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Abstract

We propose a method for measuring surface shapes of transparent
objects by using a polarizing filter. Generally, the light reflected from
an object is partially polarized. The degree of polarization depends
upon the incident angle which, in turn, depends upon the surface nor-
mal. Therefore, we can obtain surface normals of objects by observing
the degree of polarization at each surface point. Unfortunately, the
correspondence between the degree of polarization and the surface
normal is not one to one. Hence, to obtain the correct surface normal,
we have to solve the ambiguity problem. In this paper, we introduce
a method to solve the ambiguity by comparing the polarization data
in two objects, i.e., normal position and tilted with small angle po-
sition. We also discuss the geometrical features of the object surface
and propose a method for matching two sets of polarization data at
identical points on the object surface.

Keywords: 1.4.8.j Shape, [.5.4.b Computer vision.

1 Introduction

Recently, techniques for 3D modeling of objects through observation have
been extensively investigated. Such 3D modeling has a wide range of ap-
plications, including virtual reality and object recognition. Geometry is one
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Figure 1: (a) Photograph of transparent heart-shaped glass and (b) the ob-
tained shape of this object.

of the most important aspects of 3D modeling since we can generate realis-
tic images from geometrical models obtained by measuring the shape of an
object.

The computer vision community has extensively developed techniques to
determine the shape of objects[l, 2]. Most of these methods are, however,
designed to obtain shapes of opaque unhomogeneous surfaces, namely, the
analysis of these methods is based on the body reflection component of object
surface reflections. Models of transparent objects as well as those of black
objects and metals cannot be created using those techniques since they have
surface only reflection. In this paper, we propose a method for obtaining the
surface shape of transparent objects. Fig. la is a picture of a heart-shaped
piece of glass and Fig. 1b is the shape of the object estimated by our method.

1.1 Related Work

Many methods have been developed to deal with transparent objects. Szeliski
et al.[12] and Schechner et al.[13] separated surface reflection of a transparent
planar object from background images. Zongker et al.[14], Chuang et al.[15],
Wexler et al.[16], and Matusik et al.[17] developed a method to generate
the appearance of a transparent object from a series of images taken under
different conditions. These methods, however, do not totally provide the
shape information of the transparent object.

Few existing methods attempt to determine object shape through surface



reflection. ITkeuchi[3] proposed a method to determine the shape of a metal
surface by using photometric stereo. Nayar et al.[4] extended the method
by using continuous illumination distribution, referred to as a photometric
sampler. Sato and lkeuchi[5] analyzed color images in a similar setting and
determined the shape and reflectance of shiny objects. Oren and Nayar[6]
proposed a method using surface reflections and motion to determine surface
shape.

Surface reflection can also be analyzed through the degree of polariza-
tion, as demonstrated by Koshikawa and Shirai[7, 8], who employed polar-
ized light sources to determine the shape of planar metal surfaces. Wolff
and Boult[9, 10] proposed a method to obtain the surface normal of planar
metals and glasses by analyzing the polarization of the object. Rahmann
and Canterakis[11] proposed an optimization framework for shape recovery
and recovered the spherical shape of an opaque specular object by using five
polarization images. Saito et al.[18] employed the analysis of the degree of
polarization and developed a method with which the surface of a transpar-
ent object could be determined; however, the degree of polarization provided
two candidates of surface normal, and they did not solve this ambiguity.
Miyazaki et al.[19] solved this ambiguity problem by introducing the degree
of polarization of thermal radiation in the infrared wavelength and uniquely
determined the surface orientation.

In this paper, to resolve the ambiguity problem, we introduce polarization
analysis from two views. This method obtains two sets of data of polariza-
tion from two different views. We observed the object twice from the same
camera by tilting the object at a small angle. This method first obtains
the degree of polarization, as in the method proposed by Saito et al.[18].
One measurement of the degree of polarization corresponds to two surface
orientations. The degree of polarization of a novel view disambiguates this
problem. By comparing the degree of polarization at the same surface point
(= corresponding point) of each piece of polarization data, we can determine
the unique surface orientation.

1.2 Assumptions

There are several assumptions we use to successfully apply our method:

1 The object is observed as an orthographic projection to the image plane
of the camera.

2 The object is transparent and solid.

3 The refractive index is known and constant for any part of the object.



4 The object surface is optically smooth (not microscopically rough).
5 The object surface is geometrically smooth and closed (C* surface).

6 No self-occlusion exists. There is no “jump” in the height of the object
surface.

7 The entire frontal surface is included in the camera field of view.

8 The light that is directly reflected from the object surface should be
observed. The light that is reflected two or more times or is transmitted
should not be observed.

9 The disambiguation method of the azimuth angle ¢ shown in Section
2.1 can be applied.

10 The light caused by interreflection is unpolarized and uniform for all
the points on the object surface.

11 Hints for region segmentation are given by the human operator.

12 The class of regions does not change even if we rotate the object at a
small angle.

13 Proper rotation direction is given by the human operator.

14 The object still obeys all these assumptions even if we rotate the object
at a small angle.

In fact, assumption 2 is not mandatory. Our method is also effective for
opaque objects.

Several kinds of concave objects violate assumption 8 and produce a less
precise shape of the object. From assumption 9, objects which have complete
concave parts — a surface which is always concave for any direction, e.g.,
dimples — cannot be modeled automatically by our method.

We rotate the object to obtain the polarization data observed from two
different views. Our method assumes that there are no interreflections and
that the rotation angle of the object is infinitesimal. However, under certain
conditions, interreflections cannot be avoided. From assumption 10, we sub-
tract the intensity caused by interreflection from the input data to reduce
the interference of interreflection. We consider that such modification empir-
ically produces a more satisfactory data than does input raw data; however,
such assumptions are theoretically not always true.

Our method needs to apply a region segmentation method to the input
polarization data and to classify the region after segmentation. If the object
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is complicated and is rotated at a large angle, the class of the region will
often change and will thus violate assumption 12. In addition, if the region
changes in topology — for example, if it splits, vanishes, or regenerates —
then such a measurement also violates the assumption.

There are more interreflections in transparent objects than in opaque
objects. According to our way of thinking, a method which can measure the
shape of transparent objects is robustly applicable to any opaque objects.
Thus, to prove the robustness of our method, we applied our method to
transparent objects.

1.3 Outline

The structure of the remainder of this paper is as follows: In Section 2, we
present a brief overview of the background theory of polarization[20] and
show that one can determine surface orientation up to two possible incident
angles by using the polarization. In Section 3, we describe the method for
disambiguating the possibilities in the incident angle by rotating the object.
In particular, we describe a method for determining the corresponding points;
the method is based on the analysis of the Gauss map of the surface. In Sec-
tion 4, we describe the apparatus used in this method and the experimental
results. Finally, in Section 5, we conclude the paper.

2 Polarization Analysis

Light reflected from the surface of most types of objects can be separated
into two major components: surface reflection and body reflection. Incident
light partially reflects immediately from the surface and partially penetrates
the object. The light that penetrates an opaque object randomly reflects
at pigments inside the object and is emitted into the air. The light that
immediately reflects into the air is called the surface reflection and the light
that penetrates and is then reflected back into the air is called the body
reflection[21]. Since, in this paper, we focus on transparent objects, we will
deal only with surface reflection.

Generally, natural light is unpolarized and becomes polarized once it goes
through a polarization material or it is reflected from a surface, and we are
interested in measuring the degree of polarization of reflected light. The
interfaces of smooth, transparent objects cause less diffuse reflection or ab-
sorption as opposed to those of opaque objects and the incident and reflecting
angles are the same. Thus, once the reflecting angle and the orientation of
the plane of incidence are known, we can determine the surface orientation
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Figure 2: Surface normal of the object/

with respect to the viewer, as shown in Fig. 2. Here, the plane of incidence
is the one on which the light source and surface normal lie. Since we analyze
only smooth, transparent objects, the viewer vector is included in the plane
of incidence. We will denote the direction of the plane of incidence and the
reflecting angle as ¢ and 8, respectively, and determine these two angles by
using the degree of polarization of reflected light.

The reflectance ratio parallel to the plane of incidence, F),, and the re-
flectance ratio perpendicular to the plane of incidence, Fj, are defined as:

14+ n?—(n*+ 1/n2)sin20 — 2cos vV/n? — sin 0
L+n%—(n?+ 1/n2)SiH2(9—|-2COS(9\/n2 —sin? 4
1+ n?—2sin?0 —2cos Hv/n? — sin’ b

r, = , 1
14+ n2—2sin’6 + 2cosv/n? — sin’# (1)

where 6 is the incident angle and n is the refractive index of the object
relative to the air. The incident angle that satisfies F}, = 0 is referred to as

F, =




the Brewster angle, 5. The Brewster angle is obtained as:

tanfg =n . (2)

2.1 Direction of the Plane of Incidence, ¢

As shown in (1), the intensity of the reflected light varies depending on the
direction of oscillation in the plane of oscillation; therefore, a difference can
be observed when the polarization filter is rotated in front of a CCD camera.
The variance is described as a sinusoidal function of rotation angles. We will
denote the maximum and minimum brightness in the observed intensities as
I hax and I, Given that the sum of the maximum and minimum brightness
is the total brightness of the reflected light Igpec,

F F
[max — - ]s ecy [min — £ ]s ec - 3
Fp _I_ F15 P Fp _I_ F15 P ( )

By this equation, the direction parallel to the plane of incidence provides
the minimum brightness [,;,. Namely, by measuring the angle where the
minimum brightness is observed, we can determine the direction of the plane
of incidence ¢ (0 < ¢ < 27). There are two possible directions of the plane
of incidence, ¢ro and ¢y, which are definable as ¢y = ¢ro + 7, where
0<dro <mand 7 < ¢pyr < 27.

Since we assume that the object is a closed, smooth object, we can deter-
mine the surface normal at the occluding boundary; the surface normal heads
for the outside of the shape of the projection of the object at the occluding
boundary. By using the ¢ at the occluding boundary as an initial condition,
we propagate the constraint of ¢ throughout the surface and, finally, deter-
mine the value of ¢ over the entire surface, assuming that all local parts of
the surface are not concave toward the camera direction.

2.2 Incident Angle, ¢

The definition of the degree of polarization (or polarization degree) is,

. [max - [min (4)
P= [max + [min ‘

The degree of polarization is 0 when the light is un-polarized, whereas it is 1
when the light is linearly polarized. The linearly polarized light is observed
when the incident angle and the reflecting angle are at the Brewster angle.
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Figure 3: Relation between the degree of polarization and the incident angle

(n=15).

By substituting (3) and (1) into (4), we can represent the degree of po-
larization p as

B 25in?0vn2 —sin?f —n2sin® 0 +sin* 0

n? —sin?f0 — n2sin?h + 2sin* 0

p (5)
The degree of polarization is a function of the refractive index n and the
incident angle 6 (0 < 6 < 7/2). Thus, by obtaining the degree of polarization
from the data, we can determine the incident angle 6, given the refractive
index n.

Fig. 3 shows the relationship between the degree of polarization and
the incident angle. Here, the horizontal and vertical axes denote the incident
angle and the degree of polarization, respectively. We can obtain the incident
angle from the observed degree of polarization even if we do not know the
intensity of the light source. The function has an extreme at the Brewster
angle. From this function, an observed degree of polarization provides two
possible incident angles, except at the Brewster angle. The method to resolve
this ambiguity is described in the next section.

Incident angle
(Reflecting angle)
0



3 Disambiguation through Object Rotation

Section 3 describes the method for solving the ambiguity problem and ob-
taining the surface normal of the object. We rotated the object to obtain
two sets of polarization data from different viewing directions. First, we seg-
mented each of the data of polarization degree into regions. Each region was
classified into three types of regions as described in Section 3.1. Then, we
detected corresponding points for each region and compared the value of de-
gree of polarization at corresponding points. The corresponding points were
detected by the method described in Section 3.2. Finally, Section 3.3 shows
the method for solving the ambiguity problem by comparing the degree of
polarization at corresponding points.

3.1 Region Segmentation

We have explained how to obtain the polarization degree of the light reflected
on the object surface in Section 2. Now, we segment the data of polarization
degree into some regions bounded by the Brewster angle §5. Points of the
Brewster angle have no ambiguity and the polarization degree p is equal to
1. Since we assume that the object is a closed, smooth object, the curve
connected by points of the Brewster angle will form a closed curve. This
curve is sometimes thick, sometimes thin, and sometimes a combination of
both. We denote a point where the zenith angle is equal to Brewster angle
as the “Brewster point” and the closed curve consisting of Brewster points
as the “Brewster curve.” We define the segmentation by Brewster curves as
“Brewster segmentation.”

Now, let us consider the surface regions segmented with regard to the
Brewster angle with a Gaussian sphere representation[l, 22]. The regions
generated by Brewster segmentation can be grouped into three classes(Fig.

4):

1. B-E region — a region enclosed within a Brewster curve and an oc-
cluding boundary (mapped to the Equator on the Gaussian sphere),

2. B-N region — a region enclosed only with a Brewster curve and con-
taining a surface orientation toward the viewer direction (mapped to
the North Pole on the Gaussian sphere),

3. B-Bregion — a region enclosed only with one or more Brewster curve(s)
and neither containing occluding boundary nor the surface normal fac-
ing the viewer.
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Figure 4: Gaussian mapping and regions.

‘B’ represents the capital letter B of the Brewster curve, ‘E’ represents the
capital letter E of the Equator, and ‘N’ represents the capital letter N of the
North Pole.

The result of the Brewster segmentation of the object depicted in Fig. 5
is shown in Fig. 6. Fig. 6a is a gray image of the polarization degree, where
p = 0 is represented as black and p = 1 is represented as white. Fig. 6b is
the result of the Brewster segmentation of Fig. 6b. There are two Brewster
curves and one occluding boundary and one each of B-E region, B-B region,
and B-N region.

The B-FE region is the region which includes the occluding boundary whose
zenith angle # equals 90°. On the Gaussian sphere, B-E region is enclosed
within a small circle mapped from the Brewster curve and an equator mapped
from the occluding boundary. The zenith angle of all the points of B-E region
is located between the Brewster angle and the occluding angle, 90°. The
graph described in Fig. 3 indicates that the correspondence between 6 and p
is one to one at this region, 05 < 6 < 90°; thus, we can uniquely determine
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Figure 5: A photograph of the bell-shaped object.

(b)

Figure 6: (a) A gray image of obtained polarization degree of the bell-shaped
object and (b) the result of Brewster segmentation.
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the incident angle from an observed polarization degree, p.

The B-N region is the region which includes the point(s) mapped onto
the North Pole on the Gaussian sphere. As shown in Fig. 3, the region is
mapped to a spherical cap on the Gaussian sphere, enclosed by a small circle
mapped from the Brewster curve. The North Pole is located at the center of
this spherical cap. The zenith angle of all the points in this region is in the
range of 0° < § < fg. From the graph in Fig. 3, we can also conclude that,
in this range, the correspondence between 6 and p is one-to-one, and we can
also determine the zenith angle from the observed polarization degree.

The B-B region is defined as the region which includes neither the oc-
cluding boundary nor the North Pole points and is bounded by one or more
Brewster curves. In the following sections, we will propose a method for
disambiguating B-B regions.

3.2 Corresponding Point

There are two possibilities for the existence of the B-B region on the Gaussian
sphere. The B-B region is either on the northern side of the Brewster curve
or on the southern side of the Brewster curve. The B-B region mapped onto
the Gaussian sphere is bounded by one Brewster curve and one or more extra
curves. By considering the points in the B-B region on Gaussian sphere, we
find that there is one extreme point — northernmost or southernmost — in
each azimuth angle. We denote the set of these points to be a folding curve.
Along this curve, the original surface is folded and is mapped two or more
times between the folding curve and the Brewster curve.

Theorem Any folding curve on an object surface is a parabolic curve on
that object surface. That is to say, at any surface point on a folding curve,
the Gaussian curvature at the surface point vanishes.

The proof is provided in the Appendix. A parabolic curve is a curve where
Gaussian curvature is zero and Gaussian curvature of object surface does not
change through object rotation. Thus, we can conclude that the folding curve
is intrinsic to an object and invariant from the viewer direction[22].

We obtain one set of data of the polarization degree for input data. How-
ever, one set of data is not enough for resolving the ambiguity in the B-B
region; thus, we have to obtain extra data: we tilt(rotate) the object at a
small angle and obtain additional data of polarization degrees (Fig. 7). We
find identical points(corresponding points or matching points) of those two
sets of data and compare the polarization degrees of two data at identical
points in order to solve the ambiguity in the B-B region.

12
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When rotating the object, images mapped onto the Gaussian sphere are
also rotated in a similar manner. Since the folding curve is intrinsic to the
object, the folding curve also rotates in the same manner. On the other hand,
the Brewster curve depends on both surface normals and viewer direction,
so it is not invariant through the object rotation. As a result, we can use
the folding curve for the matching. The intersection of the folding curve
and the great circle, which represents the rotation direction, is defined as
the corresponding point(Fig. 8). This great circle must be a cross-section
between the Gaussian sphere and the plane which is parallel to the rotation
direction of the object and includes the two poles of the Gaussian sphere. The
surface point which is mapped onto this great circle still exists in this great
circle after the object rotation, thereby making unique matching possible.

If the B-B region is mapped onto the northern side of the Brewster curve,
we can choose the northernmost point for the corresponding point which
intersects the great circle, namely, we use the point where the polarization
degree is minimum. If the B-B region is mapped onto the southern side
of the Brewster curve, we can choose the nearest point to the equator for
the corresponding point which intersects the great circle, namely, we use the
point where the polarization degree is minimum.

Our conclusion is that the point of the B-B region where the polarization
degree is minimum and the surface normal lies along the rotation direction
is the best corresponding point to adopt.

3.3 Difference of Polarization Degree

Finally, we describe the method used to resolve the ambiguity problem of the
surface normal by comparing the polarization degree at the corresponding

13
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point of the nontilted object with that of the tilted object.

We regard the refractive index n as constant, making the polarization
degree p a function of only the zenith angle §. The relationship between the
rotation angle, Af, the polarization degree of the nontilted object, p(#), the
polarization degree of the tilted object, p(8 + Af), and the derivative of the
polarization degree, p'(8), will be:

sgn(,o’(@)) _ Sgn(lo(i;_n(AAag)_ 10(0)) 7 (6)

where sgn(x) is a function which returns the sign of z. Note that we assume
that the rotation angle A# is sufficiently small.
The derivative of the polarization degree p by the zenith angle 8 is:

dp  2sinO(n* —sin? 0 — n?sin”0)(2n* — sin? @ — n?sin” 0)

do n? — sin? f(n? — sinf — n?sin® 0 + 2sin? 6)?

(7)

The graph of the polarization degree is depicted in the lower half of Fig.
9 and the graph of the derivative of the polarization degree is depicted in
the upper half of Fig. 9. The derivative of the polarization degree dp/df is
positive when 0 < 6 < g and is negative when 0 < 6 < 7/2.

In fact, we do not need to know the absolute value of the rotation angle;
however, we assume that we know the rotation direction. Since the azimuth
angle ¢ has also already been determined, we can determine the sign of
Af. As a result, by calculating the sign of the difference of two polarization
degrees at the corresponding point and by giving the sign of Af, we can
determine, by using (6), whether the zenith angle 6 in B-B region is in the
range of 0 < 0 < fp or of 5 < 6 < 7/2.

The correspondence between the polarization degree p and the zenith
angle 0 is one-to-one in the range of 0 < 8 < g, and is also one-to-one in the
range of O < 0 < 7/2. Therefore, if we simply determine that the zenith
angle § in B-B region is in the range of whether 0 < 0 < fg or g < 0 < 7/2
by (6), we can determine the zenith angle  uniquely from the value of the
polarization degree p.

4 Experiments

4.1 Experimental Setup

Fig. 10 shows the apparatus for the measurement. As a light source, we use
a spherical diffuser illuminated from three 300 W incandescent light bulbs,
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located circularly at 120 degrees apart. The spherical diffuser is made of
plastic, and its diameter is 40 cm. This spherical diffuser becomes an un-
polarized spherical light source and illuminates an object that is located at
the center of the sphere from all directions. Because we determine surface
orientations using only surface reflection and the surface reflection occurs
only when the reflecting and incident angles are the same, it is necessary to
illuminate an object from all directions in order to observe surface reflections
over the entire object surface. The object is observed through a small hole
at the top of the sphere by a monochrome CCD camera. A polarization filter
is mounted between the hole and the camera.

When the light of an incandescent lamp penetrates the white plastic dif-
fuser, the light will be unpolarized while randomly scattered inside the dif-
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fuser. The distance between the diffuser and the object is large enough
compared with the size of the object, thus the observed light reflected at
the object surface originally comes from the inner surface of the diffuser
with same emitting direction as the surface normal of the diffuser. For this
emitting angle, the light does not polarize[20]. Thus, this spherical diffuser
provides an unpolarized light.

4.2 Measurement Procedures

A transparent object reflects and transmits light in a complex manner caus-
ing multiple interreflections which interfere with our observations. We set
the object on a black pipe to block the light coming from behind the ob-
ject; however, some interreflection still occurs. The interreflection lowers the
degree of polarization. To overcome it, we simply subtract an unpolarized
light from the input data and increase the degree of polarization. Since we
do not know the information of the interreflection, we simply assume that
the unpolarized and uniform light caused by interreflection is added with
the light which is directly reflected from the object surface only once. This
assumption is not always true for each point on object surface, but we expect
that this assumption statistically holds for sets of many points on the object
surface. We assume that the object is a closed, smooth object; thus, the
Brewster angle will always appear. Thus, the maximum value of the degree
of polarization must be “1.” We choose a certain number of points where
the degree of polarization is high, and estimate the subtraction value as the
average value which makes the degree of polarization of each chosen point
be “1.” This modification raises the maximum polarization degree of raw
data to 1. The modified polarization degree p’ is calculated by the following
equation which is derived by modifying (4):

/ [max - [min

P= [max + [min — U ‘ (8)
where u/2 is the intensity of the estimated unpolarized light. u is estimated
by setting p’ as 1 for the chosen surface points.

By rotating a polarization filter, we obtain a sequence of images of an
object. We measure from 0 to 175 degrees at 5 degree intervals. From this
process, we obtain 36 images. We observe variance of intensity at each pixel
of the 36 images. By using the least-squares minimization, we fit a sinusoidal
curve to those intensities and then determine the maximum and minimum
intensities, [hax and [ly;,. From those values, we determine two possible
surface orientations by using the algorithm.

18



After applying this measurement to the nontilted object, we apply the
same measurement to the tilted object and obtain the polarization degree
of this second view. A proper rotation direction is provided by a human
operator because, on the Gaussian sphere, the great circle must intersect
B-B region to solve the ambiguity problem.

We applied the “region growing” method[23] for Brewster segmentation.
Initial values for the “region growing” method are given by the human oper-
ator. Since the “1” polarization degree cannot be observed in any cases, we
therefore segment the regions by a closed curve of the maximum polariza-
tion degree. We call a curve of the maximum polarization degree a pseudo-
Brewster curve. A folding curve also exists in the pseudo-B-B region — a
region bounded by pseudo-Brewster curve. Consequently, the segmentation
is still useful not only for the Brewster curve, but also for the pseudo-Brewster
curve.

We compare those two sets of data at each corresponding point. To
determine the corresponding points of the two sets of data, we first classify
the regions generated by separating the polarization data with regard to the
Brewster angle into three classes: the B-E region, the B-N region, and the
B-B region. Then, we detect a minimum value of the polarization degree
in each B-B region whose surface normal has the same orientation as the
rotating direction. Finally, the difference value of the polarization degrees in
those two corresponding points solves the ambiguity problem of the angle;
as a result, we obtain the correct incident angle of the object surface.

4.3 Measurement Results

First, we analyzed the precision of the measurement system before applying
our proposed method. For this experiment, we used an acrylic transparent
hemisphere whose refractive index was 1.5 and diameter was 30mm. The
refractive index was obtained from the literature[24]. Since we knew that
the shape was a hemisphere, the computed data became comparable with
the ground truth. Error was calculated as an average value throughout the
entire object surface, i.e., computed as an absolute difference between the
true value and the obtained value. The errors of polarization degree, incident
angle, and height were 0.17, 8.5°, and 1.1mm, respectively. Since the radius
of the hemisphere was 15mm, the true average height was 10mm. Therefore,
the error rate,

average of |true height — calculated height|

(9)

average of true height

was 11 percent for this measurement.
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Figure 11: A rendered image of the obtained shape of the bell-shaped object.

We also measured the heart-shaped piece of glass depicted in Fig. la.
There was no B-B region, making the object rotation unnecessary. The
obtained shape is shown in Fig. 1b.

In order to demonstrate the applicability of our system to a real object
of more general shape than a hemisphere, we determined the shape of the
bell-shaped object shown in Fig. 5. The object was made of acrylic and
its refractive index is 1.5, obtained from the literature[24]. We tilted the
object approximately 8 degrees and obtained the data from two views. By
applying our method to the data that had been obtained, we calculated the
distribution of the surface normal of the object. Then, we used a relaxation
algorithm|[1, 25] to convert the orientation distribution into a shape corre-
sponding to that of the object. Fig. 11 shows the rendered image of the
estimated shape of the object. Fig. 12 illustrates how the estimated shape
fitted the true shape. Dots represent the obtained height and a solid line
represents the ground truth, which was obtained by hand using the edge
from the photo of the object observed from the side. The diameter(width) of
the object was 24mm and the height was 8mm. An average error(=absolute
difference) of the height was 0.4mm.

A small error exists in the estimated shape, probably due to the inter-
reflection of the object. Interreflection lowers the degree of polarization. This
means that the zenith angle smaller than Brewster angle becomes smaller and
the angle larger than Brewster angle becomes larger. However, the observed
area of the smaller zenith angle is larger than that of larger angle. Thus,
the resulting height will often be lower than the ground truth; the difference
of the height is squeezed. We modify the input data and raise the degree
of polarization; however, the modification is not ideal; thus, the resultant
height will be different from the truth value.
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Figure 12: The result of the real bell-shaped object.

Another transparent object shown in Fig. 13a was measured. This
moutain-shaped object was made of epoxy and its refractive index was 1.6[24].
The diameter(width) of the object was 45mm and the height was 25mm. Fig.
13b shows the result of region segmentation. Here, one B-E region, one B-N
region, and four B-B regions are observed. We rotated the object approxi-
mately 8 degrees. Figs. 13c and 13d represent the estimated shape of the
object.

5 Conclusions

In this paper, we have proposed a method for determining the shape of
a transparent object by using polarization filter. Surface orientations are
determined by using the polarization data. Because an algorithm that uses
only one view results in ambiguities, polarization of a slightly tilted view is
also employed.

We obtain two sets of data: One is from the object not tilted, and the
other is from the object tilted at a small angle. We segment these data into
some regions with regard to the Brewster angle. We calculate the difference
of the polarization degree between these two sets of data at the corresponding
point — the point where surface normal lies along the rotation direction and
where the polarization degree is minimum in the B-B region. From that
difference, we determine the correct surface normal.

We have implemented the proposed method and demonstrated its ability
to determine the shape of real transparent objects. First, we analyzed the
precision of the measurement system by measuring a transparent hemisphere.
Then, we demonstrated the ability of the system to determine the shapes of
transparent objects whose shapes are more complex than those of spherical
objects.

The proposed method solves the ambiguity problem, and determines the
shape of transparent objects more easily than do the methods in previous
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Figure 13: Measurement result of transparent moutain-shaped object: (a)
Real image, (b) region segmentation result, and (c) and (d) rendered image.
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work. The proposed method works robustly for transparent objects which
have less interreflection. Our method can obtain the shape of a closed,
smooth transparent object with no deep-concave parts. Our future work
is to develop a method that can handle the influence of interreflection.

The application field of the modeling of transparent objects can range
from computer-aided manufacturing, classifying garbage/rubbish for recy-
cling glass and plastic bottles, modeling cultural assets, to creating 3D cat-
alogs for online shopping, etc. For the first step for such a wide area of
applications, we proposed a basic technique for modeling the surface shape
of transparent objects.

A Appendix: Parabolic Curve

Theorem Any folding curve is a parabolic curve on an object surface. That
is to say, at any point on a folding curve, the Gaussian curvature at the point
vanishes.

Proof. A surface normal can be represented in gradient space, a space
constructed by gradients p and ¢:

_on - oH

where H = H(x,y) denotes the height of the object surface. A folding curve
is an extremum not only in a Gaussian sphere, but also in gradient space,

p = p(x,y) and ¢ = ¢(x,y). Thus, one or both of the following equation
holds:

(10)

dp  OJp
A 11
Jdr Oy (11)
dq  0Jq
2 _1_9. 12
Jdr Oy (12)
Hessian H and Gaussian curvature K are related by the following equation[22]:
sgn ' = sgn det H (13)
where Hessian is defined as:
0°H  0*°H
dx?  Ox0
H=| 2y od |- (14)
Odydx  O0y?
Since (11) or (12) holds, from (10)-(14), we finally obtain K = 0. [
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