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Abstract—This paper presents the development toward a dancing robot
that can listen to and dance along with musical performances. One of the
key components of this robot is the ability to modify its dance motions with
varying tempos, without exceeding motor limitations, in the same way that
human dancers modify their motions. In this paper, we first observe human
performances with varying musical tempos of the same musical piece, and
then analyze human modification strategies. The analysis is conducted in
terms of three body components: lower, middle, and upper bodies. We
assume that these body components have different purposes and different
modification strategies, respectively, for the performance of a dance. For
all of the motions of these three components, we have found that certain
fixed postures, which we call keyposes, tend to be preserved. Thus, this
paper presents a method to create motions for robots at a certain music
tempo, from human motion at an original music tempo, by using these
keyposes. We have implemented these algorithms as an automatic process
and validated their effectiveness by using a physical humanoid robot HRP-
2. This robot succeeded in performing the Aizu-bandaisan dance, one of the
Japanese traditional folk dances, 1.2 and 1.5 times faster than the tempo
originally learned, while maintaining its physical constraints. Although
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we are not achieving a dancing robot which autonomously interacts with
varying music tempos, we think that our method has a vital role in the
dancing-to-music capability.

Index Terms—Dancing robot, entertainment robot, temporal scaling.

I. INTRODUCTION

Entertainment is one of the promising application areas of humanoid
robots. Entertainment applications such as dance or music, for which
even a human performer needs special practice to perform, require spe-
cial skills for robots, and as a result, push the horizon of robotics tech-
nologies. When successful, the performance of entertainment robots
fascinates an audience.

Recently, development of such entertainment robots has accelerated
as a showcase of robotics technologies [1]–[4]. Toyota introduced musi-
cian robots at a recent AICHI expo [3]. Kosuge et al. developed a dance
partner robot for dance practice [5]. We have been developing a dancing
robot based on the learning-from-observation (LFO) paradigm [6], [7].

Our dancing humanoid robot is based on task models, defined in
the paradigm of LFO [8], [9]. The robot has the capability of observ-
ing human dance motion, analyzing such human dance motions using
task models, and finally, generating imitation motions with balance
maintenance.

This paper focuses on the human capability of dancing to music
performances of varying tempos, and proposes an algorithm to realize
this capability in a humanoid robot. The previous algorithm, proposed
by Nakaoka et al. [6], realized a predefined static interaction with
the environment; the resulting robot can only perform a dance at a
prefixed tempo. This paper considers dynamic interactions for the robot
to be able to modify its motion according to tempos of a given music
piece. Especially, in faster tempos, physical robots will be required
to omit insignificant details from the motion according to their motor
limitations.

Interaction via musical expression has been investigated in the
robotics field. Mizumoto et al. [10] developed a robot musician that
mutually interacts with a human musician using musical instruments,
such as a flute. Yoshii et al. and Murata et al. [11], [12] have described
a humanoid robot that can sing and step to musical tempos using robot
audition. Their work focuses on catching the target sound in a noisy en-
vironment including ego-noise, and differs from our goal on that point.
Tanaka et al. [13], [14], Kozima et al. [15], and Kosuge et al. [5], [16]
have developed robots that react to human motions via simple dance.
Oliveria et al. [17]–[19], Grunberg et al. [20], Sun and Cheng [21],
Gao et al. [22], and Xia et al. [23] have developed robot audition tech-
niques and miniature robots that dance autonomously synchronizing
to musical stimuli such as tempo, beat, and musical mood. However,
most of their dance is designed for the robots by simple interpolation of
physically realizable poses. They could skip the target beats coinciding
with the motions according to the limitations. On the other hand, our
target dance is designed for human dancers and contains more stylistic
movements in trajectories. Additionally, a specific pose needs to be co-
incided with a specific beat like lyrics for a song. Although our life-size
humanoid robots are designed in the image of humans, they are difficult
to move at the same level as human joints. Therefore, to achieve our
goal, an appropriate modification strategy to adapt to dance in arbitrary
tempos is necessary; this differentiates our work from theirs.

Adjusting timings or time warping of motions is popular in the
field of computer animation. Many researchers have developed motion
editing tools for designers [24]–[30]. Although some studies take into
account physical constraints, most of them are for creating natural
motions of CG characters; the application to biped robots based on
zero moment point (ZMP) will require additional cares even if it is
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Fig. 1. Learning from observation.

possible. In our temporal scaling, the simultaneous pursuit of keeping
the artistic/meaningful expression of the dance motions and satisfying
physical limitations is the challenge. Our approach differs from theirs
in terms of being based on the observation of actual human dancers.

This paper first analyzes human dancing, and extracts modification
strategies to adjust motions to music tempos. Then, the paper presents
motion modification strategies for the humanoid robot to dance to
arbitrary musical tempos. Here, before modification, the algorithm
assumes that dance motion at a certain music tempo is learned by
using the task model representation in the Nakaoka system [6]. The
validation of our proposed algorithm is conducted using a physical
humanoid robot HRP-2.

This paper is organized as follows. First, Section II briefly reviews
our dance generation paradigm based on LFO. Section III analyzes
motion variations of human dance along music tempos and extracts
motion variation strategies. Based on this analysis, Section IV pro-
poses motion modification strategies for a humanoid robot. Section V
validates our proposed system via experiments using a physical hu-
manoid robot HRP-2, and Section VI concludes this paper.

II. DANCE MOTION GENERATION BASED ON THE

LEARNING-FROM-OBSERVATION PARADIGM

We developed a paradigm referred to as LFO, which enables robots to
learn how to perform various tasks from observing human performance
[8], [9]. As shown in Fig. 1, the LFO generates robot actions through
the following three steps.

1) A human dancer performs actions in front of the robot [see
Fig. 1(left)].

2) The robot recognizes those demonstrated actions based on prede-
fined abstract task models and constructs a series of task models
[see Fig. 1(middle)].

3) The robot converts those recognized task models into robot phys-
ical actions [see Fig. 1(right)].

In general, performing the same action does not require mimicking
the entire original action performed. It is difficult, if not impossible,
to repeat the same trajectories to be mimicked, because the humanoid
robot has different dimensions, proportion, and mass distribution from
those of the human dancer. Instead, for this purpose, characteristics or
important features of the actions are extracted and performed.

Essential and nonessential parts in each action are defined based on
the knowledge of task domains. This top-down approach of design-
ing domain-specific task models distinguishes our approach from other
bottom-up learning approaches such as those developed by the Naka-
mura group [31]–[33] or the Kawato group [34]–[36]. Our top-down
approach first defines task domains such as polyhedral-world oper-
ations [37], flexible rope handling [38], grasping motions [39], and
whole-body motions [40]. Then, we define task models to represent all
necessary essential actions based on the domain knowledge.

Fig. 2. Lower-body task models.

Fig. 3. Lower-body and middle-body skill parameters.

The LFO introduces abstract task models to represent essential parts
in a sequence of actions. Each abstract task model describes the task,
i.e., what to do. Each task model also contains skill parameters that
explain how to do the specific task. Usually, recognizing tasks and
extracting skill parameters are done automatically from input data.

Our dancing humanoid robot is based on this LFO paradigm. In
particular, our method handles upper-body, middle-body, and lower-
body motions separately by defining different types of task models. This
separation is natural because although the whole body dance motion
is conducted simultaneously, the lower, middle, and upper bodies have
different roles or constraints to play in the performance of the dance.
Considering how human dancers are taught to dance in lessons, those
body motions are often taught separately. Thus, this separation is natural
also for humans, and does not destroy the basic structure of the dance.

The constraint of lower-body motion is to stably support the whole
body while performing a dance. The lower-body task model [6] is de-
fined based on two foot–floor contacting conditions, STEP and STAND
tasks (see Fig. 2). For the lower-body motion, a continuous foot motion
is segmented and recognized using these defined task models. The skill
parameters defined for each task model characterize the trajectory of the
foot, such as the highest positions and length of a stride [see Fig. 3(a)].
The obtained skill parameters modify the default trajectory of STEP
tasks, while stably supporting the whole body. Inverse-kinematics pro-
vides the joint angles of the robot’s foot.

The aim of middle-body motion is twofold: expression of the dance
and balance maintenance. For dance expression, the SQUAT task [6]
is defined to lower the waist position. The skill parameters attributed
to this SQUAT task include how deep the squat is, and the duration
of each squat [see Fig. 3(b)]. The horizontal trajectory of the middle
body is generated by computing the balance of the whole body [41].
Although some dance categories may include artistic expressions with
horizontal movements of the middle body, those are out of our current
scope to maintain dynamic stability.

The purpose of upper-body motion is to express the dance. We intro-
duce keyposes [42] to represent such dance characteristics. A keypose
is defined as a fixed posture of a dancer for the purpose of providing the
viewers with expressions and meanings of a dance. Fig. 4 shows some
of the keyposes in the Aizu-bandaisan dance, a Japanese traditional
folk dance, depicted by a dance teacher. Some expert dancers indicate
that these keyposes are the main points during the dance, and to mimic
these keyposes is one of the important tasks in showing the beauty of the
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Fig. 4. Keyposes in Aizu-bandaisan dance. Upper row: keyposes depicted by
a dance teacher. Bottom row: brief stop motions of dancers corresponding to
music beats extracted from [42].

dance. Thus, we define the performance of keyposes as the upper-body
task models. We have developed a method of extracting keyposes from
continuous dance motions by detecting brief stop motions of dancers
corresponding to music beats [42]. Upper-body motions of a robot
follow exactly its configurations at the keypose timing. The trajectory
between keyposes, regarded as a skill parameter, is represented with a
hierarchical B-spline.

By concatenating lower-body, middle-body, and upper-body mo-
tions using the Nakaoka system [6], we can obtain the entire robot
motion. In our current implementation, human motions are captured
using a motion capture system instead of an on-board camera system.

III. ANALYZING HUMAN DANCE PERFORMANCE

WITH VARYING MUSIC TEMPOS

The LFO method provides a new way for a robot to learn how to
dance at a fixed tempo. When the music tempo increases/decreases,
the robot should dance more quickly/slowly. The research described in
this paper aims to build such a capability.

The variation strategy needs to be consistent with that of humans.
This is because we aim to design a robot that gives an impression
similar to that of a human dancer. For this purpose, we first observed
and analyzed how a human dancer modifies his or her motions along
with the music tempos [43]–[45].

Dance performances by human dancers at several different music
tempos were captured through an optical motion capture system, VI-
CON. We sampled them at the original tempo, 1.2 times faster, and
1.5 times faster. We used the Aizu-bandaisan dance as a dance exam-
ple. This dance consists of cyclic patterns, each of which takes about
10 s. Three dancers performed the 10–15 cycles of the dance to each
music tempo.

As was done in the previous task model design, we assumed that
the lower body, middle body, and upper body would have different
modification strategies.

A. Lower-Body Motions

We observed start and end timing, length of a stride, and the max-
imum speed of foot tips as well as the trajectories for STEP tasks, as
was done in our preliminary experiments reported in [43].

The Aizu-bandaisan dance consists of cycles of a sequence of tasks.
In Fig. 5(top), we extracted 11 STEP tasks for one cycle. Here, R-
STEPn and L-STEPn denote the nth right and left foot steps, respec-
tively. From observation, we learned that the maximum speed of the

Fig. 5. Maximum speed of foot tip and length of a stride: Each marker rep-
resents the average maximum speed of foot tip and length of a stride in STEP
tasks at each musical tempo.

Fig. 6. Variance of start/end timings of each STEP task: Red, green, and blue
markers provide variances at the original tempo, 1.5 times faster, and 2.0 times
faster.

Fig. 7. Trajectories of a foot tip in a STEP task labeled as R-STEP4 at each
tempo. The STEP task has a special trajectory like kicking up at the last part of
each cycle of the dance.

foot tip does not vary as much as that of the musical tempo, probably
because of the physical limitation of the dancer. Thus, the following
discussion focuses on timing, length, and trajectories.

1) Timing: Fig. 6 shows the variance of start and end timings of
step motions depending on music tempos. Lines of different colors
in the graph represent different tempos. Here, we have normalized the
horizontal axis so that one cycle of dance is always depicted from 0 to 1,
independent of the music tempos. As can be seen in the graph, when the
tempo of music increases, the variance of nonkeypose steps becomes
larger, while keypose steps have lower variance. We take it that dancers’
physical capabilities required them to change the durations of STEP
tasks heuristic in faster tempos while preserving important timings.
Thus, we can conclude the following.
L-1 Timing of a STEP near a keypose will be maintained.
L-2 Timing of a STEP far from any keypose will be adjusted when

necessary to accommodate music tempos.
2) Length of a Stride: Fig. 5(bottom) shows how the stride varies

with the music tempo. The length of a stride is maintained even though
the tempo increases. We have also observed a couple of examples of
breakdown at a higher tempo. Thus, we can summarize the following.
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Fig. 8. Comparison of mean joint angle trajectories of the left shoulder in the logarithmic space of a quaternion. Lines of different colors represent different
tempos; the original musical tempo (red), 1.2 times faster tempo (green), and 1.5 times faster tempo (blue). (a) Mean motion using a single-layer B-spline,
(b) mean motion using a three-layer hierarchical B-spline, and (c) mean motion using a five-layer hierarchical B-spline. Variation of trajectory according to tempos
in (c) is greater than that in (a); higher order motions are omitted preferentially with increased music tempo.

Fig. 9. Comparison of variance sequences of joint angle trajectories of the left shoulder. Lines of different colors represent different tempos; variance sequences
at the original musical tempo (red), 1.2 times faster tempo (green), and 1.5 times faster tempo (blue). Those sequences are temporally normalized for comparison.
Postures corresponding to the common local minimum of variances are depicted in the top row. Variance sequences for each speed tend to become a local minimum
at keyposes.

(a) (b) (c)

Fig. 10. Maximum speed, maximum depth, and average timing of SQUAT task with varying music tempos: Red, green, and blue lines represent three dancers,
respectively.

L-3 The length of a stride will be maintained as much as possible
up to a certain threshold. Over this threshold, it will be reduced
accordingly.

3) Trajectories of a Foot Tip: Fig. 7 shows the trajectories of a
foot tip in STEP tasks at each tempo. The STEP task has a special
trajectory like kicking up at the last part of each cycle of the dance.
The trajectories become smaller when the music tempo increases.
L-4 Trajectories of the foot tip become compact with increased music

tempo.

B. Upper-Body Motion

We decomposed a dancer’s motion using the hierarchical B-spline
technique [44]–[46]. At the first layer, by using a certain number of
knot point sets based on the original music tempo, the dancer’s motion
was represented by using the B-spline as shown in Fig. 8(a). Then, the
difference between the original motion and the resulting B-spline is
further represented by using a B-spline with a finer interval of knots
as shown in Fig. 8(b). This process is repeated iteratively as shown in

Fig. 8(c). As we expected, when the music tempo becomes faster, the
higher order motion is omitted.

For a different aspect, we plotted how the variance of motion
coincides with the music tempo, as shown in Fig. 9. The bottom row
shows the variance sequences of a joint angle at various musical tem-
pos, and the top row shows a sequence of corresponding postures to the
common local minimum. This figure shows that the local minimum of
variance occurs at certain musical points, and in fact, those postures at
those timings correspond to the keyposes defined by a human dancer.

We can summarize our findings as follows.
U-1 Keypose timings and postures will be preserved, even if the

musical tempo becomes faster.
U-2 High-frequency components of motion will decrease when the

musical tempo becomes faster.

C. Middle-Body Motion

For SQUAT tasks, we observe timing to reach the maximum depth
and the maximum speed of the waist. For the timing, as shown in
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Fig. 11. STEP and STAND tasks grouped by keypose timings.

Fig. 12. Sampling method to consider keypose information for hierarchical
motion decomposition. Vertical lines represent sampled time instants, and a
dashed curve represents ground truth of a continuous joint angle trajectory.
Data sampled by our method (black dots) are used.

Fig. 10(c), we find that even though the music tempo increases as
depicted in the horizontal axis, the average timing does not change.
The dancers try to maintain the SQUAT timing as much as possible.
In the Aizu-bandaisan dance, this SQUAT corresponds to the keypose.
The speed of the SQUAT and the depth of the SQUAT are depicted in
Fig. 10(a) and (b), respectively. As shown in Fig. 10(a) as the music
tempo increases, the speed of the SQUAT increases and the depth
of the SQUAT is maintained. However, beyond a certain point, when
it becomes difficult to increase the speed, the depth of the SQUAT
gradually decreases.

From observation, we found the following characteristics.
M-1 The timing of the SQUAT, which usually occurs at the keypose,

is maintained independent of the music tempo. There is no dif-
ference in timing, even when the music speed increases to twice
the original.

M-2 Dancers try to maintain the depth of the SQUAT by increasing the
speed of the waist up to a certain music tempo. However, beyond
this threshold tempo, the dancers accommodate the faster music
tempos by reducing the depth.

IV. KEYPOSE-BASED INTEGRATION

This section presents modification strategies of lower-, middle-, and
upper-body motions of a humanoid robot to accommodate various
music speeds. The assumption before we begin this motion adjustment
is that the human dance motions at a standard music tempo have been
learned as a task sequence based on the LFO method [6]. We present
a modification of trajectories of these motions as music tempos are
changed.

When a music tempo becomes slower than the standard tempo,
modifying the trajectories is relatively easy; we simply make each joint
rotate more slowly by adjusting skill parameters of start/end timings
and reconstructing whole-body motions based on the skill parameters.
When the music tempo becomes faster than the standard tempo, a
robot needs to make joints rotate faster in the same way. The payload

Fig. 13. Skill parameter adjustment for temporal scaling of upper-body mo-
tion. This adjustment process gradually decreases the weighting factors from
the finest layer of the hierarchical B-spline. Both speed limitations and angular
limitations are considered simultaneously in this process.

of motors increases and sometimes may exceed the limit of the motor.
In order to avoid this situation, we derive modification strategies based
on the observations in the previous section.

From the observation results in the previous section, it would appear
that the keypose is an essential factor for the dance performance as was
found in L-1, M-1, and U-1. As stated earlier, a keypose is defined as a
fixed posture of a dancer for the purpose of providing the viewers with
expression and meanings of the dance. Other Japanese dances, such as
Nou and Kabuki, also have keyposes that are often referred to as Kime,
Tome, or Mie. In these traditional dances, dance masters regard it as
very important to represent these keyposes in appropriate timings. A
dance performance with sophisticated keyposes is considered a skillful
performance. The dancers tend to keep keypose postures in the appro-
priate relative timings in the cycle as much as possible, even if they
have to attenuate the motions to follow a faster tempo of music. Thus,
we use these keyposes as anchor points when synchronizing the lower-,
middle-, and upper-body motions to generate whole-body motions on
a humanoid robot.

A. Lower-Body Motions

Proportional temporal shrinkage of performance durations along
with the music tempo is applied to the task sequence of lower-body
motions. This operation is based on the observation of L-1. As a result,
all the lower-body motions corresponding to keyposes occurred at the
appropriate music timings. However, such shrinkage causes an overload
of joint motors. Avoidance of such overload is the issue in this section.

Tasks between two adjacent keypose times are considered as a group.
Such a group consists of several STEP and STAND tasks as shown in
Fig. 11; the start of the first STAND task and end timing of the last
STAND task within the group are fixed so as to maintain the keypose
timings. For all the STEP tasks in a group, the system increases the
speeds of the joint motors to achieve shortened execution periods.
First, the speeds of the joint motors are computed using the inverse
kinematics method at each newly created start and ending time. Then,
those speeds are examined to determine whether they exceed the motor
capability limit or not.

From among those STEP tasks in the group, the duration of the
task, with the maximally exceeding speed limitation, is extended so
as to satisfy the motor limitation. This is achieved by first reducing
the period of the following STAND task. If this is not enough, the
following STEP and STAND tasks with capacity allowance in the group
are considered as candidates for duration reduction. This operation is
conducted iteratively along the descending order of the exceeding tasks
within the group. This process is based on the observation of L-2.
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Fig. 14. Experiment of whole-body dance motion for the Aizu-bandaisan dance with a physical humanoid robot HRP-2. Top row: reference of the sequence of
postures for the original tempo of music generated using the Nakaoka system [6]. Middle and bottom rows: the sequence of postures for a tempo 1.2 and 1.5 times
faster than the original.

Fig. 15. Velocity sequences of the right knee angle (upper row) and left shoulder pitch angle (lower row) generated for 1.2 (left row) and 1.5 (right row) times
faster tempos than the original tempo. The green lines represent the corresponding joint angular velocities of the motion generated by simple temporal scaling;
proportional temporal shrinkages are applied to task sequences and motion generation is done using the Nakaoka system [6]. The blue lines represent the joint
angular velocities of the motion generated using our proposed system. The gray lines represent the upper/lower limits of the velocity. Motions generated using our
method satisfy the limitations and are feasible for the physical humanoid robot.

If this period adjustment is not enough, the strides and trajectories
of all the exceeding tasks are reduced iteratively so as to satisfy the
motor limitation. This stride reduction satisfies the limitation because
eventually the strides of the robot will become zero, and the robot is
simply standing with upper-body motions only. This process is based
on the observations of L-3 and L-4.

B. Upper-Body Motions

Joint trajectories are represented by hierarchical B-splines. Here,
in order to preserve posture information of keyposes in the following
operations, we sample joint trajectories around keyposes more densely

than those in other parts. Our sampling method is illustrated in Fig. 12.
Then, proportional temporal scaling, fitted to the new music tempo,
is applied to each layer of B-spline representation so that the result-
ing motion is consistent with the new music tempo. This operation
satisfies the observation U-1; whatever the music tempo is, keyposes
occur at particular music timings. However, the resulting motion may
exceed motor capability. Thus, this excess joint speed is amended in
the hierarchical manner.

We examine the motor capacity by examining the layers of the
hierarchical B-spline iteratively from higher to lower layers. First, we
recalculate the motor load by reducing the amplitude of the highest
level of the hierarchical B-spline. If we cannot achieve the motor load
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within the capacity by setting the amplitude of this highest level to
zero, then we iteratively repeat the same operation in the next layer of
the hierarchical B-spline. This adjustment is illustrated in Fig. 13.

C. Middle-Body Motions

For vertical movements, abstracted as SQUAT tasks, we found that
the most important factor is to maintain the starting and ending periods
(M-1) while adjusting the depth (M-2). Thus, the depth of SQUAT is
gradually reduced iteratively up to a certain value to satisfy the motor
limitation. If the reduction of the depth to the limit does not provide
the allowance of motor capability, then we expand the period of the
SQUAT task. If this is still not sufficient, we eliminate the SQUAT task
from the task sequence. These actions are not based on the observation,
but they are inevitable in order to avoid exceeding the payload limit of
the motors.

For horizontal movements, the desired horizontal trajectories of the
waist are calculated using a ZMP compensation filter [41]. This calcu-
lation is done considering upper- and lower-body motions.

V. EXPERIMENTS

In our experiments, whole-body motions of the Aizu-bandaisan
dance were generated to increase tempos of music, and HRP-2 [47]
was selected as a physical robot platform. Target tempos of music were
1.2 times faster and 1.5 times faster than the original tempo. To achieve
our goal, temporal scaling up to 1.2 times faster will be enough because
musical tempos normally do not fluctuate so much. In this section, we
tried out 1.5 times faster tempos as a cushion.

Given a dance motion and a music tempo as inputs, our learning
system automatically detects each task in the motion and extracts a
task sequence that is based on the LFO method [6]. The modification
algorithm changes the speed of the dance motion by adjusting skill pa-
rameters of each task iteratively, according to the excess of limitations.
Self-collision avoidance [6] and a ZMP compensation filter [41] au-
tomatically correct the generated motions in the iterative process. The
process is continued as long as a motion checker detects the exceeding
of physical limitations.

Each result is shown in the middle and bottom of Fig. 14. The top
figures are the sequences of Aizu-bandaisan dance at the original tempo
generated by the Nakaoka system [6] as the reference. Poses that are
surrounded in red boxes are keyposes in each sequence. The robot
expressed the keyposes using the whole body in appropriate timings
in the sequence, and provided viewers with an artistic dance pattern in
which upper body and leg motions were fully harmonious. Although
the dance motions are modified separately according to musical tempos
using different strategies, differences between keyposes at each music
tempo are difficult to find. In both music tempos, our proposed system
generated feasible motions within the joint limitations, and the HRP-2
could perform without falling down.

The joint angular velocities in the aforementioned two experiments
are shown in Fig. 15. Velocity sequences of the right knee angle (upper
row) and left shoulder pitch angle (lower row) that are generated for
1.2 (left row) and 1.5 (right row) times faster tempos than the original
one are shown. The blue lines represent the joint angular velocities
of the motions generated using the proposed system. The green lines
represent the motions generated from a simply scaled task sequence.
The gray lines represent the upper/lower limits of the velocity. Motions
generated using our method satisfy the limitations and are feasible for
the physical humanoid robot.

To demonstrate stability, the robot performed each dance motion ten
times in a row. Because physical humanoid robots have some noise
in motor control, we equipped a security crane in case of failure. Our

dancing robot successfully performed without a failure and the security
crane was not used.

VI. CONCLUSION

This paper presented an algorithm to generate whole-body motions
feasible for physical humanoid robots by the integration of individual
temporal scaling algorithms for lower-body, middle-body, and upper-
body motions. These algorithms were obtained from modeling the
human capability of dancing to various musical tempos. We found that
keyposes are essential in the dance and can be employed as anchor
points for integration of whole-body dance motions. Our integrated
system modifies skill parameters for lower-, middle-, and upper-body
motions so that they can maintain keyposes and provide whole-body
motions. We validated our algorithm via experiments using the physical
humanoid robot HRP-2.

For future work, we aim to develop a dancing robot which au-
tonomously interacts with varying music tempos. To achieve this, in-
tegration with the state-of-art technology of music analysis, and con-
nection of dance motions continuously generated for different music
tempos, will be our next focus.

Additionally, analysis of other dances is vital to validate the gener-
ality of our method. Considering the fact that there are previous studies
which analyze other dances and suggest the importance of keyposes,
we assume that our method can be applied to those other dances and
thus be further validated.
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