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ABSTRACT 
An iterative method for computing shape from shading using occluding boundary information is 
proposed. Some applications of this method are shown. 

We employ the stereographic plane to express the orientations of surface patches, rather than the 
more commonly .used gradient space. Use of the stereographic plane makes it possible to incorporate 
occluding boundary information, but forces us to employ a smoothness constraint different from the 
one previously proposed. The new constraint follows directly from a particular definition of surface 
smoothness. 

We solve the set of equations arising from the smoothness constraints and the image-irradiance 
equation iteratively, using occluding boundary information to supply boundary conditions. Good 
initial values are found at certain points to help reduce the number of iterations required to reach a 
reasonable solution. Numerical experiments show that the method is effective and robust. Finally, we 
analyze scanning electron microscope (SEM) pictures using this method. Other applications are also 
proposed. 

1. Introduction 

This paper explores the relationship between image brightness and object 
shape. Much of the work in machine vision does not explicitly exploit the 
information contained in the brightness values recorded in the image, using 
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these values only to segment the image, based on the difference of average 
brightnesses in adjacent regions. A great deal of information is contained in the 
image brightness values, however, since it has been shown that image bright- 
ness is related to surface orientation [Horn, 1975]. 

The problem of computing the shape of an object from the shading in an 
image can be thought of as the problem of reconstructing one surface (height of 
the object above some reference plane) from another surface (brightness in the 
image plane). Information at each point of the image is used to compute the 
orientation of the corresponding point on the object, using the assumption that 
the surface is smooth. This is in contrast with other machine-vision methods 
which analyze surface depth based on discontinuities in surface orientation and 
boundary information alone. 

1.1. Historical background 

The photometric approach to determining surface orientation from image 
brightness was first formulated in the form of a non-linear first-order partial 
differential equation in two unknowns [Horn, 1975]. This equation can be 
solved using a modified characteristic strip-expansion method. This method 
assumes that the surface is smooth, as does the method described in this paper. 
We will see, however, that slightly different interpretations of the term 
'smooth' are employed. 

The reflectance map, introduced later [Horn, 1977], represents the relation- 
ship between surface orientation and surface brightness. The map is defined in 
gradient space, which appeared in the work on scene analysis of line drawings 
[Huffman, 1971; Mackworth, 1973; Draper, 1980]. We assume orthographic 
image projection and take the viewing direction as parallel to the z-axis. The 
shape of the object can be described by its height, z, above the xy-plane. It is 
convenient to use the short-hand notation p and q for the first partial 
derivatives of z with respect to x and y: 

p=az/ax and q=az /ay .  

The pq-plane is referred to as gradient space, since every point in it cor- 
responds to a particular surface gradient. Distance from the origin of gradient 
space equals the slope of the surface, while the direction is the direction of 
steepest ascent. 

Fixed scene illumination, surface-reflectance properties, and imaging 
geometry can be incorporated into an explicit model that allows image bright- 
ness to be related directly to surface orientation. Thus we can associate with 
each point in gradient space the brightness of a surface patch with the specified 
orientation. The result, usually depicted by means of iso-brightness contours, is 
called the reflectance map, and denoted R(p, q). The reflectance map can be 
obtained experimentally using a test object or a sample mounted on a 
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goniometer stage. It can also be determined theoretically if the surface- 
reflectance is known as a function of the incident, emittance, and phase angles. 
The reflectance map can be computed, for example, if the so-called Bi- 
directional Reflectance Distribution Function (BRDF) [Nicodemus et al., 1977] 
and the distribution of light sources is known [Horn and Sjoberg, 1979]. 

The reflectance map is a convenient tool, since it provides a simple 
representation of the constraint inherent in one image-brightness measure- 
ment. Once the brightness, E(x, y), is known at a point, one can ask what the 
surface orientation might be there. A measurement of image brightness res- 
tricts the possible surface orientations at the corresponding point on the surface 
of the object. This constraint is expressed by the image-irradiance equation 
[Horn, 1977] 

R(p, q) = E(x, y), 

where the gradient (p, q) denotes possible orientations and E(x, y) is the 
brightness measured at the point (x, y). In general, one measurement cannot 
give us both p and q. It can only fix a relationship between the two variables. 
Additional constraint is required for a unique solution. This usually takes the 
form of some assumption about the class of surfaces that may be allowed. 

One effect of the introduction of the reflectance map was that it motivated 
research on other ways of solving the shape-from-shading problem. It also led 
to the development of iterative methods, similar to those used to solve 
second-order partial differential equations. Such methods, now called pseudo- 
local, relaxation, or cooperative computation methods, were suggested some 
time ago [Horn, 1970, p. 192], but could not be developed for this application 
without these new tools. 

1.2. Characteristic strip expansion 

The old method [Horn, 1975] can be interpreted in terms of the reflectance 
map, too. In the method of characteristic strip-expansion [Garabedien, 1964; 
Moon and Spencer, 1969; Carrier and Pearson, 1976; Courant and Hilbert, 
1962; John, 1978] the partial differential equation given above is replaced by a 
set of five ordinary differential equations, one for each of x, y, z, p, and q: 

dx/ds = Rp and dy/ds =Rq, 

dz/ds = pRp + qRq, 

dp/ds = Ex and dq/ds = Ey, 

where Rp and Rq are the partial derivatives of R with respect to p and q, while 
Ex and Ey are the partial derivatives of E with respect to x and u [Horn, 1977; 
Bruss, 1979]. 

The parameter s varies monotonically along a particular characteristic strip. 
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When the characteristic strip is extended, one moves to a new point (x, y) in 
the image and a new point (p, q) in the reflectance map [Horn, 1977; Wood- 
ham, 1978]. The orientation of the surface is known at the end of the strip. One 
has to move in a particular direction, (dx, dy), in the image plane in order to be 
able to compute the orientation at the new point (see solid arrow in Fig. la). 
The equations above tell us that this direction is the direction of steepest 
ascent, (Rp, Rq), at the corresponding point in the reflectance map (see dotted 
arrow in Fig. lb). At the new image point so determined, a different value of 
image brightness is found, corresponding to a new point in the reflectance map. 
This point in the reflectance map also lies in a well defined direction, (dp, dq), 
from the previous point in the reflectance map (see solid arrow in Fig. lb). 
From the equations above we know that this direction is the direction of 
steepest ascent, (Ex, Ey), at the corresponding point in the image (see dotted 
arrow in Fig. la). 

One important observation is that these directions will be computed incor- 
rectly if the brightness measurements are corrupted by noise. The result is that 
the characteristic strips deviate more and more from their ideal paths as the 
computation progresses. Thus, while characteristic strip-expansion works in the 
absence of noise, it suffers from error accumulation in practice. One way to 
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FIG. 1. Geometric interpretation of the equations arising from the application of the characteristic 
strip-expansion method to the image-irradiance equation. The image is shown in (a) as a set of 
iso-brightness contours and the reflectance map appears similarly in (b). It is known that the 
gradient is (p, q) on the surface of the object at the point corresponding to the image point (x, y). 
In order to continue the solution from this point, one must take a small step on the image in a 
direction determined by the gradient of the reflectance map, while the direction of the correspond- 
ing step on the reflectance map is similarly determined by the image brightness gradient. 
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greatly reduce this effect is to expand neighboring strips simultaneously and to 
adjust the solution using the assumption that the surface is smooth between 
strips [Horn, 1970, p. 144]. The characteristic strip-expansion method modified 
in this fashion can also interpolate new strips when the existing ones separate 
too far and delete old ones when they approach too closely. 

Strips may be started near a so-called singular point (see later) and grow 
outwards from there. Because of the directionality of the progress of the 
solution, information from the ends of the characteristic strips cannot be 
exploited by this method. This is an important shortcoming since crucial 
information is obtained from occluding boundaries (see later). Normally, these 
would be reached at the end of the computation, with no means available to 
influence the (completed) solution. 

There have been two new approaches based on two different ways of 
introducing additional constraints. In the one case, additional images are 
obtained from the same position with changed lighting. This will be discussed 
in Section 1.4. The other approach stays in the single image domain, exploiting 
instead suitably formulated assumptions about the nature of the surface. The 
work in this area employs relaxation or cooperative computation methods, 
which depend on the propagation of local constraints to determine global 
solutions [Woodham, 1977; Strat, 1979; Brooks, 1979]. These methods can 
often be viewed essentially as iterative algorithms for solving large sets of 
simultaneous equations arising from a least squares minimization. Information 
flow is not just along the characteristic directions, taking into account the fact 
that individual measurements are noisy. Instead of singular points, boundary 
conditions on a closed curve are used to select one of an infinite number of 
possible solutions. 

1.3. Previous numerical methods for shape from shading 

We look at these algorithms in more detail now. Woodham's [Woodham, 1977] 
method requires two rules which reduce the number of possible surface 
orientations at a particular point. Suppose that two closely spaced image points 
PI and P2 at (xb yx) and (x2, Y2) correspond to object points on the same section 
of a smooth surface. Further assume that the view angle, between surface 
normal and the line of sight, increases and that the direction of steepest ascent, 
polar angle in gradient space, decreases in going from Px and P2. Let CI and C2 
be the contours in gradient space corresponding to 

R(p, q) = E(xl, y~) and R(p, q) = E(x2, Y2), 

where R(p,q) is the reflectance map and E(xbyD and E(x2, y2) are the 
observed brightness values at the points P1 and P2 (see Fig. 2). Now the contour 
of permissible values for (p, q) at point Px can be restricted to those points on 
Cx lying on or within the circle of maximum view-angle interpretation of P2. 
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FIG. 2. The possible values of the gradients at the points Pl and P2 are restricted considerably if we 
assume that the view angle increases and the direction of steepest ascent decreases in going from P~ 
to P2. 

Further,  the contour  of permissible values for (p ,q)  at point P1 can be 
restricted to those points on C1 on or above the line of the minimum direction 
of steepest ascent interpretation of P2. 

If a particular interpretation were applicable to the data, such an inter- 
pretation would provide a f ramework for ordering selected image points with 
respect to changes in both the view angle and the direction of steepest ascent. 
For example,  if one can assume that the surface is elliptical or hyperbolic at a 
point (that is, the sign of the Gaussian curvature [Cohn-Vossen, 1952; 
Pogorelov, 1956; Moon and Spencer, 1969; do Carmo,  1976] is known) one can 
guarantee the sign of the change to the view angle or the sign of the change to 
the direction of steepest ascent by choosing the direction of the small step 
(dx, dy) from P1 to 1>2 appropriately [Woodham, 1977; Woodham,  1979]. Thus, 
local assumptions about  surface shape provide monotonici ty relations between 
selected image points. Thus we can start a shape-from-shading algorithm using 
these rules on the selected image points. 

A somewhat  different approach makes  use of a particular way of formulating 
a smoothness constraint. To derive the constraint, we will assume for now that 
the second partial derivatives of the surface height z exist and are continuous. 
Then the partial derivative of z with respect to x and y is independent  of the 
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order in which the differentiations are performed: 

ap/Oy = c92z/cgy cgx = a2z/t~x Oy = Oq/Ox. 

Evidently in any simply-connected region, B say, 

f f {ap/ay - aq/ox}= O, 

since the integrand is zero at every point. Thus, by Green's theorem [Hilde- 
brand, 1965], the integral of (p, q) along a closed curve (the boundary, OB, of 
the region) also equals zero: 

~ { p d x +  dy}=0.  q 

This is eminently sensible, since the line integral gives the difference between 
the height at the end of the line and its beginning, and we assumed that we 
remain on the same section of the surface (see Fig. 3). 

If we use a numerical method based on imperfect data to compute the 
orientation of the surface at every point, we can expect that this integral will in 
fact not be exactly equal to zero. One way of imposing a smoothness constraint 
then is to find a solution which minimizes the errors in these loop integrals 
while also satisfying the image-irradiance equation as closely as possible. 

This idea was pursued by Strat [Strat, 1979] as well as Brooks [Brooks, 1979]. 
Brooks showed that he could restrict attention to integrals around small loops 
in the image plane. He listed the possible orientations (quantized in a suitable 
way) at each point, then iteratively eliminated those conflicting with the loop 
integral criterion. This was accomplished using a relaxation method not unlike 
that developed by Waltz [Waltz, 1975] for labelling line drawings. 

Strat minimized the weighted sum of the errors in integrals around small 
loops and the errors in the image-irradiance equations. He developed a system 
for iteratively solving the large, sparse set of equations arising from this 
minimization formulation. His method is in many ways similar to the one 
presented here except insofar as he used gradient space and so could not deal 

FIG. 3. Discrete version of the loop integral of (p, q). The  total change in elevation as one goes 
around the loop should be zero if the patches belong to a differentiable, single-valued surface. 
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with occluding boundaries. As a result, his algorithm requires that surface 
orientation be given on a closed curve. This limits its applicability. 

1.4. Photometric stereo methods 

The other new approach uses further images to provide additional constraint. 
These images are taken from the same position, hut with changed lighting 
conditions. This so-called photome~c stereo approach [Woodham, 1977; Horn 
et al. 1978; Woodham, 1980] allows one to determine surface orientation 
locally without smoothness assumptions. 

Since the images are obtained from the same position, a particular point on 
the object will appear at the same spot in each image. This means that one 
does not have the problem of identifying projections of a particular surface 
feature in multiple views, as happens in ordinary stereo. A different reflectance 
map applies to each image, however, since the lighting is different for each 
view. For a given point in the image we have one brightness value correspond- 
ing to each of these reflectance maps. Suppose, for example, that at a particular 
point, (xo, y0), two measurements of image brightness are available. Then we 
have two (non-linear) equations for p and q, 

gl(p, q) = El(x0, Y0), R2(p, q) = E2(x0, Y0), 

where Rt and R2 a re  the reflectance maps appropriate to the two lighting 
situations, while E1 and E: are the observed image-brightness values. The 
intersection of the corresponding gradient-space contours provides one with 
the sought after surface orientation. This is the essential idea of photometric 
stereo. Naturally, the above pair of nonlinear equations in two unknowns may 
have more than one solution, in which case additional information (such as a 
third image) may be needed to find the unique answer (see Fig. 4). 

The graphical construction shown here can be replaced with a simple 
lookup-table procedure [Silver, 1980; Ikeuchi, 1981]. Quantized brightness 
values are used as indices into the table; the entries in the table contain the 
corresponding surface orientations. Detection of errors is facilitated (if more 
than two images are used) by blank entries which represent incompatible 
combinations of brightness values. Values of p and q are found for every point 
in the image, yielding surface orientation for the corresponding surface pat- 
ches. While a description of the shape of an object in this form may be suitable 
for recognition and to find the attitude of an object in space, it is at times 
helpful to provide height above some reference plane instead. While z can 
obviously be found by integration of p and q, the best way to do this when it is 
known that the data is corrupted by measurement noise has not yet been 
described. 

In industrial applications one has to deal with metallic parts which often 
exhibit specular or mirror-like reflections. In this case a distributed light source 
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FIG. 4. Determining the surface orientation at a given image point using the photometric stereo 
method. Here, three measurements of image brightness are obtained using different illumination 
conditions. Three superimposed reflectance map contours, corresponding to the different 
measurements, intersect at the point sought. 

with spatially varying brightness may be used [Ikeuchi, 1981]. For matte 
surfaces one can simply use a number of point sources [Silver, 1980]. So far 
experimentation has been confined to single objects, avoiding possible inac- 
curacies due to interflection or mutual illumination [Spacek, 1979]. 

1.5. Motivation of this research 

The outline of the projection of an object in the image plane is called its 
silhouette. Parts of this silhouette may correspond to sharp edges on the 
surface, others to places where the surface curves around smoothly. The 
smooth parts of the surface corresponding to parts of the silhouette are 
referred to as occluding boundaries• The locus of (barely) visible points on the 
surface where the tangent plane contains the viewer is called the occluding 
boundary. Occluding boundaries supply important information about the shape 
of an object and one can attempt to recover the shape of the object from this 
information alone using rather strong assumptions [Marr, 1977]. A simple 
interpolation algorithm works, particularly if the surface is (locally) spherical or 
cylindrical [Barro~¢ and Tenenbaum, 1981]. This can also be approached from 
the statistical point of view of recovering the most likely surface [Witkin, 1980]. 
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The true surface, however, can be found only if we also pay attention to the 
shading information. The occluding boundary can then be used as the boun- 
dary condition for the reconstruction. There is some question about whether 
the problem is well posed in this form, since the partial derivatives of height 
become infinite on the boundary. It should be clear, though, that if a numerical 
method is to succeed at all, then the representation of surface orientation must 
allow these boundary conditions to be expressed correctly. Little is known now 
about the uniqueness of solutions obtained in this way. It seems likely, 
however, that only one solution is possible under certain rather general 
assumptions about the nature of the reflectance map [Bruss, 1979; Bruss, 1980]. 

2. The Gaussian Sphere and Reflectance Functions 

We can identify surface orientations with points on a unit sphere, called the 
Gaussian sphere [Hilbert and Cohn-Vossen, 1952]. Let the viewer be far above 
the north pole, along the z-axis, where the z-axis is taken as the extended line 
from the center of the sphere to its north pole. Assume that we take a patch of 
the surface of an object and place it in the center of the sphere, without 
changing its attitude in space. The patch will face some point of the sphere. 
That is, a unit-surface normal erected on the patch will touch the sphere at this 
point. The orientation of a horizontal portion of a surface, for example, is 
represented by a point at the north pole, since its surface normal points directly 
at the viewer. Portions of the surface seen at a glancing angle by the viewer 
correspond to points on the equator, while surface elements turned away from 
the viewer are associated with points in the southern hemisphere. Thus points 
in the northern hemisphere are of most interest to us here. 

2.1. The Gaussian sphere and apparent brightness of a surface patch 

If we assume orthographic projection of the three-dimensional world, then the 
angle between the line of sight and the surface normal is independent of the 
position of the patch on the object. As far as the geometry of light reflection is 
concerned we need to concern ourselves only with the orientation of a surface 
patch as represented by a point on the Gaussian sphere. Surface patches of an 
object which share the same orientation are associated with the same point on 
the sphere, independent of their position in space (see Fig. 5). 

Surface brightness depends on the surface material and the geometry of light 
reflection: the angles between the line of sight, the surface normal, and the 
incident light rays. Since each point on the Gaussian sphere expresses one 
particular such geometric relationship, we can associate a unique value of 
surface brightness with each point on its surface. Say, for example, that a 
surface patch perpendicular to the viewer appears with unit brightness. In that 
situation we assign this value to the north pole. Using this method, we can 
assign brightness values to all points on the Gaussian sphere. Shown in Fig. 6 is 
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(b) 

FIG. 5. Surface patches of an object Co), which share the same orientation are associated with the 
same point on the Gaussian sphere (a), independent of their position on the object. 

Fx6. 6. Cross section through Gaussian sphere showing brightness values associated with points on 
the sphere. The radial distance of the curve from the surface of the sphere is proportional to the 
brightness. The particular reflectance function shown here happens to vary as ~ / ~ +  1 + 
(a cos e - 1), where e is the emittance angle, between the surface normal and the line of sight, and 
a = 0.72. 

a cross section of the Gauss ian  sphere with br ightness  values r ep resen ted  by 

the height of a curve above  the surface. 

2.2. Projections of the Gaussian sphere 

It may not  be conven ien t  to use this r ep resen ta t ion  of the d e p e n d e n c e  of 
surface br ightness  on or ien ta t ion ,  since the Gauss ian  sphere is th ree -d imen-  
sional.  Graph ic  p resen ta t ion  of this in format ion ,  for example,  is difficult. It is 
therefore  a d v a n t a g e o u s t o  project  the Gauss ian  sphere on to  a plane.  (This is 

possible since we are in te res ted  only  in the surface of the Gauss ian  sphere.)  
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There are, of course, many ways to perform this mapping operation. Even if we 
were to confine ourselves to conformal projections, we would have many to 
choose from, including the Mercator, Lambert, and stereographic projections 
used in geodesy and cartography [Thomas, 1952; Raisz, 1962]. We prefer 
continuous projections like these, since they map neighboring points into 
neighboring points. This is important because we plan to generate surface 
representations iteratively from boundary information. Roughly speaking, to 
be able to do this, we want the following to hold: a point C lying between two 
other points A and B is projected into a point F(C) which lies approximately 
between F(A) and F(B). 

It can easily be shown that, 

n=  ( -p , -q ,  1)/V~l + p2 + q 2 

is a unit (outward) normal to the surface [Horn, 1977; Horn, 1981]. This gives 
us the coordinates of the point on the Gaussian sphere corresponding to a 
surface patch with gradient (p, q), and immediately suggests a projection onto a 
plane with axes labelled p and q. Appropriately enough, the plane of pro- 
jection is called gradient space in this case, as we have mentioned before 
[Huttman, 1971; Mackworth, 1973; Draper, 1980]. 

Geometrically we can think of this as the projection of the Gaussian sphere 
by rays from its center onto a plane tangent to the north pole (with the sense of 
the p and q axes reversed from that of the x and y axes). This projection, 
called the gnomonic projection, has the property that great circles are mapped 
into lines. (It is used for this reason in navigation to determine the shortest 
path between two points on the earth.) This also makes it a so-called geodesic 
projection. In our case here, the north pole is mapped into the origin, the top 
hemisphere is mapped into the whole pq-plane, and points on the equator end 
up at infinity. Points on the lower hemisphere are not projected onto the 
pq-plane. 

Since each point in gradient space corresponds to a particular surface 
orientation, one can associate a unique brightness value with it. The result, as 
mentioned earlier, is the reflectance map [Horn, 1977]. The gnomonic pro- 
jection is convenient for the following reasons: (1) the coordinates correspond 
to the first partial derivatives of surface height, z, (2) we can compute surface 
height by integrating p and q, and (3) a line integral of (p, q) along a closed 
loop is always zero. Unfortunately, gradient space also has a serious drawback. 
As we shall see, points on the equator of the Gaussian sphere correspond to 
surface patches on the occluding boundary. With the gradient-space projection, 
the equator maps to infinity. As a result, occluding boundary information 
cannot be expressed in gradient space. 

2.3. Stereographic projection 

One solution to this problem is the use of the stereographic projection [Sohon, 
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1941]. Hipparchus (circa 150 B.C.) is credited with the invention of this 
projection (which appears to have been employed in the astrolabe-planisphere 
solution of the astronomical triangle). We can think of this projection in 
geometric terms also as projection onto a plane tangent at the north pole. This 
time, however, the center of projection is the south pole, not the center of the 
sphere (see Fig. 7). We label the axes of the stereographic plane f and g to 
distinguish them from those of gradient space. It can be shown that these 
coordinates are related to the partial derivatives as follows: 

[ = 2p[~/1 +p2+ q2_ 11/(p2 + q2), 

g = 2q[~/1 +p2+ q2_ 1]/(p2 + q2). 

This projection is conformal (preserves angles between lines and shapes of 
small figures) and maps circles on the Gaussian sphere into circles on the plane 
[Hilbert and Cohn-Vossen, 1952]. The whole sphere, not just the northern 
hemisphere, is mapped onto the plane this time. Only the south pole ends up at 
infinity, while the equator is mapped into a circle of radius two (see Fig. 8). We 
may also assign a brightness value to each point in the stereographic plane, just 
as we did with points in gradient space. 

The two projections considered so far fall in the category of azimuthal 
projections, since latitude on the sphere simply becomes the azimuth in the 
plane. Another convenient projection in this class is the so-called azimuthal 
equidistant projection. Here the distance from the origin in the plane equals 
the distance along the surface of the sphere measured from the north pole (that 
is, the co-latitude). There is no obvious geometric interpretation in terms of 
rays emanating from a fixed center of projection. One can think of this 
mapping instead as one obtained by rolling the sphere on the plane, along 
meridians, always starting with the north pole aligned with the origin. If we call 

j J  

/ 

/ 

FIG. 7. The stereographic mapping projects each point on the surface of the sphere, along a ray 
from one pole, onto a plane tangent to the opposite pole. 
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FIG. 8. The stereographic projection maps the equator onto a circle of radius two. The equator of 
the Gaussian sphere corresponds to points on the occluding boundary of the object. 

the coordinates of the plane a and b in this case, we have 

a = [p/X/p-~q 2] tan -l V'p2+ q2, 

b = [q/~/p--f--~q2] tan-1 ~p2  + q2. 

As with the gnomonic projection, we project only the northern hemisphere. 
But, unlike the gnomonic projection, points on the equator do not end up at 
infinity; instead they are mapped onto a circle of radius "rr/2. 

There are, of course, numerous other projections one might use. K. Tanaka, 
for example, used another azimuthal projection, the so-called o r t h o g r a p h i c  

projection in early work on hill-shading [Horn, 1981]. 

3. Smoothness Constraint and Boundary Conditions 

In the sequel we use the stereographic projection. The form of the image- 
irradiance equation will be slightly different, since we use f and g instead of p 
and q. However, this makes no difference to the basic idea that a measurement 
of surface brightness restricts the possible surface orientations. We must 
develop a suitable smoothness constraint expressible in the coordinate system 
natural to the stereographic plane. We also have to determine what boundary 
conditions are available to constrain the solution of the image-irradiance 
equation. Finally, it will be helpful to find a way of determining good initial 
values of surface orientation for at least some of the points, in order to get the 
numerical solution off to a good start. 

3.1. Formulation of surface smoothness constraints 

If we employ the stereographic projection, we cannot use the closed loop 
constraint proposed by Strat [Strat, 1979] and Brooks [Brooks, 1979], because 
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the closed loop constraint depends upon a special characteristic of the 
gnomonic projection. Namely, the closed loop integral can be expressed 
directly in terms of p and q, the coordinates of gradient space. Unfortunately, 
this is not true in the case of either the stereographic projection or the 
azimuthal equidistant projection. If a constraint expresses the property of 
surface smoothness, it ought to be valid regardless of the projection we happen 
to use. It seems reasonable to express the smoothness criterion in terms of a 
relationship between neighboring points. 

We now turn to the definition of surface smoothness. The standard definition 
of a smooth function is one which has continuous first partial derivatives. This 
agrees with our intuitive feeling of what constitutes a smooth surface. First of 
all, smoothness requires that there be no depth discontinuities. That is to say, 
height, as a function of the image coordinates, should be continuous (height is 
class C°). But we also require that surface orientation be continuous, for if a 
surface has a sharp edge or krinkle, the surface is not considered smooth. In 
other words, smoothness also requires that the first partial derivatives of height 
be continuous (height is class C~). 

Should one also require that the second partial derivatives of height be 
continuous, or equivalently, that the derivatives of orientation are continuous? 
The following illustration shows that this is not necessary. Imagine a planar 
surface attached to a portion of a cylindrical surface so that the two are tangent 
where they touch (see Fig. 9). Here surface orientation is constant on the 
planar part, but varies on the cylindrical part. Thus surface orientation is 
continuous, but its derivatives are not. Nevertheless, people regard this surface 
as smooth. 

It is interesting to note at this point that the method of characteristic strip 
expansion can be shown to apply in general when the function sought is of class 
C 2. In the case of a first-order partial differential equation in two independent 
variables, however, it is known that the solution is unique even when the 
function is only class C ~ [Courant and Hilbert, 1962, p. 145]. Similarly, the 
derivation of the closed loop constraint shown above requires that the function 
be class C 2. It turns out to be sufficient, however, that the function be 
single-valued and (once) differentiable. 

FIG. 9. A surface constructed by attaching a portion of a cylindrical surface to a plane, in such a 
way that they are tangent on the contact line, is considered smooth. 
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3.1.1. Continuity of surface orientation 

What is the definition of continuous? A function is continuous if neighboring 
points map into neighboring points. If a function is vector valued, being 
continuous implies that each component  of the function is continuous [do 
Carmo, 1976]. This allows us to consider each component  of surface orientation 
separately. For example, in the stereographic plane, we can formulate two 
constraints which express continuity of f and g separately. We use the standard 
definition of continuity [do Carmo, 1976]: 

A function F is continuous at (x0, y0) if, given any • > 0, there exists a 8 such 
that when 

then, 

(x - x0) 2 + (y - y0) 2 < 82, 

IF(x, y) - F(xo, y0)l < E. 

If, given a particular •, we can find a single value of 8 for all points in the 
region of interest, then the function is uniformly continuous. 

In practice, we will be dealing with a discrete grid of points with values 
defined at the nodes of the grid. If we take the grid interval 8o smaller than 8, 
then we are guaranteed that: 

[F(x0 + 80, Y0)- F(xo, Y0)l < • and IF(x0, y0 + 80) - F(xo, Y0)l < •. 

At this point we should remember  that it is surface orientation which we are 
assuming varies continuously as a function the image coordinates. Thus equa- 
tions like the one above apply to f and g. 

3.1.2. Summation of error terms 

One more check is necessary before we can use our smoothness constraint. To 
measure how far the computed surface departs from smoothness, we will be 
looking at error  terms like 

( f i+ l , j - - f i j )  2 and (gi+ld-gij) 2. 

We form the sum of the squares of the differences over all adjacent pairs of 
nodes in the grid. When the grid interval becomes small, the number of nodes 
per unit area becomes large. For our purposes, the sum of all the differences 
squared should nevertheless remain small as we decrease the grid interval. For 
this to be true we actually require that the derivatives of orientation exist and 
are bounded. Suppose that the largest absolute value of the partial derivatives 
of f and g with respect to x and y is denoted by Din. Then the square of an 
error term will be less than 

[.DmSo] 2. 
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Since the number  of nodes per unit area equals 1/8~, we find that the sum of 
squares of the errors is less than D~. Note that discontinuities of the derivatives 
of orientation, as occur on the dotted line in Fig. 9, do not constitute a 
problem. 

3.2. Constraints from boundary information 

In some areas of an image, we can determine surface orientations directly. This 
is true, for example, at so-called singular points and specular points. Useful 
initial values for the iterative solution process are found this way. More 
importantly, at an occluding boundary, we can determine surface orientation 
from the silhouette. This supplies us with the all-important boundary con- 
ditions. 

3.2.1. Occluding boundary 

At an occluding boundary we can determine the surface normal uniquely 
[Marr, 1977; Barrow and Tenenbaum, 1981]. The following two facts are the 
starting points of our discussion of the determination of the surface n0rmals 
from the silhouette. 

• LINES OF SIGHT i 

J _~ i I 
• 

I OCCLUDING 
/ / ~ / B O U N D A R Y  

- StIR FACE NORMAL J ) 
/ 

i i 

I i 

I I  SILHOUETTE 

,, 

I 

TAI~ PLANE 

I MAGE 

FIG. 10. The line of sight is tangent to the surface at the point where it touches the occluding 
boundary. The tangent plane at that point cuts the image plane in a line. This line is tangent to the 
silhouette in the image plane, 
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First: since we observe an occluding boundary there, the line connecting the 
surface to the viewer must be tangential to the surface patch at that point (see 
Fig. 10). Thus the line of sight lies in the plane tangent to the surface at the 
point where it grazes the surface. It is therefore perpendicular to the surface 
normal at that point. 

Second: the line of sight is perpendicular to the image plane (Since we 
assumed orthographic image projection, all lines of sight are parallel to the 
z-axis and thus perpendicular to the image plane). It follows that the tangent 
plane is perpendicular to the image plane and therefore projected as a line in 
the image plane. This line is tangent to the silhouette in the image plane. 

We see then that a normal to the silhouette in the image plane is parallel to 
the normal to the surface at the corresponding point on the occluding boun- 
dary. We can in this fashion obtain surface orientations for all points on the 
occluding boundary. 

3.2.2. Self-shadow boundary 

Consider the situation where there is a single point source. The locus of 
(barely) illuminated points on the surface where the tangent plane contains the 
light source is called the self-shadow boundary. On the self-shadow boundary, 
light rays play the role of the lines of sight in the previous discussion. Namely, 
the light grazes the surface there; the rays are perpendicular to the surface 
normal. The trouble is that now the tangent plane is not projected as a line in 
the image plane (see Fig. 11). Consequently we cannot determine surface 
orientations uniquely on a self-shadow boundary. Approximations to the 
correct surface orientations can be computed if we make some assumptions. 
This is helpful, because these can serve as initial values for the iterative 
algorithm. One possible assumption we might make is that the self-shadow 
boundary lies in a plane perpendicular to the light source. This occurs, for 
example, when the object is spherical, and is not a bad approximation when the 
object is ellipsoidal. 

Let the light source lie in a direction given by the unit vector ns. The 
projection of the self-shadow boundary in the image is called the shadow edge. 
Let a vector in the image plane perpendicular to the shadow edge be nb (drawn 
from the lighted towards the shadowed side). The self-shadow boundary lies in 
a plane perpendicular to both nb and n, and must therefore be parallel to 

ns X nb. 

The surface normal on the shadow boundary must be perpendicular to this line, 
as well as to the incident rays. It must therefore be parallel to 

( n ,  x n ~ )  x n ,  --  nb - (nb • n , ) n , .  

The above vector vanishes when the incident rays are parallel to the image 
plane, indicating that in this case we cannot determine anything about the 
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FIG. 11. The tangent planes on the self-shadow boundary do not project as lines into the image 
plane. The surface orientation of points on the self-shadow boundary cannot be determined 
uniquely. 

surface normals on the shadow boundary, even with the assumption that this 
boundary lies in a plane perpendicular to the incident rays. Conversely, when 
the source is at the viewer, the surface normal is fully determined even without 
this assumption, since the shadow boundary then coincides with the occluding 
boundary. 

Errors in the determination of the surface normal on the shadow boundary 
do not lead to errors in the final result, since they affect only the initial values. 
Presumably, better initial values do reduce the number of iterations required to 
obtain an accurate solution, however. Note that the condition that the surface 
normal is perpendicular to the incident rays on the self-shadow boundary is 
actually already implicit in the equation R(p, q)=  0. 

3.2.3. Specular point and singular point 

We can also determine surface orientation at so-called singular points and 
specular points. Assume for now that the illumination comes from a single 
point-source of light. Consider first a surface patch oriented so that its normal 
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vector points directly at this light source. (It will be maximally illuminated, but 
not necessarily maximally luminous.) Let us call the point on the Gaussian 
sphere corresponding to this orientation the source spot, since it essentially 
specifies the direction towards the light source. Note, by the way, that the 
source spot ends up in the southern hemisphere when the object is illuminated 
from behind. Such a source spot will be projected into a point in the plane by 
the stereographic projection. This is not the case if we use the gnomonic or 
azimuthal-equidistant projections, since these project only the northern 
hemisphere. 

Next, assume that we are dealing with a surface material which exhibits 
mirror-like or specular reflection. A surface patch on such a surface may be 
oriented just right to reflect rays from the light source towards the viewer. This 
leads to a so-called specular point in the image. This happens only when the 
incident angle, i, equals the emittance angle, e, and when the incident ray, the 
surface normal, and the reflected ray lie in the same plane. This orientation 
corresponds to the point mid-way between the source spot on the Gaussian 
sphere and the north pole. 

If we let (Ps, qs) be the point in gradient space which corresponds to the 
source spot on the Gaussian sphere, then a surface patch oriented for specular 
reflection has the gradient (Pro, qm), given by: 

p,. = p,[.k,/i+ p~ + q~_ 1]/(p2 + q2), 

q,, = qs[V'l + p 2 +  q~_ 1]/(p~ + q2). 

This can be shown by noting that (Pro, qm) must lie in the same direction in 
gradient space as (p, q,), and that the angle between (0, 0, 1) and (-p,,, --qm, 1) 
must be equal to the angle between (-pro,-q,, ,  1) and (-ps,-q~, 1). Similar 
formulae apply in the stereographic plane: 

fm ~ "  f~[V/1 + ~  + g2 _ l]/(f~ + g2), 

gm= g~[av/1 + ~ +  g~-  1]/(f~ + g~). 

Finally, for the azimuthal equidistant projection, 

a,, = as~2 and b,, = bJ2. 

For an ideal point source, an ideal specular surface (and an ideal imaging 
system), the specular point would be infinitely bright and infinitesimal in 
extent. For slightly extended sources and surfaces that are not perfectly 
smooth, the specular reflection is spread out somewhat, with a large, but finite 
maximum brightness. Surfaces with slightly undulating surface microstructure 
give rise to glossy high-lights [Horn, 1981]. 

For surfaces which do not exhibit specular reflection there often still is a 
unique surface orientation which gives rise to maximum (or minimum) bright- 
ness. A Lambertian surface, for example, is brightest when the light rays strike 
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it perpendicularly. Suppose then that there is a particular value of brightness 
which corresponds uniquely to a particular surface orientation. A singular point 
is a point in the image where this value of brightness is observed. Note that 
specular points are special cases of singular points. Evidently, we can deter- 
mine the surface orientation uniquely at a singular point. 

Singular points, by the way, were used to provide starting values in an 
implementation of the characteristic strip-expansion method [Horn, 1975]. 
Note that information about the orientation of the surface at these special 
points is implicit in the image-irradiance equation. What we gain here are 
helpful initial values for the iterative method. 

3.3. Minimization of errors 

It helps to first consider the continuous case, ignoring for now the tesselation of 
the image plane into picture cells. We try to find functions f(x, y) and g(x, y) 
which make the errors in the image-irradiance equation small while also being 
as 'smooth' as possible. We can try to minimize 

= + gy) + A [E(x, y) - R.0 e, g)]2} dx dy, 

where fx, f. gx, and gy are the first partial derivative of f and g with respect to x 
and y. The errors in the image irradiance equation are weighted by the factor A 
relative to the measure of departure from 'smoothness'. This factor can be 
made large when the reflectance map is known accurately and the brightness 
measurements are precise. 

The minimization of an integral of the form 

f f Fff, g, fx, f.g~,gy)dx dy 

is a problem in the calculus of variation [Courant and I-filbert, 1953; Hilde- 
brand, 1965; Carrier and Pearson, 1976]. When the integrand depends on two 
functions of two independent variables as well as their first partial derivatives, 
then the Euler equations are, 

F:- a l a x ( F / ~ ) -  a /ay (F : , )  = O, 

F ,  - a l a x ( F , , ) -  O l a y ( F , , )  = O. 

Applying these formulae we obtain: 

v2f = A [E(x, y ) - R , ( f ,  g)] OR,/or, 
V~g = AlE(x, y ) -  R, tf, g)] OR,lOg, 

where 

V 2 = b21bx 2 + h ; I by  2 
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is the Laplacian operator.  These equations will provide helpful guidelines when 
we tackle the discrete case in the next section. It can be shown, by looking at 
higher order variations, that if f and g obey the above partial differential 
equations, then the stationary value of the sum of errors is actually a minimum. 

It may also be of interest that we would have ended up with the biharmonic 
operator  here (instead of the Laplacian) if we had tried to minimize the sum of 
squares of the Laplacian of f and g (instead of the sum of squares of the first 
partial derivatives of f and g). We will not discuss why the two functions, f and 
g, should be 'consistent', that is, correspond to the surface orientations of a 
smooth surface. 

As an extension of the above analysis we may consider the minimization of 

e ' =  f f { ~  + ~ ) +  (g~ + g~)} dx dy, 

subject to the constraint 

E(x, y) = Rs(f, g). 

Introduction of the Lagrangian multiplier A leads to the same equations as the 
ones considered above. Elimination of A gives us this set of equations: 

(ORJOg)Wf :- (ORs/Of)VEg, 

E(x, y) = Rs(f, g). 

We will not use the results of this constrained minimization exercise since we 
do expect errors in the measurements of image brightness. Instead, we will set 
the value of the parameter  A in inverse proportion to the root-mean-square of 
the noise in the image brightness measurements. 

4. Proposed Algorithm and Numerical Experiments 

We will construct an iterative algorithm using two kinds of constraints: one 
from the image-irradiance equations and the other  from the smoothness 
condition. In addition, we depend on the occluding boundary to provide 
boundary conditions and a few special points to supply helpful initial values. 

We will have to check whether the algorithm converges. Since we do not 
have a theoretical analysis of the conditions required for convergence, we 
resort to numerical experimentation. With exact, complete information, we 
expect that the algorithm will converge, and converge to the correct solution. 
In practice there are errors, however, due both to noise in the measurements 
and to discrepancies between the mathematical model and the real situation. 
Further,  due to obscuration, for example, the information may be incomplete. 
Under  these circumstances one would hope that the algorithm would be robust 
enough to converge to some solution, preferably one close to the correct one. 

Consequently we have carried out numerical experiments under two 
different conditions: in the first case, all information given to the algorithm is 
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exact: the reflectance map is correct, and complete boundary information is 
available. In the second, some of the information is erroneous: the reflectance 
map given may be incorrect, either because of inappropriate assumptions about 
the properties of the surface material or because of incorrect information about 
the position of the light source. We also may be lacking effective boundary 
conditions on part of the border,  perhaps because of partial obscuration of the 
object by another.  The algorithm would not be very useful if it did not 
converge, or converged to a solution very different from the correct one, when 
faced with these difficulties. 

4.1. Proposed algorithm 

We will use an iterative algorithm to determine surface orientations using the 
image-irradiance equations and the smoothness criterion as constraints. We can 
measure the departure from smoothness as follows: 

sij = [ ( f , + , j  - ~ j ~  + ( f ' i j+ ,  - ~ j ) 2  + ( g i + , j  - g , j )2  + ( g i j + ,  _ g,j)~]/4. 

The error  in the image-irradiance equation, on the other  hand, can be stated 
this way: 

rij = [E,j  - R , ( f  ij, gu)] 2, 

where E u is the observed image brightness at the node (i, j), while R, is the 
reflectance map with f, and g, the surface orientation components  as 
arguments. We will seek a solution which minimizes the sum of the error  terms 
over all nodes: 

e = ~ ~ (s,j + Aru). 

The factor A weights the errors in the image-irradiance equation relative to the 
departures from surface smoothness. 

We can, by the way, write a formula for the error,  just like the one given 
above, using the components  of the gradient, p and q, or the azimuthal 
equidistant coordinates, a and b, instead of the stereographic coordinates f and 
g. For  that matter,  we can do this directly with coordinates specified on the 
Gaussian sphere. 

We are going to differentiate e with respect to f~j and gij (note that each .~j 
and gu occurs in four terms of the sum for e). We obtain, 

,~e/o~,/= 2@j- fi~)- 2A [E, j -  R,@j, gu)] aR,/af, 

aelagu = 2¢gu - g~)- 2A [E,j - R,~j,  g,j)] aR,/ag, 

where f* and g* are the local averages of f and g: 

f ~  = [.f,+,j + f ij+l + f ,-1j + f ,j_,]/4, 

g ?  = [g~+~J + gu+~ + g~-~J + gu-d/4.  
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The partial derivatives of e with respect to ~j and gij will all equal zero, if the 
set of values we have for/~j and g~j constitute a solution to the minimization 
problem. Assume that they are; then the task is to solve the resulting large, 
sparse set of equations [Hildebrand, 1965; Conte and de Boor, 1972; Ham- 
ming, 1972]. Iterative techniques like the Gauss-Jacobi method, the Gauss-  
Seidel method, or successive over-relaxation [Carrier and Pearson, 1976, p. 
277; Ames, 1977, p. 103], can be used if we first rearrange the equations as 
follows: 

f i j  = fi.* + A [ E i j -  R,@.j. gi j ) ]  aR./af,  

g, j  = g,*j + A [E,j - R, (~j, g,j)] OR,/tgg. 

We can think of these equations as suggesting an adjustment of f and g, in a 
direction given by the gradient of R,, by an amount proportional to the residual 
error  in the image-irradiance equation. (The magnitude of the adjustment is 
also controlled by the parameter  A.) Further, we can see that the value for the 
orientation at a point will be filled in from the surround when the gradient of 
R, is zero, as happens at a singular point. 

The basic idea now is that the difference between corresponding values of f 
and corresponding values of g on successive iterations will decrease as we 
proceed. Thus we can perhaps use the values from the nth iteration on the 
righthand side to compute the values for the (n + 1)st iteration on the lefthand 
side. Under  certain conditions this method converges to the solution of the 
original set of equations. Thus we might use the rule: 

f n + l  __ *n  n n 
i,j - -  f i j  + A [ g i , j  - R s ( f i j ,  g i j ) ]  c l R , / d f ,  

= R " " g,7'  g,.*" + A[EIj - s0rlj, g,j)] OR,/Og, 

where f,.~ and g~. are used in evaluating R, (and the partial derivatives of R,). 
To avoid a particular kind of numerical instability we resort to a slightly 
different set of formulae 

f n + l  *n  ,./ = fi.*j" + A [E, j-R.v.. , t¢*.",  gq )] tgR./af, 
lkn g.j+l = g,... + A [ E , j  - R, ( f ,3" ,  g , j  )] ,gR,lag, 

where f*." and g~*" are used in evaluating R, (and the partial derivatives of R,). 
The flow of information when one uses this method can be illustrated schema- 
tically as shown in Fig. 12. Note that the computations for a given iteration are 
local. Global consistency is achieved by the propagation of constraints over 
many iterations. 

The numerical instability alluded to above can best be thought of in terms of 
a checkerboard.  On each iteration the new values for the white squares are 
computed using the old values on the black squares and v ice  versa .  Small noise 
components  can be amplified into a checkerboard pattern in this fashion as the 
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FIG. 12. This schematic diagram shows the flow of information in the iterative computation of 
surface orientation. It also suggests possible hardware implementations of the algorithm. 

iterations progress. Say, for example, that the orientations (it, g) and OF*, g*) lie 
on opposite sides of the correct solution. Then the iterative equations above 
will produce an adjustment relative to (f*,g*) based on the error in the 
image-irradiance equation at (f, g), which goes in the wrong direction. (Fig. 13 
illustrates how this can occur.) This undesirable process can be damped out by 
using the local average, rather than the value at the cell itself in evaluating Rs. 

Using a better stencil for computing the local average improves stability too. 
A stencil is a pattern of weights by which neighboring values are multiplied. 
One may, for example, add (4/5) of the average of the four neighbors that 
share an edge with a particular point to (1/5) of the average of the neighbors 
that touch on a comer. This suggestion is based on a better discrete ap- 
proximation of the Laplacian than the one we have been implicitly using here 
[Richtmyer and Morton, 1967; Milne 1970; Carrier and Pearson, 1976; Ames, 
1977]. 



166 K. IKEUCHI AND B.K.P. HORN 

(E-R) 2 

FIG. 13. This illustration shows why the simple iterative formulae may be subject to a certain kind 
of numerical instability. The correction to f* (on the right) is computed from the gradient of the 
total error using the orientation f (on the left). The correction will have the wrong direction if the 
minimum lies between the two. 

4.2. Numerical experiments 

To start off with, we will use synthetic images based on models of objects, so 
that we can compare the results produced by our algorithm with the known 
shape. To check that the algorithm works correctly, we will give it the exact 
brightness distribution, complete boundary information, and the correct 
reflectance map. Then we will see what happens if we omit some of the 
boundary information, or if we estimate the light-source direction incorrectly, 
or assume the wrong reflectance properties. Finally, the method is applied to 
real images. 

The shape information computed will be presented in two forms: as needle 
diagrams and oblique views of the surface. In a needle diagram we present an 
orthographic projection of the normals to the surface as they would be seen by 
the viewer [Horn, 1982]. This may be the most direct way of portraying 
graphically the information computed by the algorithm. The surface height 
above some reference plane can be estimated by integrating this surface 
orientation information. We can then show an oblique view of a network of 
lines drawn over the resulting surface by intersecting it with vertical planes 
parallel to the two coordinate axes. This mode of presentation is referred to as 
a block-diagram in cartography [Horn, 1981]. 

For several of the examples we will assume that the surface is made of a 
material which acts as a Lambertian reflector. A Lambertian surface is a diffuse 
reflector with the property that a particular surface patch looks equally bright 
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from all viewing directions and that its brightness is proportional to the 
illumination falling on it. Due to foreshortening of the surface as seen from the 
light source, the illumination (flux per unit area) varies as the cosine of the 
incident angle, i (between the incident rays and the surface normal). For a 
Lambertian surface, then, the brightness, too, will vary as the cosine of the 
incident angle. For surface patches turned away from the light source, the 
incident angle becomes larger than 90 ° , and so the cosine becomes negative. 
Since brightness cannot be negative, we use the formula 

max[0, cos i] 

for computing brightness. 
The first task is to determine the reflectance map. If we let n be a 

unit-surface normal and ns a unit vector pointing in the direction of the light 
source, then the cosine of the incident angle is just the dot-product of these two 
vectors, 

c o s i =  n ' } l s .  

The expression for the unit-surface normal in terms of p and q, shown earlier, 
allows one to express the cosine of the incident angle in terms of the first 
partial derivatives of the surface orientation [Horn, 1977; Horn, 1981]: 

cos i = (1 + pd9 + q~)  
[~/1 + p2 + q2~/1 _~ p~ + q~]" 

Using the coordinates of the stereographic plane instead: 

cos i = [16(fat + g 'g)+ ( 4 - / a -  g 2 ) ( 4 - ~ -  8~)] 
[(4 +f~ + g2)(4 + g + g~)] 

If we use the azimuthal equidistant projection we have for cos i: 

cos ~ / a - ~  b 2 cos ~ / ~ +  sin X/a 2 + b 2 sin X/a~--'~+ b~ 

x (a,a + bsb) 
[Va-rTV+ 

In several of the examples we use a sphere as a test object, or an ellipsoid 
obtained by anistropically scaling a sphere. To make a synthetic image we need 
to know the surface orientation at each point in the image. The implicit 
equation for a sphere with its center at the origin can be written 

x 2+ y2+ z 2 _ R  2= 0. 

Computing the gradient of the lefthand side of this equation tells us that the 
surface normal at the point (x, y, z) is parallel to the vector (x, y, z) and that 

,~z /ax=-x/z  and azl ,~y=-y/z .  
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From these values of p and q, we can calculate f and g, or a and b. The 
brightness at every point in the image can then be found from 

E(x,  y) = max[0, cos i] 

and the equations for cos i given above. 

4.2.1. Example 1. Lambertian sphere with source near the viewer 

Consider a Lambertian sphere illuminated by a single, distant light source, 
located near the viewer. The occluding boundary is also the self-shadow 
boundary in this case. The whole occluding boundary is visible to the viewer, 
while none of the shadowed areas is. The image-brightness data is derived 
analytically from a model of the surface and the known reflectance properties 
of a Lambertian surface. The algorithm is then applied to the synthesized 
image. (Fig. 14 shows a pseudo gray-level image of the object.) 

FIG. 14. Pseudo gray-level image of a Lamber t ian  sphere i l luminated by a light source near  the 
viewer. This is the synthetic image used as input to the algorithm. 
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The discussion earlier showed that at an occluding boundary, the surface 
normal is parallel to the normal to the silhouette at the corresponding point in 
the image. We can therefore determine the surface orientations at the occlud- 
ing boundary. This boundary information is shown in Fig. 15a in the form of a 
needle diagram. 

The algorithm requires at least as many iterations as there are nodes across 
the image. This can be explained as follows: At a point near one side of a 

a 

- . . 

• , x ~  i . / . . ' /  

x x x ~ x ~ . .  . . . . .  , , i ,  - /  

/ $ / I r  i f & &  - x  

t ,  I i ) ,  

b 

. . . . . . .  I 

. ~  . . . . . . . . . . . . . . . . . . .  . . . . . .  

" "  //// l l l L l l l l t * ~ x ' '  
. . . .  / / /  I I I  l i ~  
. . . . . .  / /  ~ l l l l l l l I ~ \ , , , , \ ' , ' ,  
. . . . .  l l l l l l l ~  \ \ \ ' ~  
. . . . . . .  I f l l l l l ~ \ l . \ .  

. . . . . . .  I 
C 

No. 15. Needle diagrams showing various stages of the iterative solution: (a) This is the initial 
orientation array, obtained from boundaw information. (b) Result after 5 iterations. (¢) Result 
~ter ~ iterations. 
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FIG. 16. This shows how the root-mean-square  of error in orientation decreases with the number  of 
iterations. 

region surrounded by an occluding boundary, one needs information from the 
opposite side to obtain the exact orientation. At each iteration, information 
available at one point propagates only to its immediate neighbors. This means 
that it takes as many iterations as there are nodes across the object for a point 
near the boundary to begin to be influenced by the opposite boundary. In this 
case, the number of nodes across is thirty and this implies that we may need 
more than thirty iterations. Fig. 15b shows the results after 5 iterations, while 
Fig. 15c is the result after 30 iterations. Fig. 16 is the root-mean-square error 
(the difference between the true values of orientation and those computed by 
the algorithm) plotted as a function of the number of iterations. 

The error  gradually decreases, and after thirty iterations, the relative error  is 
less than 0.01%. Fig. 17 is a view of the surface generated from the surface 
orientation data that was used to make the needle diagram. 

i?--~';<4/ 

"<Z<c; 

FIG. 17. The  surface generated by the algorithm from the synthetic image of the sphere.  
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4.2.2. Example 2. Effect of initial values 

We proposed the use of orientations at singular points as initial values. It may 
be desirable that until the boundary information propagates to a point, 
orientation values at that point not begin to change. At a singular point, the 
partial derivatives of R are always zero. This means that the constraints of the 
image-irradiance equations are ineffective there. The orientations at each point 
can be initialized to (0.0, 0.0). The partial derivatives for that orientation 
typically are non-zero, however, with the result that the iterative equations 
indicate adjustments at each grid node before information from the boundary 
has had a chance to propagate to the node. It is not clear if the number of 
iterations required for a reasonable solution is affected adversely by this 
phenomenon. 

This second example illustrates the effect of initial values. An egg-shaped 
object is illuminated from a direction near the extension of one of its short 
axes, and the viewer is looking in the direction of the long axis. We use an egg 
shape now to demonstrate that our algorithm works on objects other than 
spheres. The ratio of the length of the long axis to that of the short axis is 3 in 
this example. The precise position of the light source is given by ~,, g,)= 
(0.5, 0.0) (the angle between the incident rays and the z-axis is 53.1°). 

The surface orientations on the self-shadow boundary are given initially to 
simplify matters. Fig. 18 shows the resulting needle diagram and Fig. 19 the 
relative errors, illustrating the utility of initial values at singular points. When 
we use singular values as initial values, we get to a reasonable solution after 
fewer iterations than when all points are initialized to have the orientation 
(0.0, 0.0). A view of the surface computed is shown in Fig. 20. 

. . . . . . . . .  \ ~ 

. . . . .  k\\\ ~\ l 

. . . . .  \ \ \ \ \  %\ ! 

. . . . .  N N \ \ \  ~% t l  

. . .  ~NNNk\ X\ I I  

" • III// / 1 1 1 ~ ,  

. . . .  / / / /  / I I I ' , %  
. . . . . . .  I I  I 1 1 1 ~ %  

. . . . . . . . .  / I I I I ~  

. . . . . . . .  l l l l i ~  

~G, 18. The needle diagram generated for the 
e~-shaped object. 

k (~.0 0.0) INITIAL VALUE 

ITERATIONS 100 
FIO. 19. The root-mean-square error in orien- 
tation for the egg-shaped object. The error is 
lower after a given number of iterations when 
the singular point is used to provide initial 
values. 
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FIG. 20. The surface generated by the algorithm from the synthetic image of the egg-shaped object. 

4.2.3. Example 3. Negative Gaussian curvature 

The t~,o previous examples involved surfaces whose Gaussian curvature is 
positive [Cohn-Vossen, 1952; Pogorclov, 1956; Moon and Spencer, 1969; do 
Carmo, 1976]. The third example involves a hyperbolic shape, one with 
negative Gaussian curvature. Unfortunately, there are no occluding boundaries 
on this surface. Instead, we provide the algorithm with orientations on a closed 
curve as boundary conditions. The light source is again near the viewer in this 
example. Fig. 21 is the needle diagram generated for this surface. 

It takes about the same number of iterations to obtain a reasonable solution 
as in the first example. This result illustrates that the algorithm is not sensitive 
to whether a surface has negative or positive Gaussian curvature. In other 

• / / l l l l ? l l l l ~ l ~ t ~ \ %  . 

FIG. 21. The needle diagram of the solution obtained for the hyperbolic surface. 
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FIG. 77. Tim surface generated by the algoritlun from the synthetic image of the hyperbolic 
surface. 

words, we can use this algorithm without paying attention to the global 
characteristics of the surface, whether it be concave or convex, and whether its 
surface consists of hyperbolic or elliptical points [Woodham, 1977]. Fig. 22 is a 
view of the surface generated by the algorithm. 

4.2.4. Example 4. Effect of incomplete boundary information 

If no boundary information is available at all, then we can say very little about 
the shape of the surface. We would, however, like to get some estimate of the 
surface shape when only some of the boundary information is missing. 

In the example shown here, we do not provide explicit boundary information 
on the self-shadow boundary. There are two motivations for considering this 
situation. One is that, as mentioned earlier, we cannot determine surface 
orientations uniquely there anyway. The other is that it sometimes happens 
that we cannot see all of the surface of an object, and we have to do without 
information on part of the boundary, leaving it unconstrained. The algorithm 
should try to obtain reasonable surface orientations even in situations like that 
(although one might expect that there may not be a unique solution to the 
shape-from-shading problem in this case). 

We imagine that a Lambertian sphere is illuminated from the direction 
(st,, g,)--(0.5, 0.0). No information is provided on the self-shadow boundary. 
Fig. 23 shows the relative errors in the solution obtained by the algorithm, 
plotted against the number of iterations. 

The conclusion is that the information about orientations on the self-shadow 
boundary helps the algorithm arrive at a good solution after fewer steps, but is 
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~x~ SELF SHADOW: 
\ ' , ~ - -  - ~P~E 

FIG. 23. The root-mean-square error in orientation when boundary information is incomplete 
decreases more slowly than when it is complete. A reasonable solution is obtained in both cases. 

n o t  n e c e s s a r y  fo r  c o n v e r g e n c e .  A c l o s e d  b o u n d a r y  d o e s  n o t  s e e m  to  be  a 

n e c e s s a r y  c o n d i t i o n  fo r  t h e  a l g o r i t h m  to  a r r i v e  at  a so lu t i on .  If  an  o b j e c t  is 

p a r t i a l l y  o b s c u r e d  by a n o t h e r ,  it m a y  still be  pos s ib l e  to  o b t a i n  a ' r e a s o n a b l e '  

so lu t i on ,  o n e  w h i c h  d o e s  n o t  c o n t r a d i c t  any  of  t h e  i n f o r m a t i o n  p r o v i d e d  by t h e  

i m a g e .  

90 ° 95% 

75 ° 65% 

60 ° 32% 

52-5~8 % 

45 ° (REAL) 

o 37-523 % 

30 ° 35% 

15 ° 65% 

0 ° 86% 

FIG. 24. The effect of inaccurate estimation of the position of the light source. The source is 
actually at 45 °, while the program is misled into believing it is at a variety of angles, from 0 ° to 90 °. 
The interrupted line shows a cross section through the correct solution. 
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4.2.5. Example 5. Effect of error in estimating light-source position 

In practice, we may not be able to determine the light-source position pre- 
cisely. In this example the light-source position is given incorrectly. It is 
reasonable to insist that the algorithm still work, although, of course, the 
solution cannot be expected to be accurate. 

A synthesized image of a sphere is made with the illumination coming from a 
direction which makes an angle of 45 ° with the z-axis. Then the algorithm tries 
to determine surface orientations under the assumption that the light source is 
at some other position, ranging from 0 ° to 90 °. As one can see from Fig. 24, an 
error of 7.5 ° in estimating the source direction causes no more than 20% error 
in surface height. 

4.2.6. Example 6. Effect of error in assumed reflectance properties 

In this experiment, the algorithm uses a reflectance map based on incorrect 
assumptions about the reflectance properties of the surface. Egg shapes, whose 
axis ratios are 5, 3, and 1 are illuminated from a light source placed near the 
viewer. The surface has brightness linearly dependent on the incident angle 
(rather than the cosine of the incident angle): 

1 - 2i/'tr. 

The algorithm, however, assumes that the surface is Lambertian. The output 
still resembles the correct result as shown by the cross sections in Fig. 25. 

(a) (b) (c) 

FIG. 25. Cross sections through shapes computed when the reflectance properties were different 
from those assumed by the program. (a) Egg shape with ratio of axes equal to 5. (b) Egg shape with 
ratio of axes equal to 3. (c) Egg shape with ratio of axes equal to 1. In each case the interrupted 
line shows a cross section through the correct solution. 
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4.2. 7. Example 7. Analysis of a SEM picture 

Here the algorithm is applied to a picture which was produced by a scanning 
electron microscope (SEM). Such devices are described in a book by Wells 
[Wells et al., 1974], and pictures made using them can be found in a number of 
popular books [Scharf, 1977; Grillone, 1978] and articles [Echlin, 1968]. SEM 
images are in many ways similar to images obtained in an optical system when 
the light source is symmetrically distributed about the viewer. The reflectance 
map is rotationally symmetric about the origin in both cases, and none of the 
visible areas are shadowed. One minor difference is that, in an SEM image, a 
surface patch oriented with its normal pointing at the viewer has minimum 
brightness, not maximum. 

The object shown in the pseudo gray-level image that appears as Fig. 26 is a 
protuberance on a young leaf [Scharf, 1977, p. 96]. The reflectance map we 
used at first was based on the data of Laponsky [Laponsky and Whetten, 1960], 

FIG. 26. A pseudo gray-level picture made  from a scanning electron microscope image of a 
protuberance on a young leaf of cannabis sativa indica. 
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~ o .  27. The needle diagram computed for the object in the previous figure. 

which suggests that secondary electron flux in a Scanning Electron Microscope 
varies approximately as the secant of the incident angle. Fig. 27 is the needle 
diagram which the algorithm computed, and views of the surface generated are 
shown in Fig. 28. 

The computed surface appears to be a bit too fiat, probably as a result of 
incorrect assumptions about the form of the reflectance map, as well as the fact 
that we did not take into account the changes in gray-level that are introduced 

t ~  ~ ! ' i~  I : ,~  ~ ~ i i l ~  

FIG. 28. Various views of the surface computed from the scanning electron microscope picture. 
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FIG. 29. Cross section through the reflectance map  based on the assumption that the resin droplet 
is spherical. The  horizontal coordinate equals V ' ~ - - ~  = 2 tan i/2. Also shown for comparison are 
(a) the function sec i and (b) a function which equals (1 + sec i)/2 for i < 70 ° and saturates for larger 
incident angles. 

by the lithographic reproduction of the picture. The data of Miiller [Miiller, 
1937] suggests that the secondary electron flux grows more slowly than the 
secant of the incident angle, at least for amorphous metals. Careful measure- 
ments on a more or less spherical resin droplet imaged in another picture of the 
same plant confirmed this for our example. Shown in Fig. 29 is a cross section 
through the reflectance map obtained from this 'calibration object ' .  

An approximation for the brightness, which remains finite for all incident 
angles, 

ea(l-cos i), 

has been suggested by Bruining [Bruining, 1954]. The best fit of this function to 
our data occurred for a ~ 1. A considerably better  fit was provided by a 
function of the form 

sec ki 

for k ~ 0.8. For incident angles less than 70 °, however, the best fit was obtained 
from 

(1 - s) + s sec i 
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FIG. 30. Cross sections through the surfaces computed from the image of the protuberance using 
the two reflectance functions shown in Fig. 29. 

for s ~½. The only remaining discrepancy results from the fact that the 
observed brightness saturates at a finite value for incident angles close to 90 °. 
An ad hoc correction for this was incorporated in our estimate, also shown in 
Fig. 29. 

Shown in Fig. 30 are cross sections through two reconstructions. The upper 
one (a) corresponds to the result shown in Fig. 28, while the lower one (b) 
was obtained using the reflectance function (1 + sec i)/2, modified to take into 
account the saturation of brightness for large incident angles. The shape 
computed using the latter reflectance function is in better  accord with human 
judgment. 

The lesson is that it is better  to use a calibration object of known shape for 
the determination of the reflectance map than to depend on measurements 
obtained under somewhat different circumstances, or on a theoretically derived 
approximation. 

5. Concluding Remarks 

We proposed an algorithm for computing surface orientations from shading 
information using an iterative method. We then demonstrated that this al- 
gorithm does successfully compute surface orientations under a variety of 
conditions. 

5.1. Relevance to applications in machine vision 

One use of the algorithm is, of course, to compute shape from shading in a 



180 K. I K E U C H I  A N D  B.K.P. H O R N  

single image. This algorithm is especially effective in the analysis of scanning 
electron microscope pictures of smooth parts of objects. 

Another  application is the improvement of the results produced by the 
photometric stereo method. We do not need any assumptions about surface 
smoothness to implement the photometric stereo method. However,  when 
there is noise in the measured brightness values, the computed orientations will 
be in error. This error  can be drastically reduced if we do introduce the 
constraint of surface smoothness. If, for example, there is a dirty spot on the 
object, the measured brightness values will be too low. The lookup table used 
in the photometric stereo method may then not have a surface orientation 
entry for these erroneous values. In this case, surface orientation can be filled 
in from the neighboring points by averaging. This is the simplest use of the 
method. Output  from a photometric stereo system [Silver, 1980] has been 
smoothed successfully using this method. 

An even better  way to proceed is to minimize the weighted sum of the errors 
in the image-irradiance equations and the smoothness measure. The solution is 
then, in effect, pulled towards each of the constraint lines of the reflectance 
map and towards the local average of the surface orientations. It ends up in 
some compromise position which minimizes the overall 'strain'. The weights, 
by the way, can be set according to known values of noise in the measure- 
ments. This method has in fact been used in some recent work on photometric 
stereo. (Compare Fig. 8.2 with Fig. 8.4 in [Ikeuchi, 1981].) In the cases shown 
there, the algorithm not only smoothed the output, but also extended the area 
in which a solution could be found. 

5.2. Relevance to basic research in machine vision 

The algorithm still works reasonably when the reflectance map is only a crude 
approximation. As can be seen from Example 5, if one is prepared to tolerate 
errors of up to 20%, then one can be off by as much as 7.5 ° in estimating where 
the light source is. Similarly, Example 6 shows that if this kind of error is 
acceptable, it does not matter  whether the surface is Lambertian or one with 
somewhat different reflectance properties. Thus, if one is willing to accept 20% 
estimation errors, only six or seven reflectance maps are needed for different 
light-source position, multiplied by two or three to allow for different surface 
materials. Note that we don' t  really need different reflectance maps for 
different light-source azimuths, since the reflectance map can be rotated to 
accommodate changes in azimuth of the light source. The nature of the 
reflectance map does, however, change when the zenith angle of the light 
source changes. 

Propagation of constraints is a powerful method for attacking vision prob- 
lems. Clarification of the constraints or relationships between neighboring 
nodes often gives us the key to the solution of a problem. The propagation of 
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constraints from neighboring nodes cuts down the space of possible solutions at 
a node [Zucker, 1976]. In vision, the number of nodes is large and the possible 
values lie in a continuous range. This means that the solution space is rather 
large. In this case, the propagation technique is more effective than the search 
technique. Even when the propagation technique cannot determine a unique 
solution, it can reduce the number of possible solutions so that subsequent 
search can be more effective [Waltz, 1975]. 

There are several examples in vision where this method has been employed 
effectively. An iterative method is used to invert the Laplace operator in the 
computation of lightness [Horn, 1974]. A pseudo-local operator is a global 
operator which can be computed by iteration of a local operator because it 
happens to be the inverse of a local operator [Horn, 1982]. In the computation 
alluded to here, the so-called G operator (pseudo-local) calculates a lightness 
value from those at neighboring points and the thresholded result of the 
so-called L operator (local) applied at the corresponding point in the image. 
The first stereo algorithm of Marr [Marr and Poggio, 1976] used this idea too. 
Here, the 'continuity rule' is an example of positive propagation, requiring that 
neighboring points have similar disparity values. The 'uniqueness rule' is an 
example of negative propagation, causing the value at a node to inhibit 
neighboring nodes from taking on the same value. Iterative computations 
similar to the ones presented in this paper also occur in the estimation of 
optical flow from image sequences [Horn and Schunck, 1981]. The shape from 
regular pattern algorithm [Ikeuchi, 1980] is another example which uses a very 
similar method. Needless to say, the relaxation technique [Zucker, 1976; 
Rosenfeld, 1978; Hummel and Zucker, 1980; Davis and Rosenfeld, 1981] is an 
implementation method for the propagation of constraints. 

The propagation of constraint method is suggestive of parallel processing in a 
planar computational network. The relationship between nodes is homo- 
geneous. Each node connects to its neighbors in the same fashion, independent 
of its position within the network. An essential operation in many of the 
algorithms mentioned here is the computation of a weighted average over the 
neighboring nodes. This is the kind of operation that even a simple array 
processor can perform easily. 
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