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A Spherical Representation for Recognition 
of Free-Form Surfaces 

Martial Hebert. Katsushi Ikeuchi, Hervk Delingette 

Abstract-We introduce a new surface representation for rec- 
ognizing curved objects. Our approach begins by representing an 
object by a discrete mesh of points built from range data or from 
a geometric model of the object. The mesh is computed from the 
data by deforming a standard shaped mesh, for example, an ellip- 
soid, until it fits the surface of the object. We define local regular- 
ity constraints that the mesh must satisfy. We then define a ca- 
nonical mapping between the mesh describing the object and a 
standard spherical mesh. A surface curvature index that is pose- 
invariant is stored at every node of the mesh. We use this object 
representation for recognition by comparing the spherical model 
of a reference object with the model extracted from a new ob- 
served scene. We show how the similarity between reference 
model and observed data can be evaluated and we show how the 
pose of the reference object in the observed scene can be easily 
computed using this representation. 

We present results on real range images which show that this 
approach to modelling and recognizing 3D objects has three main 
advantages: 

1) First, it is applicable to complex curved surfaces that cannot 
be handled by conventional techniques. 

2) Second, it reduces the recognition problem to the computa- 
tion of similarity between spherical distributions; in particu- 
lar, the recognition algorithm does not require any combi- 
natorial search. 

3) Finally, even though it is based on a spherical mapping, the 
approach can handle occlusions and partial views. 

Iiitfex Terms-Object recognition, deformable surfaces, range 
data, pose registration, 3D modeling, surface models, free-form 
surfxes. 

1. INIKODl’C’IION 

I COGNITICIN of curved objects is one of the key issues in R computer vision. It is present not only in traditional applt- 
cations such as industrial oblect recognition and face recognr- 
tion. but also in emerging applications such as navigation and 
manipulation in natural environments The key to building a 
practical recognition system is to define suitable object repre- 
sentalions 

1 raditionally, lhere are two ways to represent objects for 
recognition: local and global. Local methods attempt to repre- 
sent objects as a :,et of primitives such as faces or edges Most 
early local methods handle polyhedral objects and report ef- 
fective and encouraging results. Representative systems in- 
cluck [9 ] ,  1161, and [ I  I ]  Few system< c m  handle curved sur- 
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faces. Some systems include early work in which primitive 
surfaces enclosed by orientation discontinuity boundaries are 
extracted from range data [17]. Other systems determine 
primitive surfaces which satisfy planar or quadric equations 
[7]. Techniques based on differential geometry such as [3] 
segment range images using Gaussian curvatures. 

The global methods assume one particular coordinate sys- 
tem attached to an object and represent the ob.ject as an im- 
plicit or parametric function in this coordinate system. The 
resulting representation is global in that the implicit function 
represents the entire shape of the object or of a large portion of 
the object. Generalized cylinder and superquadrics [ 181 are 
representative of this group. The extended Gaussian image 
(EGI) [IO], [I21 is another global representation for which 
recognition is performed by correlating spherical maps. This 
representation does require the extraction of primitive shapes 
tiom input data but cannot be used in the presence of occlu- 
sion. 

Recently, new approaches have been developed based on 
the idea of fitting a bounded algebraic surface of fixed degree 
to a set of data points [19], [20]. In this case, recognition pro- 
ceeds by comparing the polynomials describing observed and 
stored surfaces [8]. Although encouraging results have been 
obtained in this area, more research is needed in the areas of 
bounding constraints, convergence of surface fitting, and rec- 
ognition before this approach becomes practical. Occlusion 
remains a problem since there is no guarantee that the poly- 
nomial computed from a partial view is similar to the poly- 
nomial computed from a complete model of the object. 

All these approaches attempt to fit some known parametric 
surface, either locally or globally, to the object Another class 
of approaches attempts to match sets of points directly without 
any prior surface fitting. An example is the work by Besl and 
Kay [2] in which the distance between point sets is computed 
and minimized to find the best transformation between model 
and scene. This approach does not require any surface segmen- 
tdtion or surface fitting. Recent results show that these algo- 
rithms can perform remarkably well by using riumerical tech- 
niques for minimizing distances between two arbitrary point 
sets. The main drawback of this approach is that, like any 
minimization technique, it requires a initial guess of the trans- 
formation between model and scene. 

In order to overcome the limitations of existing representa- 
tions, we have designed a new approach that uses as a starting 
point a combination of several traditional object recognition 
and representation methods Our approach begm with a com- 
bination of the point set matching and the original EGT ap- 
proach. As in the case of the point set matching, we want to 
<ivoid fitting analytical surfaces to represent an object. Instead, 
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we use a representation that simply consists of a collection of 
points, or nodes, arranged in a mesh covering the entire sur- 
face of the object. This has the advantage that the object can 
have any arbitrary shape, as long as that shape. is topologically 
equivalent to the sphere. To avoid problems with variable 
density of nodes on the mesh, we need to define regularity 
constraints that must be enforced when the mesh is built. Con- 
structing meshes that fit input data and that satisfy regularity 
constraints is possible based on the optimization techniques 
originally intraduced in [21] and [13]. We use m extension of 
the deformable surface algorithms introduced in [ 5 ]  to com- 
pute the meshes. 

As in the EGI algorithms, each node of the mesh is mapped 
onto a regular mesh on the unit sphere, and a quantity that re- 
flects the local surfiace curvature at the node is stored at the 
corresponding node on the sphere. Instead of using a discrete 
approximation of the curvature, we develop a new measure of 
curvature, the simplex angle, which is entirely defmed fiom a 
node and its neighbors in the mesh without any reference to the 
underlying continuous surface. We call the corresponding 
spherical representation the spherical attribute image (SAI). 

To determine whether two objects are the same, we only 
need to compare the come ding spherical distributions. The 
overall approsch is illustrated in Fig. 1. A regular mesh is 
computed from input sensor data; a simplex angle is computed 
at each node of the meshes and the meshes are mapped onto a 
sphere, the SAI. A hdamental  difference between the SA1 
and other global repremntations is that a unique mesh, up to 
rotation, translation, and scale, can be reconstructed fi-om a 
given SAI. In the case of the EGI, for example, this property is 
true. only for convex objects. Another hdamental  difference 
is that the SA1 preserves connectivity in that patches that are 
connected on the surface of the input object are still connected 
in the spherical representation. The letter is the main reason 
why our approach can handle arbitrary non-convex objects and 
in the presence of occlusion. 

Fig 1 : Object recognition using SAIs. 

The paper is organized as follows: In Section 11, we de- 
scribe a simple representation of closed 2D curves which we 
extend to 3D surfirces. In Section 111, we show how to obtain 
SAIs from range data. In Section IV, we describe the SA1 
matching. Finally, we address the problem of occlusion and 
partial models and present several results of recognition in 
complex scenes in Section V. 

11. REPRESENTING 3D SURFACES 

In this section we extend the concepts of curvature indica- 
tor, local and global regularity, and circular representation to 
3D surfaces. We consider the case of representing surfaces 
topologically equivalent to the sphere. We first develop the 
basic concepts by describing a simple representation for 2D 
curve and generalize those concepts to three dimensions. De- 
tailed presentations of the basic results on semi-regular tessel- 
lations, triangulations, and duality used in this section can be 
found in [15], [22], and [23]. 

A. Representing 2D Curves 
A standard approach to representing and recognizing con- 

tours is to approximate contours by polygons, and to compute 
a quantity that is related to the curvature of the underlying 
curve. The similarity between contours can then be evaluated 
by comparing the distribution of curvature measurement at the 
vertices of the polygonal representations. 

The curvature of a discrete curve at each node of the po- 
lygonal approximation can be approximated by the angle cp 
between consecutive segments. The relation between ip and the 
curvature k is R = qil as the density of points increases. Like 
the curvature, the angle Q, is independent of rotation and 
translation. In addition, Q, is independent of scale. 

One problem is that if the lengths of the segments represent- 
ing the curve are allowed to vary, the value of Q, depends not 
only on the shape of the curve but also on the distribution of 
points on the curve. In particular, it is important for the: same 
curve shape to generate the same value of 9 to enable the 
comparison of discrete curves. One way to avoid this problem 
is to impose a local regularity condition on the distribution of 
vertices. The local regularity condition simply states that all 
the segments must have the same length. An equivalent defmi- 
tion is that two segments the projection of any node P onto the 
line joining its two neighbors PI and P2 coincides with the 
midpoint of P, and P2. 

.InrU.rdupa? 
I 
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Fig. 2: Comparing contours in representation space. 

The last step in representing 2D contours is to build a circu- 
lar representation that can be used for recognizing contours. 
Let us assume that the contour is divided into N segments with 
vertices P I ,  ..., PN, and with corresponding angles q,, ..., cpN. 
Let us divide the unit circle using N equally spaced vertices 
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Cl, ..., CN. Finally, let us store the angle cp, associated with P, 
at the corresponding circle point C,. The circular representa- 
tion of’ the contour is invariant by rotation, translation. and 
scaling. This property allows for comparing contours by decid- 
ing that two contours are identical if there exists a rotation of 
the unit circle that brings the contours representation in corre- 
spondence (Fig. 2). The unicity property is true because of the 
local regularity condition and because of the invariance of cp. 

B. Mesh Topology and Regularity 
The most natural discrete representation of a surface is a tri- 

angulation, that is, a polyhedron with triangular faces whose 
vertices are on the surface. Each face defines a plane which is 
the local approximation of the surface. It is desirable for many 
algorithms to have a constant number of neighbors at each 
node Use a class of meshes that are constructed as the dual of 
triangulations of the surface. The mesh should be viewed as a 
graph of points with the desired connectivity, i.e., each node 
has always exactly three neighbors; the triangulation may be 
viewed as a polyhedral approximation of the object. 

As mentioned in the previous section, global regularity can 
easily be achieved in two dimensions sinct: a curve can always 
be dkided into an arbitrary number of segments of‘ equal 
length. The equivalent in three dimensions would be a mesh 
covering a closed surface such that the distance between verti- 
ces is constant and is the dual of a triangulation, that is, each 
node has exactly three neighbors. Unfortunately, it is well 
known that only approximate global regularity can be achieved 
in three dimensions since only three Qpes of meshes are 
strictly regular in three dimensions. 

The approach that we use is recursive subdivision of the 
dodecahedron which yields a mesh that is “almost” regular in 
that d 1  but 12 pentagonal cells have hexagonal connectivity. 
The triangulation is constructed by subdividing each triangular 
face of a 20 face icosahedron into h‘’ smaller triangles The 
final mesh is built by taking the dual of the 20N2 faces triangu- 
lation, yielding a mesh with the same number of nodes. For the 
experiments presented in this paper, we used a subdivision 
frequency of N = 7 for a total number of’ nodes of 980. 

The next step in going from two to three dimensions is to 
define a notion of local regularity that leads to invariance 
properties of the mesh and curvature indicator definition simi- 
lar to the properties used for 2D curves. The definition ot local 
regularity in three dimensions is a straightforward extension of 
points, with Q being the projection of P on the plane de- 
fined by 

Fig 3 Local regularity In three dimensions 

two dimensions, replacing the triangle ( P I ,  P2, P) by the tetra- 
hedron (PI, P2, P3, P). The local regularity condition is invari- 
ant by rotation, translation, and scaling because it is purely 
local and involves only relative positions of the nodes with 
respect to each other, not absolute distances. 

C. Discrete Curvature Measure: Simplex Angle 

The last step in building a discrete surface representation is 
to define an indicator of curvature that can be computed from 
a mesh with the appropriate regularity properties. We propose a 
definition in terms of angular variation between neighbors in 
the mesh according to the definition used in the case of 2D 
contours. We need to define some notation (Fig. 4a). Let P be 
a node of the mesh, PI, P2, Pi its three neighbors, 0 the center 
of the sphere circumscribed to the tetrahedron (P, PI, P2, P3),  
Z the line passing through 0 and through the center of the cir- 
cle circumscribed to (P I ,  P., P;). Now, let us consider the 
cross section of the surface by the plane ll containing 2 and P. 
The intersection of n with the tetrahedron is a triangle. One 
vertex of the triangle is P, and the base opposite to P is in the 
plane (Pi, P2, P3) (Fig. 4b). We define the angle cpu as the an- 
gle between the two edges of the triangle intersecting at P. By 
definition, q,J is the discrete curvature measure at node P.  We 
call the simplex angle at P, since it is the extension to a 3D 
simplex, the tetrahedron, of the notion introduced for a 2D 
simplex, the triangle. 

Fig. 4. Definition of the simplex angle 

The simplex angle varies between -n and n. rhe angle is 0 
for a flat surface, and is large in absolute value if P is far from 
the plane of its three neighbors. The simplex angle is negative 
if the surface is locally concave, positive if it is convex, assum- 
ing that the set of neighbors is oriented such that the normal to 
the plane they form is pointing toward the outside of the ob- 
ject. This behavior of the simplex angle is consistent with the 
intuitive notion of local “curvature” of a surface. The simplex 
angle is invariant by rotation, translation, and scaling since it 
depends only on the relative positions of the nodes in the 
neighborhood, not on their absolute positions. An experimen- 
tal comparison of cpo with other measure of curvature is de- 
suibed in [ 5 ] .  

In the rest of the paper, we denote by g the function that 
maps a node to its simplex angle; the simplex angle (po at a 
node P will be denoted by g(P).  

P I ,  Pz, and P3 (Fig. 3 ) .  The local regularity condition simply 
states that Q coincides with G. This is the same condition as in 
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D. Spherical Attribute Image 
We now extend the circular representation developed in two 

dimensions to a spherical representation in three dimensions. 
Let M be mesh of points on a surface such that it has the to- 
pology of the quasi-regular mesh of Section 1I.B. Let be a 
reference mesh with the same number of nodes on the sphere 
of unit one. We can establish a one-to-one mapping h between 
the nodes of Mmd the nodes of S. The mapping h depends 
only on the topology of the mesh and the number of nodes. 
Specifically, for a given sijoe of the mesh M = 20 x N2, where 
N is the Erequency of the mesh (Section II.B), we can define a 
canonical numbering of the nodes that represents the topology 
of any M-mesh. Ip other words, if two nodes from two differ- 
ent M-meshes have the same index, so do their neighbors. 
With this indexing system, h(P), where P is a node of the 
spherical mesh, is the node of the object mesh that has the 
same index as P. 

Given h, we can store at each node P of S the simplex angle 
of the corresponding node on the surface g(h(P)). The result- 
ing structure is a quasi-regular mesh on the unit sphere, each 
node being associated with a value corresponding to the sim- 
plex angle of a point cm the original surface. As an analogy to 
the EGI, we call this representation the spherical attribute im- 
age(SA1). In the remainder of the paper, we will denote by 
g(P) instead of g(j(h(P)) the simplex angte associated with the 
object mesh node h(P) since there is no ambiguity. 

The fundamentar1 property of the SA1 is that it unambigu- 
ously represents an object up to a rotation. More precisely, if 
d a n d  M are two meshes on the same object with the same 
number of nodes both satisfying the local regularity condition, 
then the corresponding SAls S and 5’ are identical up to a ro- 
tation of the unit sphere. Strictly speaking, this is true only as 
the number of nodes becomes very large because the nodes of 
one sphere do not necessarily coincide with the nodes of the 
rotated version ofthe other sphere. (This problem is addressed 
in Section 1V.A.) One consequence of this property is that two 
SAIs represent the same object if one is the rotated version of 
the other. 

111. BUILDING INTRINSIC REPRESENTATIONS 
FROM 3D DATA 

In the previous sections, we have defined the notion of lo- 
cally regular mesh and its associated SAL In this section, we 
describe the algorithm developed for computing such a mesh 
from input data. The general approach is to first define an ini- 
tial mesh near the data points and to deform until it satisfies 
two conditions: It must be close to the input object, and it must 
satisfy the local regularity condition. The first condition en- 
sures that the resulting mesh is a good approximation of the 
object, while the second condition ensures that a valid SA1 can 
be derived from the mesh. 

A. Mesh Deformation 
Given input sensor data and a reference mesh, the problem 

is to deform the mesh so that it fits the data. In order to per- 
form the fitting, we developed a technique based on deform- 

able surfaces in which each node of the mesh is subjected to a 
force that is a function of its distance to the closest data point. 
Given an initial shape, e.g., a sphere surrounding the object, 
the mesh deforms itself iteratively until it reaches a stable 
configuration. In addition to the data forces, smoothness and 
inertia forces are incorporated into the deformation model in 
order to ensure that the resulting mesh is smooth and that the 
iterations converge. This algorithm is described in detail in [ 5 ] .  

In order to use the mesh for matching, we need to enforce 
the local regularity constraint described earlier. This is done 
by defining a new force Fg at every node P. Fg is a k c t i o n  of 
the distance between the projection of P onto the plane formed 
by its three neighbors and the center of mass the neighbors. 
The effect of this force is to “pull” each node of the mesh in 
the direction in which it best satisfies the local regularity con- 
straint. Except for the addition of Fg, the mesh generation al- 
gorithms are identical to the algorithms introduced in [5) .  

B. From Mesh to SA1 
Once a regular mesh is created from the input data, a refer- 

ence mesh with the same number of nodes is created on the 
unit sphere. The value of the angle at each node of the mesh is 
stored in the corresponding node of the sphere. 

The SA1 building algorithm is illustrated in Fig. 5. Fig. 5a 
shows three views of a green pepper f?om which three 
240x256 range images were taken using the OGIS range 
finder. The images are merged, and an initial description of the 

--_- 
(e) SA1 (d) Flml mwb 

Fig. 5 :  Building SAI from range data. 
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object IS produced using the deformable surface algorithm. In 
this example, the three views of the object are precisely cali- 
brated with respect to a common coordinate system. As a re- 
sult, the coordinates of the data points from all three images 
are expressed in the same reference frame, thus avoiding a 
difficult registration problem. In general, it would be important 
to automatically register views to build the models. This could 
be done using the SA1 formalism as well. In the context of this 
paper, however, we concentrate on the recognition aspects 
rather than on the model building aspects. Fig. 5b and Fig. 5c 
show the initial mesh mapped on the ellipsoid and the mesh at 
an intermediate stage. Fig. 5d shows the final regular mesh on 
the object. Fig. 5e shows the corresponding SAL The meshes 
are displayed as depth-cued wireframes.The SA1 is displayed 
by plxing each node of the sphere at a distance from the ori- 
gin proportional to the angle stored at that node. 

We now address the matching problem: Given two SAIs, 
determine whether they correspond to the same object. If so, 
find the rigid transformation between the two instances of the 
object. As discussed earlier, the representations of a single 
object with respect to two different reference frames ale re- 
lated by a rotation of the underlying sphere. Therefore, the 
most straightforward approach is to compute a distance meas- 
ure between the SAls which I S  minimum for the best rotation. 
Once the rotation is determined. the full 31) transformation can 
be coniputed. 

A. Finding the Best Rotation 
Let S and J be the spherical representations of two ob-jects. 

Denoting by g(P),  lresp. g’(P), the value of the simplex angle at 
a node P of 5, resp P of S, 5 and S are representations of the 
same object if there exists a rotation R such that: 

g” = g(RP) ( 1 )  
for every point P of J. Since the SA1 is discrete, g(RP) IS not 
defined because, in general, R P  will fall between nodes of S 
We define a discrete approximation of g(RP), G(RP), as fol- 
lows. Let Pi  , P,, P3. and P4 be the four nodes of S nearest to 
RP. G(RP) is the weighted sum of the values g(Pl). Form;illy: 

J 

G ( R P )  = c WIJRP - 4 ll)x( p,) (2) 
I 

where W(d) is a weighting function that IS 1 if d = 0, and 0 if rf 
is greater than the average distance between nodes. This 
definition of G amounts to computing an interpolated value of 
g using the four nearest nodes. 

The problem now is to find this rotation using the discrete 
representation of S and J. This is done by defining a distance 
D(S, 3, R)  between SAIs as the sum 01 squared differences 
between the simplex angles at the nodes of one of the spheres 
and at the nodes of the rotated sphere. Formally, the distance is 
defined as: 

D(s,s’,R) = & ’ ( P ) - G ( R P ) ) ~  (3 1 
S 

The minimum of D corresponds to the best rotation that 
brings S and S in correspondence. The simplest strategy is to 
sample the space of all possible rotations, represented by three 
angles (q, 0, y), and to evaluate D for each sample (9, e,, U/). 
This approach is obviously expensive; Section 1V.C presents 
better strategies. 

It is important to note that the rotation is not the rotation 
between the original objects; it is the rotation of the represen- 
tations. An additional step is needed to compute the actual 
transformation between objects as described below. 

B. Computing the Full Transformation 
The last step in matching objects is to derive the transfor- 

mation between the actual objects, given the rotation between 
their SAIs. The rotational part of the transformation is denoted 
by R,,  the translational part by T,. Given an SA1 rotation R, 
for each node P of S we compute the node P of S that is near- 
est to W. Let M, resp. M be the point on the object corre- 
sponding to the node P of S, resp. P. A first estimate of the 
transformation is computed by minimizing the sum of the dis- 
tances between the points M of the first object and the corre- 
sponding points R,M + T,, of the second object. Formally, the 
expression to minimize is: 

Ml12 (4) 

The sum in this expression is taken over the set of all the 
nodes of the mesh. The resulting transformation is only an 
approximation because it assumes that the nodes from the two 
meshes correspond exactly. We use an additional step to refine 
the transformation by looking for the node M closest to M‘ for 
every node of the mesh and by computing again the minimum 
ol’E(R, T).  

C. Reducing the Search Space 
As mentioned in SectionIV.A, the exhaustive search ap- 

proach is computationally expensive. A more efficient ap- 
proach is based on the observation that the only rotations for 
which D(S, S, R) should be evaluated are the ones that corre- 
spond to a valid list of correspondences { (P,, P,’)} between the 
nodes PI of s and the nodes P,’ of S’. Fig. 6a illustrates the idea 
of correspondences between nodes: Node PI  of the first SA1 is 
put in correspondence with node PII of S and its two neigh- 
bors, P2 and P3, are put in correspondence with two neighbors 
of P’ll, PIz and f‘,3, respectively. This set of three correspon- 
dences defines a unique rotation of the spherical image. It also 
defines a unique assignment for the other nodes, that is, there 
is a unique node P‘, corresponding to a node PI of S, given the 
initial correspondences. Moreover, there is only a small num- 
ber of such initial correspondences, or, equivalently, there is a 
small number of distinct valid rotations of the unit sphere. In 
fact, the number of rotations is 3K if K is the number of nodes. 

Based on this observation, the SA1 matching algorithm can 
be decomposed into two stages: a pre-processing phase and a 
run-time phase. During pre-processing, we generate the data 
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(a) 

('U 

Q 

Fig 6 Emcrent marching algorithm, (a) valid correspondence between nodes, 
(b) table of correspondences 

Fig. 7. Three views of the object of Fig. 5 in different orientations. 

structure shown in Fig. 6b. The data structure is a two dimen- 
sional array in which each row corresponds to a possible rota- 
tion of the SAI, and in which columnj of row i is the index of 
the node P!, corresponding to node P, and correspondence 
number i. At run time, the distance is evaluated for each row of 
the array: 

The row that produces the minimum D, gives the best corre- 
spondence between nodes of the mesh, {(P,, Po)} ,  which is 
used for computing the full transformation between the object 
meshes as described in the next section. It is important to note 
that this algorithm tries all possible rotations of the SACS up to 
the resolution of the mesh. Consequently, it is guaranteed to 
find the global optimum of D and it does not require an initial 
estimate of the transformation. This validates our initial claims 
of global optimality and pose-independence of the algorithm. 
This is an efficient algorithm because all that is required at run 
time is to look up the correspondence table, to compute sum of 
square differences of corresponding nodes and to sum them. 
Our preliminary implementation of this approach shows that 
the computation time can be reduced to a few seconds on a 
Sparc workstation for K = 980. Initial results also show that 
the resulting optimal pose is the same as the one obtained by 
exhaustive search. 

D. Example 
Fig. 7 shows three views of the same object as in Fig. 5 

placed in a different orientation. A model is built from the 
three corresponding range images using the approach de- 
scribed in Section 1II.B. Fig. 8 shows the value of the SA1 
distance measure. The distance measure is displayed as a 
function of cp and f3 only since the distance is a function of 
three angles that cannot be displayed easily. The displayed 
value at (9, 9 is the minimum value found for all the possible 
values of ly. The resolution of the graph is 10' in both cp and 8. 
This display shows that there is a sharp m i n i "  correspond- 
ing to the rotation that brings the SA1 in correspondence. 
Fig. 9 and Fig. 10 illustrate the result of the matching. Fig. 9a 
shows the superimposition of the cross-sections of both models 
before matching; Fig. 9b shows the same cross-sections after 
transformation of the second model using the result of the SA1 
matching. Fig. 10 shows one of the models backprojected in the 
image of the other using the computed transformatian. Fig. 10a 
is the original image; Fig. 10b is the backprojected model. This 
example shows that the transformation is correctly computed in 
that the average distance between the two models after transfor- 
mation is on the order of the accuracy of the range sensor. 

m l n i mu m 
- -  

Fig. 8. Graph of distance between SAIs as a function of Q, and 8. 

Fig. 9. Overlaid cross-sections of the 
(b) after matching. 

two models; (a) before matching; 

Fig. 10. Display of the model in the computed pose. 

v. PARTIAL VIEWS AND OCCLUSION 

Up to now we have assumed that we have data covering the 
entire surface of the object, as in Fig. 5 .  This assumption is 
appropriate for building reference models of objects. During 
the recognition phase, however, only a portion of the object is 
visible in the scene. The matching algorithm of Section IV 
must be modified to allow for partial representations. The al- 
gorithm used for extracting the initial surface model is able to 
distinguish between regions of the mesh that are close to input 
surfaces or to data points, and parts that are interpolated be- 
tween input data. The first type of region is the visible part of 
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the mcsh, and the second type is the occluded part of the mesh. 
Therefore, even though the representation is a mesh mapped 
on a closed surface, it is always possible to determine which 
nodes of the mesh represent valid data. 

The situation is illustrated in Fig. 11 in the case of a two 
dimensional contour. In Fig. 1 la a contour is approximated by 
a mesh of eight points. The mesh is assumed to be regular, that 
is, all the points of the mesh are equidistant. Let L = 81 be the 
total length of the mesh. Fig. 1 Ib  shows the same contour with 
one portion hidden. The occluded portion is shown as a shaded 
curve The visible iiectlon is approximated by a regular inesh 
of eight nodes of length L1 = 811. Since the occluded part is 
interpolated as a straight line, the length of this mesh is smaller 
than the total length of the mesh on the original object. Con- 
versely, the length of the part of the representation correspond- 
ing to the visible part, L2 shown in  Fig. 1 I d ,  is greater than the 
length of the same section of the curve on the original repre- 
sentation, L* shown in Fig. 1 IC.  In order to compute the dis- 
tance 1) defined in Section IV, the SA1 of the observed curve 
must be scaled so that i t  occupies the same length on the 
unique circle as in the reference representation of the object. If 
L* were known, the scale factor would he: 

L k = - -  
L, 

In reality, L* is not known because we do not yet know 
which part of the reference curve corresponds to the visible 
part of the observed curve. To eliminate L*, we use the rela- 
tion: 

This relation simply expresses the fact that the ratios of 
visible and total length in object and representation spaces are 
the same, which is (dways true when the mesh is regular. Since 
the left-hand side involves only known quantities, total length 
of model and observed visible length, L* can be eliminated by 
combining (5 )  and (6): 

(7) 

The situation is similar in three dimensions in which case 
the lengths are replaced by areas A ,  A l .  AZ, A*.  Relation (7) 
becomes: 

The direct extension from two to three dimension is only an 
approximation because the equivalent of (6), AIIA = Al4z, 
holds only if the area per node is constant over the entire mesh. 
In practice, however, the area per node is nearly constant for a 
mesh that satisfies the local regularity condition. 

Once k is computed, the appropriate scaling needs to be 
applied to the SAI. If C IS the center ol the visible region on 
the representation sphere, a node P such that 0 is the angle 
(OP, OC) is moved to the point P’ on (he great circlr. that 
contains P and C such that: 

1 - C d  = k( 1 -case) (9) 

where B is the angle (OF,  OC) and k is the scale factor. 
We now show two examples of recognition in the presence 

of occlusion. In the first example, a range image of an isolated 
ob.ject is taken. A complete model of the object is matched 
with the SA1 representation from range data. Fig. 12 shows the 
intensity image of the object. Only about 30% of the object is 
visible in the image. The remaining 70% of the representation 
built from the image is interpolated and is ignored in the esti- 
mation of the SA1 distance. Fig. 13a shows the mesh used as a 
model together with the data points used for building the mesh, 
and Fig. 13b shows the corresponding SAI. Fig. 14 displays 
the graph of the distance between SAIs as function of rotation 
angles. Fig. 14a shows two views of the distance as a function 
of cp and 8. Fig. 14b shows the same function displayed in ‘py 
space. These displays demonstrate that there is a well defined 
minimum at the optimal rotation of the SAIs. Fig. 15 shows the 
model backprojected in the observed image using the com- 
puted transformation. In this example, the reference model was 
computed by taking three registered range images, of the object 
as in the example of Fig. 5. 

In the second example, the reference model is built form 
data points computed from a CAD model. The observed scene 
is shown in Fig. 16. The result of the matching is shown in 
Fig. 17. 

t o l d  Ienglh L 

/c1 
t o l d  Ienglh L fl o( ~ 

(e) SA1 d Complete Object 

(b) h r t W  V l m  d tlw ObJect of (a) 

(d) SA1 ol hhl Vlew 

Fig. 11. Matching partial representation in two dimensions 

Fig. 12. Input image 
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(e) 

Fig 13. Reference model; (a) overlay of the mesh and the range data used for 
building the model; (b) correspondling S A I .  

(a) Input I n u p  (b) Model after “sfonrution 

Fig. 17. Display of model using the pose computed from the matching. 

VI. PERFORMANCE 

For a more quantitative evaluation of the registration, 
Fig. 18 lists statistics on the registration errors. Those errors 
were computed on matching three views of the object shown in 
Fig. 13. The table lists the minimum, maximum, average, and 
standard deviation of the registration error at the nodes of the 
mesh. The registration error is defined as the distance between 
a mesh node and the closest data point after registration. The 
errors are listed in millimeters in the table. The errors were 
comfluted from 869 visible nodes on the object out of 980 
node$ on the entire mesh. The mean error is on the order of 

1 
o.02 i 

(b) Mstnas u1 function of cp and I+/ 0.1 mm which is also the maximum resolution of the range 

flecting the fact that the error is distributed in a relatively uni- 
form manner. The large maximum error is due to “border ef- 
fects.’’ Specifically, a node at the edge of the visible part of the 
mesh may not overlap exactly with a region of the data set, 
thus causing a large error to be reported. This occurs only at a 
few isolated nodes at the border. 

Fig. 14. Sum of squared differences of SAIs as function of rotation angles. sensor. The deviation is On the Order Of ’.* ”9 re- 

0.105 

Strmdarddcvi.tion 0.115 

Nuber of points I 869 1 
Fig. 18. Statistics of the distances between registered model and data points 
using the model of Fig. 13. Fig. 15. Display of madel usiqg the pose computed from the matching. 

These numbers show that the registration errors are on the 
order of the resolution of the sensor, in this case 0. lmm. This 
shows, in particular, that the node correspondences found 
through SA1 matching are conect and the estimation of the 
pose based on the wrresjn”ces is basically as accurate as 
it can be given the finite sensor resolution. 

I 

Fig. 16. Input image. 
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VII. CONCLUSION 

In this paper, we introduced a new approach for building and 
recognizing models of curved objects. The basic representation 
is a mesh of nodes on the surface that satisfies certain regularity 
constraints. We introduced the notion of a simplex angle as a 
curvature indicator stored at each node of the mesh. We showed 
hoa a mesh can be mapped into a spherical representation in 
canonical manner. and how objects can be recognized by com- 
puting the distance between spherical representations. 

The SA1 representation has many desirable properties that 
make it very effective as d tool for 31) object recognition. 
Firstly, the SA1 is stable with respect to translation, rotation, 
and scaling of the object. This is not true of most other com- 
monly used representations. This invariance allows the rec- 
ognition algorithm to compare shapes through the computation 
of distances between SAIs without requiring explicit matching 
between object features or explicit computation of object pose. 

Secondly, the SA1 preserves connectivity between parts of 
the abject in that nodes that are neighbors on the object mesh 
are also neighbors on the SAL Thus the SA1 does not exhibit 
the same ambiguity problem for non-convex objects as the 
EGI and CEGI representations. 

l;inally, the SA1 representation can handle partial views and 
occluded objects The basic approach is to measure the area of 
the visible portion of an object observed in a scene, and de- 
form the SA1 mesh model so that the percentage of the sphere 
corresponding to the visible area is the same in both model and 
scene SAIs. This approach can be used because a connected 
visible region of an object corresponds to a connected region 
on the corresponding SAL 

Results show that the SA1 representation is successfully 
used to determine the pose of an object in a range image in- 
cluding occlusion and multiple objects. This approach is par- 
ticularly well suited for applications dealing with natural ob- 
jects. Typically, conventional object modeling and recognition 
techniques would not perform well due to the variety and 
complexity of shapes that may have to be handled. The ap- 
proach is general enough that it can also convert manually 
built models to the SA1 representation. 
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