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This paper discusses issues and techniques to automatically 
compile object and sensor models into a visual recognition strat- 
egy for recognizing and locating an object in three-dimensional 
space from visual data. Historically, and even today, most success- 
ful model-based vision programs are handwritten; relevant knowl- 
edge of objects for recognition is extracted from examples of the 
object, tailored for the particular environment, and coded into the 
program by the implementors. If this is done properly, the result- 
ing program is effective and efficient, but i t  requires long devel- 
opment time and many vision experts. 

Automatic generation of recognition programs by compilation 
attempts to automate this process. In particular, it extracts from 
the object and sensor models those features that are useful for 
recognition, and the control sequence which must be applied to 
deal with possible variations of the object appearances. The key 
components in automatic generation are: object modeling, sensor 
modeling, prediction of appearances, strategy generation, and pro- 
gram generation. 

An object model describes geometric and photometric proper- 
ties of an object to be recognized. A sensor model specifies the 
sensor characteristics in predicting oblect appearances and varia- 
tions of feature values. The appearances can be systematically 
grouped into aspects, where aspects are topologically equivalent 
classes with respect to the object features “visible” to the sensor. 
Once aspects are obtained, a recognition strategy is generated in 
the form of an interpretation tree from the aspects and their pre- 
dicted feature values. An interpretation tree consists of two parts; 
a part which classifies an unknown region into one of the aspects, 
and a part which determines its precise attitude (position and ori- 
entation) within the classified aspects. Finally, the strategy is con- 
verted into an executable program by using object-oriented pro- 
gramming. One major emphasis of this paper is the sensors, as 
well as objects, must be explicitly modeled in order to achieve the 
goal of automatic generation of reliable and efficient recognition 
programs. 

Actual creation of interpretation trees for two objects and their 
execution for recognition from a bin ofparts are demonstrated. 
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I. INTRODUCTION 

A large class of practical vision problems i s  object rec- 
ognition, that is, recognizing and locating objects in the 
scene by means of visual inputs. To name a few, visual part 
acquisition on a conveyor belt or from a bin of parts, target 
recognition in  aerial images, and landmark recognition by 
a mobile robot, all belong to this class of problems. In  most 
of thesecases, we have some prior knowledge of theobjects 
of interest, such as the shapes, sizes, reflective properties, 
and so forth. Model-based vision [I], [2] seeks to actively use 
such prior knowledge of objects for guiding the recogni- 
tion process in  order to achieve efficiency and reliability. 

One of the critical issues in building a model-based vision 
system i s  how to  quickly extract and organize the relevant 
knowledge of an object and to systemqtically turn it into a 
vision program. In particular, it i s  important to know what 
features of objects are useful for recognition, and what con- 
trol i s  to be applied to deal wi th possible variations of the 
object appearances. In earlier vision systems, such knowl- 
edge of objects has been extracted from examples of the 
object, tailored for the particular environment, and coded 
into the program bythe implementor. For example, in inter- 
preting incomplete line drawings of polyhedra of known 
size and shape, Falk [3] analyzed failure patterns of line 
extraction and implemented strategies to cope with them. 
In fact, even today, most successful vision systems are 
developed based on the implementors’ insight into the spe- 
cific problems. Some representative examples include 3-D 
object recognition systems in  range maps by Oshima and 
Shirai [4] and by Faugeras and Hebert [5], aerial photoin- 
terpretation systems by Nagao and Matsuyama [6] and by 
McKeown, Harvey and McDermott [7], bin-picking systems 
by Perkins [B] and lkeuchi and Horn [9], and the NAVLAV 
mobile robot vision system by Thorpe et a/. [IO]. In  these 
systems, features and recognition strategies to be used are 
selected by the researchers. Although the resulting system 
may be effective and efficient, this ”hand-coding” method 
requires large amounts of time and deep vision expertise 
for building model-based vision systems. 

Quiteoften, a geometrical model of theobject is available 
which represents the three-dimensional shape information 
by means of polyhedra, generalized cylinders, or other 
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primitives. Given such an object model, visual recognition 
of an object amounts to  determining its attitude (position 
and orientation) in  space by using itsvariousfeatureswhich 
are observable in the images. In  this view, one can imagine 
a generic model-based vision system which, given an input 
image or other sensory data, recognizes an object in  it by 
means of a geometric reasoning mechanism which can 
deduce possible object attitudes from apparent object fea- 
tures. The historical and pioneering vision system by Rob- 
erts [Il l  can be viewed as such a generic approach. I t  
reduced the problem of object matching to  that of esti- 
mating the parameters of transformation (rotation, trans- 
lation, size, and projection) by minimizing a matching error 
between model vertices and image joints. 

Crimson and Lozano-Perez [I21 have formulated the 
problem of object localization measurements (such as posi- 
tion) within a generic hypothesize-and-test search para- 
digm. When matching a set of observed surface points wi th  
a set of polyhedral object models, the possible matching 
pairs are expanded as a search tree. The matcher prunes 
this tree by using relational constraints between pairs of 
measurements which the object models impose if the 
matching is correct so far. The method has been applied 
to 2-D and 3-D object recognition using sparse range, touch, 
and orientation sensory input. 

Probably, however, the most representative effort toward 
domain-independent model-based vision systems i s  
ACRONYM by Brooks [13]. ACRONYM takes models of 
objects represented by generalized cylinders and their spa- 
tial relationships. Recognition or matching of the models 
to an input image is performed by using a symbolic alge- 
braic reasoning system which reasons about projection and 
relational constraints on  geometry. ACRONYM has suc- 
ceeded in  recognizing airplanes in aerial images. 

When performing matching, a generic domain-indepen- 
dent model-based system relies on  a generic reasoning 
mechanism: numerical optimization of some matching cri- 
terion, tree search by hypothesize-and-test, or constraint 
satisfaction by symbolic reasoning. The system uses the 
object model interpretively, that is, the knowledge i s  
extracted from the model and transformed into an exe- 
cution strategy at run time. As a result, the system may not 
be most efficient for the particular object in  hand. This is 
a necessary price that an interpretive merhod must pay for 
its generality and flexibility. 

One method for increasing efficiency i s  compilation. That 
is, the relevant knowledge in the object models i s  extracted 
and compiled into an object recognition strategyoff-line so 
that as little computation as possible i s  spent at run time. 
Interestingly enough, we can regard some of the earlier 
vision work as examples of compilation. The generalized 
Hough transform by Ballard [I41 and the direction coding 
method by Yoda, Motoike, and Ejiri [I51 can be regarded as 
compiling the object shape in the appropriate transform so 
that the recognition reduces to peak f inding in  a histogram. 
However, these methods have limited applicability. 

Bolles, Horaud, and Cain used a "local-feature-focus" 
recognition strategyfor recognition of 3-D objects in a jum- 
ble [16]. The method involves selecting a class ot  "focus" 
features of similar shape on  the object. Matching begins 
with the "focus"features. In selecting appropriate features 
tor the strategy, they precomputed various feature values 
trom a given CAD model of objects. 

Goad [I71 presented one of the first and most systematic 
methods for automatic generation of object recognition 
programs based o n  compilation. His method compiles vis- 
ible edge of an object into an interpretation tree. Each 
branch of the tree i s  constructed t o  execute three stages: 
prediction, observation, and back-projection. In  the pre- 
diction stage, a model edge is extracted from the node based 
on  the current hypothesis of viewer direction, and the posi- 
t ion and orientation of i t s  projection in the image I S  pre- 
dicted. In  the observation stage, the list ot image edges is 
checked to see whether any has the predicted qualities. In  
the back-projection stage, if an edge with predicted qual- 
ities was found in the prediction stage, then the m a k h  i s  
extended to  include this edge, and the measured position 
and orientation of the edge are used to retine the current 
hypothesisastothelocationof thecamera. Duringthecom- 
pilation mode, stages and nodes which wil l  become unnec- 
essary at run t ime are detected and pruned. Various con- 
ditions and data structures to be used at run time are a lso 
computed. This way, much of the computation at run time 
i s  saved. The method for selecting the most efficient 
sequenceof edges to beexamined was not discussed, how- 
ever. 

Koezuka and Kanade [I81 constructed an interpretation 
tree automatically from a model of a polyhedral object by 
using parallel edges as initial features to be used in  match- 
ing. Parallel line features remains parallel over a wide range 
of viewing directions, but the direction and distance 
between a pair of lines still provide strong constraints on 
viewer direction, and thus can be used to  c-reate a rcliable 
and efficient interpretation tree. 

lkeuchi [I91 presented acompilat ion technique based o n  
visible regions. The system classifies various views into 
aspects, where aspects are defined as topologically equiv- 
alent views. The interpretation iree is constructed so that 
an unknown view wil l  be classified into an aspect and then 
its attitude wil l  be determined precisely. He developed rules 
to generate an interpretation tree from a geometric model. 
The rules determine what kinds of teatures should be used 
in  what order and generate an interpretation tree. 

Automatic generation of recognition programs by com- 
pilation of object models tries to combinr  the merits of a 
hand-written system and those of a generic interpretive sys- 
tem. A general compilation program generates a tailored 
special program from a given 3-D modr l .  A large port ion 
of thecomputation needed for using the object model, such 
as analysis of the best recognition strategy, analysis of 
occlusion, and estimation of expected feature values, can 
be done at compile time, and the result can be compiled 
into the special program. In  some cases, the object prop- 
erties might be represented in the flow of the program 
rather than its data structure. As a result, the compiled spe- 
cial program to run  on-line can be more efficient than 
generic programs. Yet, since the program is generated 
automatically, the development t ime could be reduc-ed. 

This paperdiscusses issuesand techniquestor automatic 
generation of recognition programs by compilation. The 
discussion wi l l  be based on  our current approach [19]-[21], 
whose key steps are object modeling, sensor modrl ing, 
prediction of object appearances, strategy generation, and 
program generation. An object model describes gcometric 
and photometric properties of an object to t i c 1  recognized. 
A sensor model specifies the sensor characteristics in pre- 
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dicting object appearances and variations of featurevalues. 
The appearances can be systematically predicted and 
grouped into aspects, and a recognition strategy is  gen- 
erated in the form of an interpretation tree from the group- 
ing and the predicted feature values. Finally, the strategy 
i s  converted into an executable program by using object- 
oriented programming. A major emphasis of this paper is 
that sensors, as well as objects, must be modeled explicitly 
in order to achieve the goal of automatic generation of reli- 
able and efficient recognition programs. First, we will pre- 
sent our initial system for generating an interpretation tree 
for bin-picking using photometric stereo. This example sys- 
tem will introduce various concepts as well as issues. 

II. COMPILING AN OBJECT MODEL INTO AN INTERPRETATION 
TREE 

This section will present an example of compilation of a 
geometric object model into an interpretation tree. The 
example task i s  a bin picking task. The object shown in Fig. 
l(a) and (b) i s  the sample object and the scene in  Fig. l (c)  
isatypical imagefromwhich theobject must be recognized 
and located. 

A 3 -0  object can give rise to an infinite number of 2-D 
shapes in an image. These apparent 2-D shapes of a 3-D 
object, however, can be grouped into a finite number of 
equivalence classes, called aspects [22], where each aspect 
contains the apparent shapes arising from the same set of 
visible features of objects, such as faces, edges or vertices, 

n 

(C) 

Fig. 1. Object recognition example. (a) Photo of a sample 
object. (b) Geometric model of the object. (c) Sample scene. 

with the same topological relationships among them. We 
can therefore distinguish two types of shape changes: one 
is shape change between aspects (called aspect change); 
the other i s  shape change within an aspect (called linear 
change). 

We will divide a recognition stage into two substages: 
aspect classification stage and linear-change determination 
stage. Thus, our goal is  to automatically develop an inter- 
pretation tree which first classifies the input image of an 
object into oneof the possible aspects, and then calculates 
the exact attitude of the object. I t  should be noted that dif- 
ferent features are most likely required to resolve aspect 
changes than are required to resolve linear changes. Also, 
in resolving linear changes, appropriate techniques and 
features might be different depending on the particular 
aspect in which the linear change occurs. Thus, it i s  essen- 
tial for both competence and efficiency to compile a geo- 
metrical model into an interpretation tree so that the most 
appropriate features among all the available features are 
used at each aspect classification stage and linear-change 
determination stage. 

A. Extracting Aspects 

For object recognition purposes, aspects are defined as 
topologically equivalent classes with respect to the object 
features “visible” to the sensors. For example, aspects have 
been defined by visible lines [22], [23], by visible vertices 
[24], and by occluding boundaries [25]. As wil l  be explained 
later, our example system will use photometric stereo [26], 
[27l as the major sensor. Photometric stereo determines 
surface orientations by illuminating the surface with three 
or more light sources.Thuswecategorizetheaspects based 
on visible faces for photometric stereo. 

Viewer or camera configurations, which result in  various 
appearances of a 3-D shape, consist of six degrees of free- 
dom in general: three degrees of freedom in  translation, 
and three degrees in rotation. However, in  most industrial 
vision problems, such as bin picking, we can assume ortho- 
graphic projection as the first approximation. This i s  
because the camera i s  set u p  at a relatively far and fixed 
distancetotheobjectsand theobjectsare imaged only near 
the center of the camera’s field of view. This means that the 
three translations are either known or constant. Since a 
rotation around the camera optical axis results in a rotation 
of the image, not in a significant change of appearances, 
the two degrees of freedom which specify the viewer direc- 
tion are the dominant ones in determining aspects. 

Wewill thusexplorechangesof apparent shapesoverthe 
set of possible viewer directions. A viewer direction can be 
described as a point of the Gaussian spherewhich is placed 
at the center of an object. Each apparent shape (thus, each 
point on the Gaussian sphere) can be characterized by those 
faces visible from that viewer direction. Suppose we have 
nfaces,S,,S,, . . .,S,,whereonefacecorrespondstoeither 
a planar surface or a curved surface which will be detected 
as a single surface patch in photometric stereo. Let the 
variable XI denotes the visibility of face S I ,  that is 

1 face S, is visible; 

0 otherwise. 

An n-tuple (X,, Xz, . * * , XJrepresents a label of an apparent 
shape in  terms of face visibility. This label will be referred 
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to  as a shape label, and we can characterize each viewer 
direction with this label. 

The set of contiguous viewer directions that have the 
same shape label forms an aspect. There are two methods 
to  enumerate possible aspects of a given object: an analytic 
method and an exhaustive method. Though precisely find- 
ing possible aspects by an analytic method i s  relatively easy 
for convex polyhedra, it becomes more complex and less 
tractable for concave objects and curved objects. For prac- 
tical purposes, we favor the exhaustive method, in which 
we generate apparent shapes of the object under various 
viewer directions sampled on  the Gaussian sphere, exam- 
ine shape labels of the generated shapes, and classify them 
into aspects. 

We tessellate the Gaussian sphere by using a geodesic 
dome which subdivides the sphere into many small spher- 
ical triangles [28], each of which reprsents a sampled viewer 
direction. At each sampled viewer direction, an apparent 
shapeof theobject isgenerated usingageometric modeler, 
and its shape label (Xl, Xz, * . , X,) i s  calculated. This way, 
all possible shape labels are calculated,. evenly sampled over 
all possible viewer directions, and grouped into aspects.' 
Finally, a representative attitude i s  selected for each aspect 
chosen from the set of viewer directions which belong to  
the same aspect. Usually, theviewer direction which results 
in an appearance with the largest sectional area i s  selected 
as the representative attitude. The representative attitude 
is used t o  calculate the representative values of features to  
be used in discriminate aspects and t o  calculate the precise 
attitude within an aspect. 

Fig. 2 shows the result of applying this method t o  the 
object of Fig. 1. The sample object has twelve component 
faces. Fig. 2(a) shows the geometric model of the object. Fig. 
2(b) shows the Gaussian sphere tessellated into sixty small 
triangles using the one-frequency dodecahedron. Sixty dif- 
ferent shapes corresponding to  the tessellated triangles are 
generated as shown in Fig. 2(c), where the faces surrounded 
with bold lines are detectable using photometric stereo. 
Because of the geometry of the light sources, some faces 
visible to  humans are not detectable by photometric stereo. 
Fig. 2(d) shows the larger eight component faces used for 
theshapelabelamongthetwelvefacesof theobject. Smaller 
regions under a certain threshold are regarded as non- 
detectable. Fig. 2(e) l i s ts  the five aspects obtained as the 
result of classification of the sixty appearances in Fig. 2(c). 
For aspects 1 t o  5, five representative attitudes are gener- 
ated as shown in Fig. 2(f). 

B. Sensors and Features 

This section wil l  give a brief description of the sensors 
we used and then present how the aspects are described 
in terms of available features. I n  our example system, the 
major sensor i s  photometric stereo which provides surface 
orientations. In addition, we use dual photometric stereo 
to  obtain depth information and an edge detector to  locate 
fine features of objects. 

Photometric Stereo 1261: Photometric stereo takes mul- 
tiple images of the same scene from the same camera posi- 
t ion under different i l lumination directions in order t o  

'Note that although possible omission of aspects may occur in 
this method, it would not hurt anyway because the aspects of nar- 
row areas in the Gaussian sphere are seldom observed. 

t faces 
Aspect1 
11 100000 
Aspect2 
11000000 
Aspcet3 
11000010 
Aspect4 
1 1000001 
Aspect5 
00001 100 

1 (e) Possible Aspects 

( f )  Representative Attitudes 

Fig. 2. Extraction of aspects. (a) Geometric model of an 
object. (b) Gaussian sphere tessellated into sixty triangles 
to represent viewer directions sampled. (c) Sixty appear- 
ances. The faces surrounded with bold lines are detectable 
by photometric stereo. Because of the geometry of the light 
sources, some faces visible to humans are not detectable by 
photometric stereo. (d) Eight component faces to be used 
for the shape label. (e) Five aspects obtained as the result 
of classification of sixty appearances by the shape label. Eight 
digits at each aspect represent the shape label of the aspect. 
Thevisible faces are indicated under each aspect. For exam- 
ple, faces 1,2, and 3 are observable in aspect 1, whose shape 
label is 11100000. ( f )  Five representative attitudes. 

determine surface orientations (p, q )  based on  differences 
in brightness. Since different images are taken from the 
same point, there i s  no  disparity between the images as 
there is with binocular stereo, so no correspondence prob- 
lem has t o  be solved. This makes photometric stereo very 
fast. By using photometric stereo we generate a needle map, 
which is a distribution of (p, q )  over the image. From the 
distribution of (p, q)  over a region, we can recover various 
geometric features of visible regions such as area and 
moment. 

Dual Photometric Stereo [27]: Although photometric ste- 
reo can determine the surface orientation very fast, it can- 
not determine absolute depth. In order to  determine abso- 
lute depth fast, we use the dual photometric stereo method 
which uses twocameraand three light sources, and matches 
a needle map of the left camera photometric stereo and the 
otherfrom the rightcamera.A needle mapobtained bypho- 
tometric stereo can be easily segmented into isolated 
regions using uninterpretable regions around objects. We 
wil l  establish the correspondence between left regions and 
right regions by using three characteristics: vertical mass 
center positions, average surface orientation over the 
region, and region area. Since our method only checks cor- 
respondences between regions, the number of combina- 
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tions necessary to examine is small, so the system i s  very 
rapid. A depth map is obtained from each region's disparity 
and averagesurfaceorientation. Thedepth mapwill be used 
to determine the target region from which the recognition 
process begins. 

Edge Detector: We also use an edge map which is 
obtained by differentiating brightness distributions and 
grouping edge points into line segments with a line. The 
edge map will be used as a supplementary source when the 
system cannot determine the object attitude completely 
using features from a needle map. 

In  summary, an input scene i s  described bya needle map, 
adepth map, and an edge map by using these three sensors. 
In describing aspects, we can use features available from 
these three representations of the input scene. Since sur- 
face orientation is obtained as the needle map, we can 
actually recover 3-D features of the original faces, instead 
of 2-D projected features, such as the area, shape, etc. Let 
(p, q )  be the surface gradient of a region. Then, the matrix 

J1 + p2 + q2/-- 1 T = [  p q I K T j 7  

0 

gives the affine transformation to map from the 2-D image 
coordinates to the 2-D coordinates on  the 3-D face. This 
transformation can be used to recover the 3-D features of 
the original face from 2-D features of the corresponding 
region in the image. 

Each aspect is now described by using various features 
obtainable from the above sensors. In  our example, fea- 
tures used include face moment, face relationships, face 
shape, edge relationships, extended Gaussian image (EGI), 
and surface characteristic distribution. Each of these fea- 
tures is discussed below. 

Face Moment: The face moments are represented by the 
two principal moments, mxx and myy, of a face. 

Face Relationship: An object often appears as multiple 
separated regions in  the image. This i s  especially true with 
nonconvex objects under photometric stereo. The rela- 
tionships between regions are very useful features. For each 
visible face, relative position information i s  stored which 
tells where each of the other visible faces should appear in 
the aspect. The relationship i s  represented by a vector with 
respect to the local face coordinate system. The origin of 
the local coordinate system is the mass center. The z axis 
and x axis agrees with the surface orientation, the direction 
of the maximum moment, respectively.2 

Face Shape:The face shape i s  described by the radial dis- 
tance function d = d(O), where d is the radial distance from 
themasscenterofthefacetoits boundary,andOistheangle 
from the x axis of the local coordinate system. 

Edge Relationships; In  some cases the needle map alone 
cannot determine the object attitude uniquely. In  this case 
someof the prominent edge information i s  useful to reduce 
ambiguity. The locations of edges are stored by the start and 
end positions. As in  other face information, these positions 
are represented in the local face coordinate system. When 
applying this information, the expected position of an edge 

'This local coordinate has 180 degree ambiguity wi th respect to  
the x-axis direction. Also if the region has no  unique maximum 
moment direction, for example, a circular region, only the direc- 
t ion of x axis is defined arbitrary. In  this case, only the distance 
between the two regions is stored. 

is computed using the inverse of the affine transformation, 
(1) derivable from the surface orientation of the face. Then, 
the narrow stripe region connecting theconverted start and 
end positions can be searched on  the edge map to see 
whether or not there is actually an edge. 

Extended Gaussian lmage (EGl): An EGI of an object is 
nothing but a spatial histogram of its surface orientations 
[29]-[31]. The EGI has two nice properties. One i s  that the 
EGI is invariant to translation of the object, and the other 
is that when an object rotates, its EGI also rotates in  exactly 
the same manner while not changing the relative EGI mass 
distribution. 

Surface Characteristics Distribution: A surface patch can 
be characterized as planar, cylindrical, elliptic, or hyper- 
bolic. The characteristics are defined in terms of the Gauss- 
ian curvature and the mean curvature [32] and are inde- 
pendent of the viewer direction and the rotation. 
Distribution of the characteristics are stored with respect 
to the local coordinate system, and are used in  a similar way 
and for a similar purpose as prominent edges. 

Foreach aspectextracted for an object, thefeatures listed 
above are ~a lcu la ted .~  The descriptions of all aspects thus 
obtained are now used to construct the interpretation tree 
with which input scenes will be recognized. 

C. Generating an Interpretation Tree 

An interpretation tree consists of two parts: the first part 
i s  used forclassifyingthe input scene intooneoftheaspects, 
and thesecond part isusedforcalculatingtheexactattitude 
of the object within the aspect determined. In this sub- 
section wewill createan interpretation tree for our example 
object. First we discuss how to  generate the classification 
part of the interpretation tree. The basic idea is a recursive 
examination of features of aspects to see whether or not 
they can discriminate a group of aspects into sub-groups 
of aspects. That is, starting with all the aspects as a single 
group, we check if a certain feature can divide the group 
into subgroups. If so, a branch node is created which reg- 
isters the features as the discriminator and the subgroups 
divided are connected as descendant nodes. Then for each 
subgroup (descendant node), the process i s  applied recur- 
sively until a subgroup is made of a single aspect or equiv- 
alently a single aspect i s  assigned to a leaf node.4 

We have used the following seven features for discrim- 
ination. In  order of preference, they are: the original face 
moment, the original face shape, the extended Gaussian 
image (EGI), the surface characteristic distribution, the edge 
distribution, the region distribution, and the relationship 
between a particular edge and a particular surface char- 
acteristic distribution. 

As an example, we apply this method to the object shown 
in Fig. l(a). The object has five aspects, shown in  Fig. 2(e), 
so the start node contains a group of five aspects, {SI,  S2, 

'An aspect represents a group of object appearances, while an 
aspect component represents a group of 2-D faces (or a group of 
several 2-D faces, if they have C' continuity across the connecting 
edges). Features are calculated at each aspect component. 

4 A ~ t ~ a l l y ,  as an initial stage of the project, a "skeleton" of a tree 
was predesigned by considering the "distances" among aspects, 
and the decision as to  whether or not a feature can divide the 
aspects at the nodewas made by human. For more details, see [19]. 
This human-assisted decision process has since been converted to 
an automatic decision process. 
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Fig. 3. Interpretation tree 

S3,  S4, S5}'(see Fig. 3). Since the original face moment can 
divide the aspect groups into three subgroups, { S I } ,  { S 2 ,  
S3, S4}, and {S5} ,  it i s  adopted as a discriminator at the 
starting node, and three descendant nodes, N I ,  N 2 ,  and 
N 3  are generated from the start node. Since node N I  and 
node N 3  contain only one aspect, S I  and S5, respectively, 
the generation process terminates at these nodes. On  the 
other hand, node N 2  contains threeaspects, so further pro- 
cessing i s  applied to  the node. Neither the original face 
shape, the extended Gaussian image, the surface charac- 
teristic distribution, nor the edge distribution can not dis- 
criminate the aspect group ( S 2 ,  S3,  S4}. Since the region 
distribution divides the aspect group into two subgroups, 
{ S 2 }  and { S 3 ,  S4},  this feature i s  adopted as a discrimi- 
nator for node N 2 ,  and two descendent nodes, N 2 1  and 
N 2 2  are generated from N 2 .  Node N 2 2  still contains two 
aspects, and requires further processing. Because S3 and 
S4 have a different internal structure of regions, the region 
distribution feature i s  adopted as the discriminant to  pro- 
duce two nodes, N221 and N222.  Now the complete aspect 
classification part of the interpretation tree has been 
obtained. 

Once the aspect classification part is constructed, we wil l  
move on to  generation of the part of the interpretation tree 
which determines the viewer direction and rotation. If a 
feature can reduce some of the remaining freedom in the 
viewer direction and rotation, it wi l l  be adopted into the 
tree. The decision as t o  whether or not a feature can reduce 
the freedom was made by a human at this point.6 

'More precisely, one aspect component, having the largest area, 
is selected among aspect components of each aspect as the face 
from which recognition process begins. Thus, the later stages 
examine various features of the selected aspect components. 

'This human-assisted decision process has since been converted 
to an automatic decision process. 

We have used the following eight features for determi- 
nation of the linear shape change. In  order of preference, 
they are: the mass center of EGI distribution, the EGI, the 
position of observable region distribution, the inertia direc- 
t ion of original face, the original face shape, the position 
of the surface characteristics distribution, the position of 
the edges, and the position of the edges wi th  respect t o  the 
position of the surface characteristics distribution. 

Theviewer direction and rotation are determined for each 
aspect using the most effective feature at each step. The 
selection depends on the aspect and the stage of the deter- 
mining process. As an example, we wil l  consider the case 
of node N 2 1  or aspect S2.  The other cases can be treated 
in the same way. Aspect S 2  has two observable regions of 
cylindrical surfaces. The EGI mass center can determine 
viewer direction. Theoretically, the EGI distribution could 
have determined the viewer direction and the rotation 
uniquely in this aspect, but due to  noise i twou ld  have been 
very unreliable. Thus, we wil l  use other features to  deter- 
mine the viewer rotation. 

Since aspect S 2  has two observable regions, the region 
distribution feature i s  applicable and can constrain the 
viewer rotation up  to  two directions (up or down). Neither 
the moment direction, original face shape, nor surface 
characteristic feature can disambiguate one of the two 
remaining possibilities. However, the edge distribution fea- 
ture can do. As a result, the EGI mass center, region dis- 
tribution, and edgedistribution have been adopted into the 
tree in this order. Fig. 3 shows the final interpretation tree 
obtained. 

D. Applying the Interpretation Tree 

In recognizing objects at run time wi th  the interpretation 
tree created, the system uses three kinds of feature maps: 
an edge map, a needle map, and a depth map as shown in 
Fig. 4. An edge map i s  obtained by differentiating the cam- 
era intensity image. Each of two photometric stereo sen- 
sors, left and right, produce a needle map using three inten- 
sity images corresponding to  the three lighting conditions. 
A depth map i s  constructed by the dual photometric stereo 
method [27]. An important advantage of these three maps 
i s  that they are registered in the same coordinate system; 
that is, all pixels having the same i - j pixel coordinates cor- 
respond to  the same physical point. 

Our bin-of-parts example scene contains many instances 
of the object, while the interpretation tree specifies how to 
recognize a single object. Therefore we have to  select a por- 
tion of an image where the interpretation tree i s  going to  
be applied. For this purpose, we choose the highest region 
(i.e., the region closest t o  the camera) as the target region 
to  be interpreted. The interpretation tree extracts necessary 
features from the region. These features wil l  be trans- 
formed and compared with the aspect model according t o  
the procedures contained in the interpretation tree. Based 
on the decisions at each node, the target region is classified 
into one of the aspects, and then the precise attitude and 
position are determined. 

Fig. 5 illustrates how the interpretation proceeds for the 
case of Aspect 2.  The arrow in the picture (b) indicates the 
target region. According to  the interpretation tree, the face 
moment of the region i s  t o  be calculated by using the shape 
and size of the region together with its spatial surface ori- 
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Fig. 4. Basic vision module. (a) Input scene. (b) Left needle 
map obtained by left photometric stereo. Surface orienta- 
tions are depicted as small needles. (c) Right needle map 
obtained by right photometric stereo. (d) Edges obtained by 
Canny edge operator. (e) Left region map. A needle map 
obtained by photometric stereo can be easily segmented 
into isolated regions using uninterpretable regions around 
objects. Duetothearrangementofthe light sources,a higher 
object projects shadows over the surrounding lower objects. 
Since the projected shadow areas becomes uninterpretable 
regions, a higher object is usually surrounded by uninter- 
pretable regions. The left region map is  obtained by seg- 
menting the left needle map based on these uninterpretable 
regions. ( f )  Right region map. (g) Depth map obtained by 
dual photometric stereo. The correspondence between left 
regions and right regions is established by using three char- 
acteristics: vertical mass center position, average surface 
orientation over a region, and region area. A depth map i s  
obtained by fitting a plane based on the depth at a mass cen- 
ter given from disparity and average surface orientation. (h) 
Line segments obtained by Miwa line finder. 

entations from the needle map. The rectangle in Fig. 5(a) 
indicates the direction and magnitude of the moment value 
thus obtained. Based on the value of face inertia, the inter- 
pretation tree determinesthis region to belongto thegroup 
of aspects S2, S3, and S4. 

The interpretation tree then distinguishes aspect S2from 
the rest by determining whether a neighboring region exists 
having the same moment size and direction around the tar- 
get region. The interpretation tree tries to find such a region. 
In  this case it succeeds, as shown in Fig. 5(c). From this, the 
interpretation tree determines that the target and the 
neighboring regions come from the sameobject and belong 
to the aspect S2. 

The rest of the processing is to verify the determined 
aspect and to calculate accurate object attitude, again fol- 
lowing the interpretation tree. Comparison of the EGIS from 

the model and the scene determines the viewer direction 
(Fig. 5(d)). Next, theviewer rotation around theviewer direc- 
tion must be determined. From the relationship between 
the two regions, the viewer rotation can be determined up  
to two directions (180O apart) (Fig. 5(f)), but more detailed 
analysis of the edge distribution is necessary to determine 
it uniquely. The interpretation tree examines the edge dis- 
tributions in the two stripe regions which are predicted for 
the two possible rotations. In this way, by following the 
interpretation tree as shown by the bold line (Fig. 5(e)), the 
object has been recognized and i ts attitude has been cal- 
culated uniquely (Fig. 5(g)). Fig. 5(h) presents the recogni- 
tion result by projecting the object model with the detected 
attitude on top of the depth map. 

For different aspects, other parts of the interpretation tree 
are similarly executed. When the interpretation tree has 
been executed on various regions in  an image for another 
scene, the combined interpretation results look like Fig. 6, 
in  which 10 instances of objects have been located suc- 
cessfully. 

I l l .  TOWARD SYSTEMATIC METHODS OF COMPILATION 

The system presented in the previous section has com- 
piled the object model into a recognition strategy in the 
form of an interpretation tree, and the resultant interpre- 
tation tree was successfully used to recognize the object 
instances in a cluttered bin-of-parts scene. In  the off-line 
compilation stage, it automatically derived distinctive 
aspects from a geometrical object model, built feature 
descriptions of aspects by calculating expected feature val- 
ues from the object model, and then, based on those 
descriptions, generated an interpretation tree for classi- 
fying the aspects and determining the attitude within each 
aspect. At on-line run time, the interpretation tree has con- 
trolled the localization process by using the predesignated 
most appropriate features at each stage. The recognized 
object position and attitude could be used for such tasks 
as bin-picking. 

Though successful and promising, the system raises sev- 
eral important issues to be solved in order to developa more 
systematic and general method of compiling recognition 
programs from models. We have found that one of the most 
crucial things is a more systematic way for modeling object 
appearances. So far, modeling has concentrated primarily 
on  a geometric modeling of an object. However, the 
appearance of an object in  an image, and the features of 
an object that can be reliably detected are determined not 
only by object properties, but also by sensor characteris- 
tics. The same object model in the same attitude can create 
different appearances and features when seen by different 
sensors. Edge-based binocular stereo reliably detects depth 
at edges perpendicular to the epipolar lines. Photometric 
stereo or a light-stripe range finder detects surface orien- 
tation and depth of surfaces which are illuminated and vis- 
ible both by the light sources and by the camera. 

Thus, in model based vision, it is insufficient to consider 
only an object model; it i s  essential to appropriately model 
sensors as well. Modeling sensors for model-based vision, 
however, has attracted little attention. In fact, the lack of 
explicit sensor models was the basic reason that the system 
in the previous section required human assistance. In order 
to make automatic and correct decisions, the system must 
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Fig. 5. Execution of the interpretation tree. (a) Moment of the target region which i s  rep- 
resented by a rectangle. (b) Target region. The grey arrow indicates the target region. (c) 
Neighboring region which belongs to the same object. From this evidence the interpre- 
tation tree determines that the target region and the neighboring region come from the 
same object and belong to the aspect S2. (d) EGI. (e) Interpretation tree. By following the 
interpretation tree as shown by the bold line, the object has been recognized and its atti- 
tude has been calculated uniquely. ( f )  Region direction. From the relationship between 
the two regions, the viewer rotation can be determined up to two directions (180° apart). 
(g) Edge distribution. The interpretation tree examines the edge distributions at locations 

by applying the affine transform already established for this case to the edge represen- 
tation in the aspect model. (h) Scene description. 

and orientations predicted from thetwo possible rotations. This prediction can beobtained Scene description 
(h) 
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Fig. 6. Another interpretation result. (a) Input scene (top 
view). (b) Recognition result (front view). (c) Recognition 
result (side view). 

correctly characterize object's appearances for the partic- 
ular sensor in use, predict ranges of feature values, and 
develop a framework to convert those predictions into 
decision rules. In the following sections, we will discuss 
some of the issues toward this goal, including represen- 
tation of sensor-object relationships, characterization of 
detectability and reliability of sensors, prediction of ranges 
of feature values, and generation of flexibile execution pro- 
grams. 

IV. MODELING SENSORS 

Different types of sensors are used in model-based vision. 
For our purpose, "sensors" are transducers which trans- 
form "object features" into "image features." For example, 
an edge detector detects edges of an object as lines in  an 
image. Photometric stereo measures surface orientations 
of surface patches of an object. There are both passive and 
active sensors. Binocular stereo is passive, while a light- 
stripe range finder is an active sensor using actively con- 
trolled lighting. Table 1 gives a summary of various sensors 
in terms of what object features are detected in what forms. 

Table 1 Summary of Sensors 

Sensor Vertex Edge Face Active/Passive 

Edge detector [33] 
Shape-f rom- 

shading [34] 
Synthetic aperture 

radar [ 351 
Time-of-flight range 

finder [36] 
Light-stripe range 

finder [4] 
Binocular stereo 

WI, [381 
Trinocular stereo 

WI 
Photometric stereo 

M I ,  PI 
Polarimetric light 

detector [40] 

- line - 

- - region 

point point/l ine point 

- - region 

- - region 

- line - 

- line - 

- - region 

- - point  

passive 

passive 

active 

active 

active 

passive 

passive 

active 

active 

In  addition to qualitative descriptions of a sensor, a sen- 
sor model must model two characteristics quantitatively: 
detectability and reliability. Detectability specifies what kind 
of features can be detected in what conditions. Reliability 
specifies the expected error in  the value of a feature. Since 
these two characteristics depend on  how the sensor i s  
located relative to an object feature, we will first define a 
feature configuration space to represent the geometrical 
relationship between the sensor and the feature. Then, we 

will investigate the way to specify detectability and reli- 
ability over the space. 

A. Feature Configuration Space 

Whether and how reliably a sensor detects an object fea- 
ture depend on  various factors: distance to a feature, atti- 
tude of a feature, reflectivity of a feature, transparency of 
air, ambient lighting, and s o  forth. In most model-based 
vision problems, the attitude of a feature, that is, angular 
freedom in the relationship between afeatureand a sensor, 
affects sensor characteristics most. For that purpose, we 
attached a coordinate system to  an object feature and con- 
sider the relationship between the sensor coordinate sys- 
tem and the feature coordinate system. For example, for a 
facefeature,wedefineacoordinatesystem sothatthezaxis 
of the feature coordinate system agrees with the surface 
normal and x-y axes lies on  the face, but defined arbitrarily 
otherwise. For other features, we can define feature coor- 
dinates appropriately. 

For the sake of convenience let us fix the sensor coor- 
diante system and discuss how to specify feature coordi- 
nates with respect to it. The angular relationships from the 
sensor coordinate system to a feature coordinate system 
can be specified by three degrees of freedoms: two degrees 
of freedom in  the direction of the z axis, and one degree 
of freedom in  the rotation about the z axis. See Fig. 7(a). 

Wewill defineasphere inwhich afeaturecoordinatesys- 
tern i s  specified as a point. Referring to Fig. 7(b), the direc- 
t ion from the sphere center to the point coincides with the 
z axis of the feature coordinate. The distance from the 
spherical surface to the point is  determined by the angle 
of rotation (modulo 360O) around the z axis from the coor- 
dinate on  the spherical surface. A point on  the spherical 
surface represents a feature coordinate obtained by rotat- 
ing the sensor coordinate around the axis perpendicular to 
plane given by the sphere center, the spherical point, and 
the north pole. The north pole of the sphere i s  made to cor- 
respond to the case when the feature coordinate is aligned 
completelywith the sensor~oordinate.~Wewill referto this 
sphere as the feature configuration space.' 

B. Constraints on  Feature Detectability 

Using the feature configuration space, we will represent 
in a general way the constraints on  the attitude of a feature 
for it to be detected by a sensor. A sensor has two types of 
components in general: illuminators and detectors. In order 
for a feature to  be detected by a sensor, it must satisfy cer- 

'This representation wi l l  not create discontinuities around the 
north pole as opposed to  the case in  which Euler angles from the 
sensor coordinate frame to  the feature coordinate frame are used 
to  specify spherical points; this representation wi l l  instead create 
discontinuities at the center of the sphere and at the south pole. 
However, this i s  not harmful, because we mostly use the area 
around the north pole to  discuss detectability and reliability. 

'Notethatthissphere isdifferentfromtheGaussian sphereused 
in  the previous section. Previously, the Gaussian sphere repre- 
sented the sensor coordinates (the viewer directions) w i th  respect 
to  the object coordinates and detectability of each feature was 
examined by an adhoc method for each viewer direction. In  con- 
trast, here we are developing a tool to  examine the detectability 
of a feature using the sphere to  represent the feature coordinates 
wi th respect t o  the sensor coordinates. This tool wi l l  be applied 
to  features of an object which i s  rotated with respect t o  the sensor 
coordinates. 
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Fig. 7. Feature configuration space. (a) Relationship 
between sensor coordinate and feature coordinate. The fea- 
ture coordinates can be specified by three degrees of free- 
dom: two degrees of freedom in the direction of the z axis 
of afeature,andonedegreeoffreedom in therotationabout 
the z axis of a feature. (b) Feature configuration space. One 
feature coordinate can be represented as a point in the 
sphere. The drawing at the bottom left depicts the coor- 
dinates corresponding to the points on the spherical sur- 
face, while the one at the bottom right depicts the coor- 
dinates corresponding to the points on one axis. 

tain conditions on  being i l luminated by i t s  illuminators and 
being visible from its detectors. 

Once we define a local coordinate system on  an object 
feature, we can compute configurations of a feature in 
which it i s  i l luminated by each illuminator, and configu- 
rations in which it i s  visible by each detector. I n  this anal- 
ysis, i t  should be noted that illuminators and detectors can 
be treated interchangeably. In [20] this concept was defined 
as generalized sources (G-sources). The il lumination direc- 
t ion of an i l luminator and the line of sight of adetector cor- 
respond to  the G-source i l lumination directions, and both 
can be represented in the feature configuration space as 
a radial line from the sphere center. Also, i l luminated con- 
figurations by an illuminator and visibleconfigurations from 
a detector correspond to  the G-source i l luminated config- 
uration, and both can be specified as a volume in the con- 
figuration space. Finally, we can obtain the constraints in 
which the feature is detectable by the sensor wi th  AND and 
OR operations on i l lumination (line-of-sight) directions and 

illuminated (visible) configurations of all components of 
sensors. 

Fig. 8 shows an example analysis of a face feature for a 
light-stripe range finder. A light-stripe range finder has two 

(AND (NS face VI d l )  
(NS face V2 d2)) 

:4 
.'o': 

Fig. 8. 
range finder. 

Detectability constraints of a face for a light-stripe 

G-sources (a TV camera and a light source): the direction 
denoted by V I  indicates the line of sight of the TV camera; 
V2 indicates the i l lumination direction of the light source. 
The illuminated configurations of a face are determined by 
the z axis (i.e., its surface normal), and are not dependent 
on  its rotation. Therefore, i l luminated configurations of a 
feature from a spherical cone whose axis i s  V2 and whose 
apex angle is d2. Similarly, the configurations of a feature 
visible f rom the TV camera form a spherical cone whose 
center direction i s  V I  and whose apex angle is dl .  Since a 
light-stripe range finder detects the faces which are illu- 
minated from the source and visible from the TV camera, 
the detectable configurations are the intersection of the 
two cones. Similarly we can analyze the detectable config- 
urations of various features for various sensors. The results 
of the analysis are summarized in [20]. 

V. MODELING APPEARANCE) 

Aspects have been defined as topologically equivalent 
classes with respect to  the object features "visible" to  the 
sensors. Classifying object appearances into aspects sys- 
tematically raises several issues. First, since aspect is defined 
relative to  sensors, the detectability of features by the par- 
ticular sensors to  be used must be incorporated. In the sys- 
tem of the Section II, however, we used the constraints of 
the surface visibility by the photometric stereo in an adhoc 
manner. Now that we have developed a way to represent 
the detectable configurations of features, we can use it in 
generating appearances. Second, we wil l  discuss how to 
represent object appearances and aspects in a systematic 
way. In the previous system, output from the geometric 
modeler is handled by a human-assisted process to  analyze 
them and to  generate a recognition strategy from them. This 
interactive process can handle any ad  hoc representations. 
However, in the present system, a complete automatic pro- 
cess should handle the output and generate a recognition 
program. This requires a systematic representation of object 
appearances as well as aspects. Finally, it is useful to obtain 
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an estimate of the number of aspects in  order to make sure 
that the recognition methods based on  aspects are appli- 
cable to an object with a reasonable complexity. This sec- 
tion will discuss these three issues. 

A. Appearance Generation from Constraints on  Feature 
Detectability 

T o  predict object appearances, we apply the constraints 
on feature detectability to e x h  feature of the object. Each 
feature isdetectable bythesensor if it satisfiesthe following 
two conditions: 

1) None of the illumination (line-of-sight) directions are 
occluded by any other parts of the object; 

2) The detectable configurations contain the configu- 
ration of the feature. 

To check these conditions we use the constraints together 
with a geometric modeler. We rotate the object into a cer- 
tain attitude to  be examined, and then see whether i t s  fea- 
tures satisfy the previous constraints. 

Fig. 9 illustrates this process of predicting object appear- 
ances for a light-stripe range finder. Suppose an object is  
placed like Fig. 9(a). Fig. 9(b) shows the detectability con- 
straints on a face for a light-stripe range finder. We will put 
this configuration space on each candidate face to examine 
whether the face is  detectable. See Fig. 9(c). This amounts 
to checking the following conditions: 

1 )  The light source direction is not occluded by other 
faces. 

2) The line of sight of the TV camera is  not occluded by 
other faces. 

3) The local coordinate of a face, defined by the surface 
orientation (z axis) and the tangential plane (x-y axis), 
i s  contained in the detectable configurations. 

Fig. 9(d) shows the result of this operation. The shaded area 
indicate those which satisfy the conditions and thus are 
detectable by the light-stripe range finder. 

B. Describing Aspects 

Appropriate descriptions of aspects must be defined SO 

that they can be used in  automatic generation of interpre- 
tation trees. The description of an aspect should include 
constituent appearances, a set of features extractable for 
the aspect, and the expected feature values. This descrip- 
tion should have flexibleand convenient forms for applying 
generation rules to  them and for use in  execution. We wil l  
represent aspects on  frames by using a frame represen- 
tation language, Framekit+, because it has a flexible struc- 
ture and powerful demon facilities. Since an aspect is an 
abstract concept which represents a group of possible 
appearances, we will first consider how to represent each 
appearance in the frame. Then, we will represent aspects 
based on the representation of appearances. 

A geometric modeler generates a possible appearance of 
an object under a given attitude. We will convert output 
data from the geometric modeler into representations in 
Framekit+. One appearance, for example 10 in Fig. 10(a), is 
represented by one frame, which points to  several appear- 
ance component frames representing visible 2-D faces, 

Detectable configurations m 

violau 

D 

V1’V2’D violate Vl,V2,D 

(d) 
Fig. 9. How to use detectability constraints. (a) Light-stripe 
rangefinder. (b) Detectabilityconstraintson afacefor a light- 
stripe range finder. The constraints consist of detectable 
configurations and two G-source illumination directions, 
VI, V2. (c) Applying detectability constraints. (d) Detectable 
faces.The shaded areas indicatethosewhich satisfythecon- 
ditions and thus are detectable by the light-stripe range 
finder. 

IMAGE-COMPO?, and /MAGE-COMP02.9 Each frame corre- 
sponding to one visible 2-D face maintains various geo- 
metric properties of the face in slots. For example, face area 
and face moment are maintained in slots AREA and 

’In this example, one 2-D face corresponds to one image com- 
ponent. If several 2-D faces have C’ continuity across the edges, 
these faces are grouped and stored as one single image compo- 
nent. In this case, face area and face moment are calculated over 
the group of faces. 
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(OBJECT-PTR 5785) 
(VISIBLE-REGION-LIST 

(9521 9513 ... )) 
(IS-AN-IMAGE-COMP-OFclNV 

IMAGE-COMPO1 
IMAGE-COMPO2 ... ) I) 

(( IMAGE-COMPO1 (( IMAGE-COMPO2 
(IS-A IMAGE-COMP) (IS-A IMAGE-COMP) 
(IS-AN-IMAGE-COMP-OF IO) (IS-AN-IMAGE-COMP-OF IO) 
(IS-A-FACE-OF FACE6) (IS-A-FACE-OF FACE4) 
(REGIONS (9361)) (REGIONS (9481)) 
(AREA 13 88) (AREA 747) 
(MASS-CENTER (1 21 0 24)) 
(MOMENT (22 50 11 47 -0 53)) 
(NORMAL (0 0001 0 355 0 935)) 1) 

(MASS-CENTER (-2 50 2 38) 
(MOMENT (8 56 2 60 0 80)) 
(NORMAL (-0 17 0 46 0 87)) )) 

(a) 

{( ASPECT1 
(IS-A ASPECT) 
(IS-AN-IMAGE-OF-ASPECT-OF+INV 

IO I1 ... ) 

ASPECT-COMP10 
ASPECT-COMP11 J 11 

RELATION 

II ASPECT-COMP10 
(IS-A ASPECT-COMP) 

(IS-A-FACE-OF FACE4) 
(THIS-ASPECT-HAS-RELATIONS 

ASPECT-COMP-RELATION-10.11) 
(( ASPECT-COMP-RELATION-11-10 

(IS-A ASPECT-COMP-RELATION) 
(P-ISLAND ASPECT-COMPl1) 
(N-ISLAND APSECT-COMP10) )) 

(b) 

Fig. 10. Frame representation of aspects. (a) Image structure. Each image structure con- 
sistsof aframecorresponding toan imageand several framescorresponding to2-Dvisible 
faces in the image. (b) Aspect structure. Each aspect structure consists of an aspect frame, 
aspect component frames, and aspect component relation frames. 

MOMENT. The values of these features are obtained by 
using output data f rom a geometric modeler. Each frame 
representing a 2-D visible face has a backpointer to  the 3-D 
face from which the 2-D face is projected. For example, the 
IS-A-FACE-OF slot of IMAGE-COMPO? frame has a value 
FACE6.1°An image structureconsists of an image frameand 
image component frames. 

Once image structures are represented, we can generate 

''Each frame also contains array addresses of various geometric 
items such as 2D FACE, 2D EDGE, and 2D VERTEX in the database 
of the geometric modeler; for example, 9367 in REGlONS slot of 
IMAGE-COMPO7 frame. These allow us to access the original geo- 
metric data, if necessary. 

aspect structures in frames. Since an aspect i s  an abstract 
concept for a group of images (appearances), an aspect 
structure i s  similar t o  i t s  constituent image structures. I n  
order to construct aspect structures, shape labels of all 
imageframesareexamined one byone,whereashape label 
is the combination of visible 3-D faces as explained in Sec- 
t ion 11-A. The visible 3-D faces among a 2-D appearance can 
be retrieved by backpointers of 2-D faces to  3-D faces such 
as FACE6 in IS-A-FACE-OF slot of IMAGE-COMPO? frame, 
where FACE6 i s  the frame name of a 3-D face of the object. 

If an imagestructurecannotfind anyaspect structurewith 
the same shape label among the already established ones, 
a new aspect frame i s  created together wi th  aspect com- 
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ponent frames which correspond to image component 
frames: therefore, the aspect structure has the same struc- 
ture as the image structure. Also, frames to represent the 
relationships between pairs of aspect components are cre- 
ated. If an image structurecan find an aspect structurewith 
the same shape label, the image frame is registered to the 
aspect frame as an instance and its frames of 2-D faces are 
registered to corresponding aspect component frames. 

An example of an aspect structure is shown in Fig. 10(b). 
Aspect frame ASPECT? points to several aspect component 
frames, AS PE CT-COM PI  0, AS PE CT-CO M P I  1 with the IS-A N- 
ASPECT-COMP-OF+INV slot. It also points to its instance 
images IO, I1 with IS-AN-IMAGE-OF-ASPECT-OF+INV slot, 
while its aspect component frame,ASPECT-COMPIO points 
to its instance 2-D faces IMAGE-COMPO?, IMAGE-COMPl2. 
Frame ASPECT-COMP-RELATION-11-10 is a relation frame 
which represents the relationship between ASPECT- 
COMPIO and ASPECT-COMPII. 

C. Estimating the Number of Aspects 

An interesting and important question related to using 
aspects for object recognition is how many aspects an object 
will have. If this number i s  extremely large, it is impractical 
to classify an unknown scene into an aspect and then to 
determine the attitude within it. 

One might thinkthat the number of distinct aspects grows 
exponentially as the number of faces n in the object 
increases. However, the number of aspects grows much 
slower by a polynomial in n. To see this, let us consider the 
number of aspects fp(n) of a 2-0 convex polygon with n 
edges seen in perspective. The sensor can be placed at any 
point on the 2-D plane. Each edge, when extended, divides 
the 2-D plane into two half-plane: when the sensor is located 
in the half-planecorrespondingtothe front sideoftheedge, 
then the edge i s  visible; otherwise it i s  invisible. Therefore, 
the problem of obtaining the number of distinct aspects 
fp(n) is equivalent to obtaining the number of regions into 
which n lines divide a 2-D plane. In fact, the visiblelnon- 
visible combinations attached to each region make up the 
shape label. 

We can derive the formula of fp(n) by an inductive 
method. Suppose we add the nth line after n - 1 lines have 
already been drawn. This new line intersects the existing 
n - 1 lines at n - 1 points (we are assuming the maximal 
case), which divide the new line into n segments. Each seg- 
ment on the new line divides one old region into two 
regions. Thus, this operation adds n new regions. That is, 

f,(n) = fp(n - 1) + n. 

By solving this, we obtain 

n2  + n 
2 

fp(n) = - + I  

as the upper bound on the number of aspects of a 2-D con- 
vex polygon under perspective projection. 

We can obtain the number of aspects Fp(n) of a convex 
3-D polyhedron with n faces in a very similar way. In this 
case, each face, when extended, divides a 3-D space into 
two 3-D half-spaces. We have to count the number of vol- 
umes that result when n planes divide a 3-D space. We can 
again use an inductive method. Assume that we have 
divided the 3-D space by n - 1 planes. As shown in Fig. 11, 

c N-1 lines 

Fig. 11. Intersection of N planes. 

i f  we add the nth plane, it intersects with the existing old 
n - 1 planes, and generates n - 1 intersection lines on it. 
Thus, on the nth plane there are f,(n - 1) polygons, each 
of which divides an old volume into two. Therefore, addi- 
tion of the nth plane adds fp(n - 1) volumes: 

FP(n) = Fp(n - 1) + fp(n - 1). 

Thus 

F,(n) = n3/6 + 5n/6 + 1 

is the upper bound on the number of aspects of a 3-D con- 
vex polyhedron with n faces under perspective projection. 

If we can assume orthographic projection, as we have 
done in our previous system, the number of aspects further 
reduces. Orthographic projection limits the possible sen- 
sor positions on the infinite sphere, and one occluding 
plane draws a great circle on the sphere to divide it into two 
hemispheres. We should count the number of regions on 
the sphere divided by n great circles. Since the nth great 
circle intersect with the previous n - 1 great circles at 2(n 
- 1) points and adds 2(n - 1) new regions, we obtain the 
following recursive equation: 

Fo(n) = Fo(n - 1) + 2(n - 1). 

Thus 

Fo(n) = n2 - n + 2. 

We notice that the upper bounds of the number of aspects 
grows as a quadratic function of the number of faces n. 
Moreover, for practical recognition purposes, n should be 
taken as the number of significantly large faces rather than 
including all the tiny faces. 

Nonconvex polyhedra have more aspects, because 
aspects are determined not only by occluding planes due 
to faces but also occlusionsdue to  edges. Suppose 3-D non- 
convex polyhedron has n faces, o edges, and p vertices. In 
the worst case, we have to consider occlusion planes 
defined by all the pairs of edgeand vertex: o x p .  Thus, Fo(n 
+ o x p) provides the upper bounds. However, in reality, 
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the number of aspects must be much smaller, because a 
large fraction of pairs of vertex and edge either need not 
be considered or do not generate significant aspects t o  be 
taken into account for recognition. 

VI. PREDICTING RANGES OF FEATURE VALUES 

I n  classifyingan unknown scene intoan aspect and deter- 
mining its exact attitude, we need t o  select features wi th  
high reliability and discriminant power. The reliability and 
discriminant powerofafeaturedepend not on lyon thenor- 
mina1 value that the aspect i s  expected t o  have, but  also i t s  
expected variances over the aspect. For example, imagine 
a geometric feature whose nominal values for two aspects 
are calculated as 100 and 90 by a geometric modeler. If a 
sensor has an error range of plus/minus I for the feature, 
the feature i s  a reliable discriminator t o  separate the two 
aspects. O n  the other hand, if the error range of the sensor 
is plus/minus 20, the feature i s  not usable. Therefore, pre- 
diction of the range of values that a feature wil l  take over 
an aspect i s  very important for strategy generation. 

This section wil l  discuss a method to  predict the range 
of feature values. We must consider two levels of feature 
reliability. The first is that of sensory measurements by a 
sensor and this i s  obtained by analyzing the measurement 
mechanism of a sensor. I n  many cases, however, a geo- 
metric feature is derived from a set of sensory measure- 
ments and is used as a discriminator. We must also analyze 
the propagation of error f rom sensory measurements to  a 
derived geometric feature in order to determine its reli- 
ability. 

A. Errors in Sensory Measurements 

As an example of predicting the range of sensory mea- 
surements, we wil l  consider a depth measurement by a 
hypothetical light-stripe range finder. Let us assume that 
the main source of error in the depth measurement by this 
sensor comes from the ambiguity of the slit position on  a 
surfaceduetothewidth of the light beam and angular errors 
in setting the light directions. The error model can be 
obtained analytically. 

As shown in Fig. 12(a), let us denote the angular ambiguity 
of the light stripe by60. The light i s  intercepted by an object 
surface, creating a slit pattern on  it. The angular ambiguity 
68 of the light direction results i n  ambiguity 6y in the posi- 
t ion on  the surface. 

r60 
6y = - 

cos a 

where r is the distance of the surface from the light source, 
and N i s  the angle between the light direction Sand the sur- 
face normal N. This positional ambiguity on  the surface 
is observed as the slit position ambiguity (or "slit width") 
6i in the camera image. If /3 i s  an angle between the surface 
normal N a n d  the viewer direction V, then 

6i = (cos P)6y.  

Finally, this ambiguity i s  transferred into the error of the 
depth measurement by triangulation. For simplicity, if we 
assume orthographic projection for the camera, the ambi- 
guity in the image 6i creates distance error 6z. 

W 
(b) 

Fig. 12. Predicting uncertainty of a sensory measurement 
by a light-stripe range finder. (a) Detection mechanism. (b) 
Predicted uncertainty distribution of a depth measurement 
over the configuration space. 

6i 
6z = - 

tan y 

where y i s  the angle between V and S. 

of V, N and S, we obtain 
In total, by representing the angles a, P, and y in terms 

Since r is roughly constant, the error distribution of this 
light-stripe range finder over the detectable area is gov- 
erned by the factor ((N V) (S . V))/(N . S )  m V ) .  Fig. 
12(b) plots this function. 

B. Reliability of Geometric features 

Usually sensory measurements, such as depth detected 
by a sensor are further converted in to object features such 
as area and inertiaof aface. This process involves grouping 
pixels into regions, extracting some feature values and 
transforming them in to another. Modeling the error gen- 
eration and propagation in this process i s  difficult in gen- 
eral, but as an example of predicting the reliability range 
of a geometric feature, let us consider an area feature of a 
face detected as a region by our hypothetical light-stripe 
range finder. Fig. 13 shows the conversion process from 
depth values to the areaof aface.The process includes three 
parts: obtain the area of the corresponding region in the 
image, compute the surface orientation of the region, and 
finally convert the image area into the surface area by the 
affinetransform determined by the surfaceorientation. We 
wil l  analyze how the errors are introduced and propagated 
in these three parts. 

Suppose that a surface under consideration has the real 
areaA and the surface orientation 0 (angle between the sur- 
face normal and the viewing direction). I t  should create a 
region of size n pixels where 

n = A cos P. 
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Sensor reliabilitv 

orientation 
orientation n times 

face 
area 

Sensor detectability 

Fig. 13. Conversion process from a depth value to  an area 
size of a face. 

However, because of the imperfect detectability of the sen- 
sor, the sensor fails to f ind some of them, and the measured 
area will be different from the nominal area n. Let Pdenote 
theprobabilityof detectingthis surface."Then,theprocess 
of measuring the area by sampling n pixels can be modeled 
by a binomial distribution with mean nP and variance nP(l 
- P). Assuming two standard deviations, the discrepancy 
in area measurement will be 

6n = n - (nP - 2 4 n ~ ( 1  - P)) = n ( l  - P) + 2 4 n ~ ( 1  - P). 

Another error is also introduced in obtaining the surface 
orientation /3 from measured depths due to the sensor error 
62. If we estimate the surface orientation at a pixel by dif- 
ferentiating depths of neighboring pixels, then the error 
will be cos2 P6z. However, since we have roughly n pixels 
in  the region, the surface orientation will be averaged, 
reducing the error by a factor &. Thus 

cos2 p 
6R = -62. 

dn 

Finally, the estimation of the area of the face, A + 6A, is 
obtained by converting the image area into 3-D space 

n + 6n 
A + 6 A =  

cos ( p  + 60)' 
Thus, assuming that 60 i s  small, we see that 

= A ( l  - P) + 4s (2- + 
2 

In  this way, we can predict what deviations from the nom- 
inal value of the area feature should be expected once we 
model the sensor and know i t s  intrinsic detectability Pand 
reliability 6z. 

C. Applying the Sensor Model to Aspect Structures 

By using sensor model, we can predict the ranges of var- 
ious feature values at each aspect. At each image, since a 
nominal valueof afeatureand itsconfiguration with respect 

"This probability i s  defined as a function over the configuration 
space. While the constraints o n  feature detectability in  Section 
IV-B specify only whether o r  not a feature can be  detected, this 
probability of feature detection specifies how likely the feature can 
be detected. See [20] for more details. 

to sensor coordinates are given, we can predict the range 
of the feature value for each 2-D face of the image by using 
the formuladescribed above.Then, the rangeofthe feature 
value at an aspect component i s  obtained as a sum of ranges 
of the feature values over its registered image components 
which can be reachable along IS-AN-IMAGE-COMP-OF- 
ASPECT-OF+INV. The predicted range will be stored in the 
slot of an aspect component frame. 

Fig. 14 shows slots for this purpose. For example, area 
ranges, moment ranges, and moment ratio ranges are cal- 

(( ASPECT-COMP10 

(AREA-VARIANCE (13 94 14 85 15 75)) 
(MOMENT-VARIANCE (22 77 25 06 27 34)) 
(MOMENT-RATIO-VARIANCE (0 53 0 65 0 76)) 
(VISIBLE-EDGE-LIST ASPECT-COMP1 0-VISIBLE-EDGE-LIST) 

I1 

(( ASPECT-COMP-RELATION-11-10 
.... 

(DISTANCE-VARIANCE (5 04 5.38 5.69)) 
(MOMENT-ANGLE-P-TO-N-VARIANCE (1 29 1 53 1 .E)) 
(MOMENT-ANGLE-N-TO-P-VARIANCE NIL) 
(SURFACE-ORIENTATION-ANGLE-VARIANCE (0.04 0.21 0.40)) 

.... 
I1 

Fig. 14. Slots for uncertainty ranges of features. 

culated at each image components, IMAGE-COMPO?, 
IMAGE-COMP72 which can be retrieved along the link 
stored in slot IS-AN-IMAGE-COMP-OF-ASPECT-OF+ INV of 
ASPECT-COMP70frame in Fig. 10(b). The sum of the ranges 
are stored in slot AREA-VARIANCE, MOMENT-VARIANCE, 
and MOMENT-RATIO-VARIANCE of ASPECT-COMP7Oframe. 
Similarly, feature ranges of aspect component relations, 
such as DISTANCE-VARIANCE, MOMENT-ANGLE-P-TO-N- 

are obtained and stored. These ranges of features will be 
retrieved by generation rules at compile time to  generate 
an interpretation tree and by the execution process at run 
time in recognizing a scene. 

VARIANCE, SURFACE-ORIENTATION-A NGL E-VA RIA NCE, 

VII. GENERATING PROGRAMS 

In this section, we will consider the final step of com- 
pilation of a recognition program: rule-based generation of 
a recognition strategy and conversion of the strategy into 
anexecutableprogram.Aswasin Section Il,the recognition 
strategy i s  represented by an interpretation tree which is 
made of two parts: the first part for classifying the input 
scene into one of the aspects and the second part for cal- 
culating the exact attitude. 

A. Recognition Strategy: Classification 

Strategy generation for aspect determination can be 
regarded as a process which classifies a group of aspect 
components into subgroups of aspect components by 
applying classification rules recursively. At the beginning 
of the classification, a starting node is prepared, which con- 
tains all aspect components. We represent each classifi- 
cation stage as a node. 

The following sixteen rules have been prepared. Each rule 
tries to classifyagroup of aspect components at a node into 
smaller subgroups of aspect components by using the des- 
ignated feature. For example, rule A I  will classify a group 
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of aspect components comparing area sizes of their subas- 
pect components. 

A1 
A2 
A3 
A4 
A5 
A6 

A 7  

A8 
A9 
A10 
A1 1 
A1 2 
A1 3 
A14 

A15 
A16 

face area 
face inertia 
face inertia ratio 
number of surrounding faces 
distances between surrounding faces and the face 
angles between inertia direction of surrounding 
face and the face 
surface orientation differences between surround- 
ing faces and the face 
face area of surrounding faces 
face inertia of surrounding faces 
face inertia ratio o f  surrounding faces 
surface characteristics of the face 
surface characteristics of surrounding faces 
surface characteristics distribution of the face 
surface characteristics distribution of surrounding 
faces 
edge distribution of the face 
edge distribution of surrounding faces 

The cost of calculations increases in order from A I  to  A16; 
templatesarerequired tocalculatethefeaturesfor the rules 
after A12. The order of preference in application is A I  to  
A16. Application of a rule proceeds in the fol lowing steps: 

1) A ruleselectsanodewhichcontainsagroupofaspect 
components. 

2) I t  computes the threshold values of the feature t o  be 
used for classification from ranges of the feature val- 
ues over the group of aspect components. 

3) The rule classifies the group of aspect components 
into subgroups by using the determined threshold 
values. 

4) I t  generates new nodes for the newly generated 
subgroups of aspect components. 

Since the preference of rules has been set i n  order of A I  
to  A16, a node wil l  be kept divided by the applicable and 
the most preferable rules. 

If no more rule i s  applicable (i.e., no more nodes are 
dividable), application of ru lesAl  to  A16 stops.Those nodes 
which contain onlyoneaspect component are readyforthe 
next stage of generating strategy for i ts  attitude determi- 
nation. At the termination, if there i s  a node which contains 
more than one aspect component and yet no rule is appli- 
cable to  it, the parallel verification rule w i l l  be applied t o  
the aspect components contained in the node. Since no  
further classification i s  possible, all possible aspect com- 
ponents in the node must be examined to  see if any par- 
ticular attitude i s  recognizable. 

Once a tree i s  obtained by these rules, unnecessary 
branches are pruned. A rule may have generated a single 
child node from a parent node because the rule could not 
divide aspect components in the parent node. This rule- 
based generation of a strategy for classification has been 
implemented in OPS-5. 

In applying this method in  practice, we require a prin- 
ciple to  choose a particular object and thus a particular 
region in an input image from which t o  start a recognition 
process. For a bin-picking task, we assume that the highest 
object i s  the best object t o  recognize. Under this assump- 
tion, there are two alternatives for a starting region: 

1) The largest region of the highest object (conservative 
principle). 

2) Any region of the highest object (aggressive princi- 

Since the conservative principle begins with a set of the 
largest visible aspect components, one from each aspect, 
the interpretation tree wil l  have a smaller number of nodes 
than the aggressive principle which wil l  begin wi th  a set of 
all aspect components. Therefore it wi l l  be more efficient 
in search than that fortheaggressive principle, while it may 
be less reliable because the system may fail to  f ind the larg- 
est region in the image. 

ple). 

B. Recognition Strategy: Attitude Determination 

Once the aspect classification part of the interpretation 
is completed, the part for attitude determination i s  to  be 
constructed next. This part i s  constructed for each aspect 
component of a leaf node t o  determine the precise attitude 
using the linear feature calculations. First the z axis direc- 
t ion of theobject coordinate system i s  determined and then 
rotation angle around it i s  determined. 

The following two rules are prepared for the determi- 
nation of the z axis direction: 

D 1  
D 2  extended Gaussian image. 

mass center of EGI distribution 

If there i s  no  partial occlusion of visible faces over al l  pos- 
sible attitudes within the aspect and all visible faces are 
planar surfaces, the EGI mass center by rule D1 is  used t o  
determine the viewer direction. In other cases, matching 
of EGI by rule D2 is used. 

Once the viewer direction i s  determined, the rotation 
around the axis i s  obtained next. One of the following six 
rules wil l  be adopted by examining one by one to  see if it 
constrains the freedom of rotation: 

R1 
R2 position of EGI distribution 
R3 inertia direction 
R4 EGI inertia direction 
R5 position of the surface characteristics distribution 
R6 position of the edges. 

position of detectable region distribution 

C. Executable Program 

Once recognition strategy has been obtained with the 
necessary rules t o  be used at each stage, we have to  convert 
the recognition strategy into an executable program. We 
are using the technique of object-oriented programming, 
because it simplifies t o  combine various elementary mod- 
ules into a complete program. 

Each node of the tree i s  converted into an "object" in 
object-oriented programming. We prepare a library of pro- 
totypical objects which wil l  be used to  execute matching 
operations between image regions and models according 
to  rules [21]. Each rule has one corresponding prototype in 
the library. A necessary instance of a prototypical object to  
be adopted at a node is instantiated from the correspond- 
ing rule of the node. The descendant nodes which wil l  
receive a message from this node are also inserted in slot 
EXECUTION-DESTINATIONS of the object. Slot EXECU- 
TION-ARGUMENTS contains the threshold value and other 
matching templates. 

IKEUCHI AND KANADE: AUTOMATIC GENERATION OF OBJECT RECOGNITION PROGRAMS 1031 



Our system uses photometric stereo to  obtain region 
intormation, and uses a line extractor to  obtain edge infor- 
mation. To represent these pieces of information, we also 
prepare two prototypical data objects in the object library: 
region object and edge object. We can make instance 
objects corresponding image regions and image edges. 
When instance objects are generated, the image properties 
o i  each region or edge are extracted from an image and 
stored in the corresponding slots. 

Artual operations are executed as message passing 
between objects (nodes). The operation begins by sending 
an execution message and a target region to  the starting 
node object. After that event, a chain of operations takes 
place by passing execution messages from object to object. 
When an object receives an execution message, the object 
exec.utes a matching method which had been particularly 
adopted to the node. Since regions in the image are also 
implemented as objects, a message i s  sent to  the target 
region to receive a necessary feature value from it.'' Then, 
the matching method compares thevaluewhich i s  returned 
from the target region with the values in EXECUTION- 
ARGUMENTS slot. Based on the comparison result, the 
object determines to  which object in EXECUTION-DESTI- 
NATION slot it should send an execution message next.This 
event I S  repeated until an execution message reaches one 
o f  the leat objects of the tree. At this point, the tree deter- 
mines the object attitude exactly. 

Rule-based automatic generation of an interpretation tree 
hds been applied to  an object shown in Fig. 15(a), which has 
tourteen aspects as shown in Fig. 15(d).13 The aggressive 
principle was chosen to  select the starting region. The gen- 
eration process generated the interpretation tree shown in 
Fig. l3(b). After the pruning operation, the result was an 
interpretation tree shown in Fig. 15(e). This pruning oper- 
ation reduces the depth of the interpretation tree from 14 
levels to 4. The obtained recognition strategy i s  converted 
into a recognition program by using the object library. 

The generated program i s  applied to  the scene as shown 
in Fig. 16(a). Fig. 16(b) shows the needle map, Fig. 16(c) shows 
the segmented regions based on surface orientation dis- 
tribution, and Fig. 16(d) shows edge distributions super- 
imposed on the region distributions. The highest region, 
determined by the dual photometric stereo (indicated by 
an arrow in Fig. 16(c)), is given to  the program. The black 
nodes in Fig. 16(e) indicates the nodes which receive the 
execution messages in the real run. The program classifies 
the region to  the corresponding aspect successfully. 

VIII .  FUIUKC DIRECTION 

This paper has discussed issues and techniques to  auto- 
matitally compile object and sensor models into a visual 
retognition program. This automatic generation requires 
several key components: object modeling, sensor model- 
ing, strategy generation, and program generation. Espe- 
cially we have argued for the importance of sensor mod- 
eling, as it has been studied very little in the past. We have 

"This mechanism is particularly useful when calculation of a fea- 
tu re  is expensive, such as region relation. The system also converts 
an image value into a model value by using this mechanism. See 
[XI] tor more details. 

"In this experiment, we only consider the northern hemisphere 
of the Gaussian sphere as viewer directions for the sake of sim- 
plicity. See Fig. 15(c). 

4 3Dobject 
I (a) 

4 PossipC; views 
View classificatio 

1_ 'pI@lG"l 
Sensor reliability 

( f )  Recognition program 

Fig. 15. Generation of an interpretation tree for a toy wagon. 

presented our effort toward a systematic way to  modeling 
sensors: representation of geometrical relationships 
between a sensor and an object feature and calculation of 
a feature's detectability and reliability. Actual creation and 
execution of interpretation trees by our method has been 
demonstrated. 
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Fig. 16. Tree execution. (a) Input scene. (b) Surface orientation distribution of the scene. 
(c) Segmented regions using shadows and surface orientation discontinuities. The arrow 
indicates the target region. (d) Edge distributions superimposed on the region map. (e) 
Execution result. The target region i s  classified into the corresponding aspect successfully. 

Vision has been recognized as an important, versatile 
sense for industrial applications. Yet, the number of SUC- 
cessful applications seems to be far below the expectation. 
Apart from the large computational requirement and the 
cost, one of  the serious factors which hinder wider appli- 
cation of vision i s  the t ime and expertise required t o  pro- 
gram a vision system. The automatic generation of rec- 

ognition programs by compiling object and sensor models 
wil l  mend the situation. 

Moreover, automatic program generation may open a 
new dimension of capability in model-based vision when 
it comes t o  special sensors such as synthetic aperture radars 
(SAR) or FLIR. In those cases, since their sensor character- 
istics are not very intuitive, even capable vision imple- 
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mento rs  may  not b e  d o i n g  t h e  bes t  j o b  a n d  a n  au tomat ic  
a n d  mechan ica l  m e t h o d  of genera t i ng  p rog rams  m a y  b e  
m o r e  ad  van tageou s. 

Ano the r  a reao f  inves t iga t ion  is l ea rn ing  f r o m  real  scenes. 
For example,  t h e  range o f  a fea ture  va lue  is cu r ren t l y  
ob ta ined  solely f r o m  t h e  analysis of sensor re l iab i l i t y  a n d  
detectabi l i ty .  Th is  i n fo rma t ion  can  b e  l ea rned  a n d  m o d i f i e d  
by r u n n i n g  t h e  in te rpre ta t ion  t ree  f i rs t  genera ted  f r o m  
automat ic  analysis. T h e  parameters  used  at  b ranches  are  
improved  i terat ively t h r o u g h  real  execut ion .  Fur thermore ,  
b ranch ing  s t ruc tu res  themse lves  can b e  m o d i f i e d  s l ight ly.  
A c r i t i ca l  d i f fe rence o f  t h i s  app roach  f r o m  usua l  l ea rn ing  
of recogn i t i on  a lgo r i t hms  f r o m  scratch is t ha t  w e  start w i t h  
t h e  "skeleton" strategy w h i c h  is m o r e  o r  less val id.  There- 
fo re  the re  is a good chance  tha t  t h e  f ina l  a lgo r i t hm is t r u l y  
compe ten t .  
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