentation
Input: Image irradiance It and It

b for the current frame and the
learned background respectively
Output:An area At

cut to segmentation with graph cut instead of the
whole frame It

At
cut ←− NULL

for each cue in {Color,Temporal,Motion, Illumination} do
mask←−MaskO f (Probcue)
At

cut ←− At
cut∪ Dilate(mask)

end for
Return: At

cut



Figure 11: Asuka sequence. The images in the first row are original
ones. The second row shows how the previous approach fails. The
third row indicates probability of foreground from illumination con-
straints. The bottom row shows the results by our approach.

Figure 12: Campus sequence. The images in the first row are original
ones. The second row shows how the previous approach fails. The
third row indicates probability of foreground from illumination con-
straints. The bottom row shows the results by our approach.

use precision and recall defined in [19] as :

precision =
tp

tp + fp
(28)

recall =
tp

tp + fn
(29)

where tp, fp and fn denote true positive, false positive and false neg-
ative, respectively. The table 1 and 2 below show that our proposed
method achieves stable results regardless of illumination changes.
However, our system has some limitations which need to be im-
proved. Since our proposed illumination constraints are heavily
based on the assumption of narrow-banded cameras and Lamber-
tian surfaces, either non-Lambertian surfaces or a wider band will
violate the constraints. Nevertheless, such cases are so rare that we
can safely make the assumption for practical applications.

Results from Fig. 16 to Fig. 18 illustrate how the shadow is
recast. The recast shadow and the self-shadows on virtual objects
match well with the natural ones of the foregrounds, from which we
estimate the directional light. However, since we rely on the spher-

Table 1: Asuka sequence.
Method Precision(%) Recall(%)

Proposed method 92 97
Combination in [8] 7 99

Table 2: Campus sequence.
Method Precision(%) Recall(%)

Proposed method 94 97
Combination in [8] 56 99

ical vision camera and the assumption that the ground is relatively
flat, this effective solution is suitable only for outdoor augmented
reality. Furthermore, in our approach, we only use detected shad-
ows to estimate the directional light without maintaining the light
with temporal consistency. As they can be seen from the demon-
stration video, the cast shadows and self-shadows flicker due to the
unstable estimation the directional light. It is possible and neces-
sary to consider the stability of the directional light which changes
very slowly in reality. A combination of multiple cues as in [13]
should be applied for more accurate estimation. Nevertheless, the
estimation in [13] requires offline processing which makes it im-
practical to be used in outdoor AR.

Finally, with the spec in Sect. 6, our segmentation system can
work at a frame rate of 5 frames/sec with the image resolution
at 2048 by 1024 and at 2 frames/sec with shadow recasting. Im-
provement for the faster implementation is required to handle the
foreground and shadow occlusion problem in outdoor augmented
reality in real-time.

8 CONCLUSION

Our proposed illumination constraints and foreground segmenta-
tion strategy handle well the cases of outdoor illumination changes
ranging from the gradual change to the sudden one. Thus, fore-
ground occlusion problem is resolved for outdoor AR. In addition,
shadow recasting results show that our solution to the shadow oc-
clusion works effectively. Real experiments on campus and in the
VA project prove the effectiveness of the introduced system which
can be applied in practical outdoor augmented reality application.
Further improvement in foreground and shadow separation should
be done to provide more accurate foreground location and light di-
rection. Finally, we will extend our system to use dynamic cameras
which allow viewers moving in the virtual world.
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A LAMBERTIAN SURFACE UNDER VISIBLE PORTION OF THE
SKY

Figure 13: A visible portion of the sky in outdoor illumination model.

Considering a surface patch S with normal n⃗ and the correspond-
ing surface reflectance ρ , we assume that the surface is Lambertian
and that there are two main sources of light in outdoor scene which
are the Sun and the sky. Next, let L denote the scene radiance and
E as the irradiance at the surface patch. Since the Sun light can
be safely assumed to be directional and white, we obtain the Sun
model from the Lambertian assumption as :

Lsun = ρEsun(⃗nD⃗) (30)

where D⃗ denotes the incident direction of the Sun light as in Fig.
13. Also from Lambertian assumption, Bidirectional reflectance
distribution function (BRDF) becomes a constant for each surface

patch regardless of the direction of viewing. Thus, from [4], under
a uniform sky, the radiance of the surface patch can be obtained as
:

Lsky =
∫ π

−π

∫ π
2

0

ρEsky

π
sinθi cosθidθidϕi (31)

where (θi,ϕi) denotes the incident polar angle of the incoming light.
However, in reality, just a portion of the sky is visible to the surface
patch. We can modify Eq. (31) by considering the visible hemi-
sphere regarding the surface normal as in Fig. 13. Thus, Eq. (31)
becomes

Lsky =
∫ π

2

−π
2

∫ π
2

0

ρEsky

π
sinθi cosθidθidϕi

+
∫ π

2

−π
2

∫ θ ′

0

ρEsky

π
sinθi cosθidθidϕi

=
ρE
2

(
1+

∫ π
2

−π
2

1
1+ tan2 β cos2 ϕ

dϕ
)

=
ρE(1+ cosβ )

2
= ρE cos2 β

2
(32)

where β denotes the angle between the surface normal and the ver-
tical vector as in Fig. 13. Thus, Eq. (30) and Eq. (32) provide
us

L = ρ
(

gEsun(⃗nD⃗)+Esky cos2 β
2

)
(33)

where g ∈ [0,1] is to determine whether the point on the surface
patch is shadowed or not.

Meanwhile, we can obtain the proportion between the image ir-
radiance I and the scene radiance L as :

I = L
π
4

(
d
f

)2
cos4 α (34)

where d and f denote the lens diameter and the distance from the
camera lens to the image plane respectively, and α denotes the an-
gle between the optical axis and the ray from the surface patch to
the center of the lens. Thus, we can obtain the outdoor illumination
model from Eq. (33) and Eq. (34) as :

I = ρ
(

gEsun(⃗nD⃗)+Esky cos2 β
2

)
B (35)

where

B =
π
4

(
d
f

)2
cos4 α (36)

It is obvious that B only depends on the location of the surface patch
and is independent of the irradiance of any incident light.

B ILLUMINATION INVARIANT

From Eq. (14), we have

lnRλR
t1,t2 −C lnRλG

t1,t2 +(C−1) lnRλB
t1,t2 = 0 with C =

1
λR
− 1

λB
1

λG
− 1

λB

⇐⇒
(

ln
IλR
1

IλB
1

−C ln
IλG
1

IλB
1

)
−
(

ln
IλR
2

IλB
2

−C ln
IλG
2

IλB
2

)
= 0

⇐⇒ lnF1− lnF2 = 0 (37)

Therefore, the illumination invariant constraint is equivalent to the
log of F value in [17].



Figure 14: 3D projection onto the ground plane.

C SPHERICAL VISION

In a spherical vision camera system, the surrounding scene is
mapped into the spherical image I, in which each member is rep-
resented by I(α,θ) as illustrated in Fig. 14. Given a traditional
image coordination I

′
(x,y), we can transform it into the spherical

coordination I(α,θ) as :

α = π
Iheight − y

Iheight

θ = 2π
Iwidth− y

Iwidth
(38)

On the contrary, each point I(α,ϕ) in a spherical image can also
be projected into the scene. For example, in Fig. 14, I is projected
onto the ground as :

ρ(I(α ,θ)) =


x = h tanα sinθ
y = h
z = h tanα cosθ

(39)

where h denotes the height of the camera.

Figure 15: Input frames from Campus sequence.

Figure 16: The final result of occlusion handling.

Figure 17: Input frames from Asuka sequence.

Figure 18: The final result of occlusion handling.


